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I Obtained result (spoiler)

* We consider quantum fluid living above a membrane describing the Rindler
(stretched) horizon:

membrane thickness — fields live at p > [,

74\
S

Membrane: 0<p

~ in fact, we are considering Unruh radiation with temperature:

‘ T = a / QT \ i.e. we are considering the Minkowski vacuum

* Use linear response theory - Technical features: /
Kubo formula for shear viscosity: * Trivial — use usual Minkowski massless
propagators!
— lim Ty Ty * Non-trivial - find the Fourier transform in
T =% the Rindler space.

Cases considered: Naively expected:

1) Free scalar fields (discussed earlier) Fields are free — trivial result?

[Chirco, Eling, Liberati, PRD (2010), arXiv:1005.0475]
Obtained:
:23) Efee Dlll"':c fields o _> Entanglement with states beyond
) 182 C EITEEIEIE S horizon induces viscosity (as believed)

(in covariant gauge, with ghosts...)




Obtained result (spoiler)

* We directly find shear viscosity - scalar _ 1 Dirac _ 1 photon _ 1

depends on the type of particles: g 6 — 12" 14407212

[Becattini, Daher, Sheng, PLB

* Different approaches to find entropy: we use (2024), arXiv:2309.05789]

per unit area Of horizon: [Obukhov, Piskareva, Class.
Quantum Grav.(1989)]
S = / dp S loc
l. compare

* For example for spin 1 field:

¥ Quantum corrections from
1 (7r2T4 T2%|a|? 11|al* ) acceleration

— _ + —
P=3\ 15 6 24072
For Minkowski vacuum
scalar 1 Dirac
S = =S = —
T =1y :
In all n Locally -
considered - = universal function
cases: S 4 for all spins:

compare



Introduction
and
Motivation



Motivation:

[Blasone, (2018), e-Print: 1911.06002]

From the point of view of the
quantum-statistical approach:

[Becattini, PRD (2018), arXiv:1712.08031]

Thus, the mean values of the thermodynamic
quantities normalized to Minkowski vacuum
should be equal to zero when the proper
temperature, measured by comoving observer,
equals to the Unruh temperature.

[ @y =0 (T =Ty) ]

Unruh effect

Formulation

The Minkowski vacuum is perceived by an
accelerated observer as a medium with a
finite (Unruh) temperature

Example:

[Prokhorov, Teryaev, Zakharov, PRD (2019), arXiv:1903.09697]

T4

. T?al*  17|al*
THY o _ ( o ) W,V
T e 60 24 960m2) " "
94 2012 4
_(77TT +T la|*  17]a] )A“”
180 72 288072

Well-known in Rindler space. But can be
obtained by a statistical method without
switching to Rindler coordinates

* Supports the “objective” interpretation of the
effect of the Unruh (in contrast to the fact that it
is just the effect of the detector).



I Minimal viscosity bound

Hydrodynamics in linear gradients - corrections to EMT with dissipation:

T/ﬂ/ _ T/jgeal + Tudyiss Tlui]cjieal — (5 —+ p)uuuy — PYuv
; 2
Tudz/lss - —U(Vuuu + vl/u,u — u,uuavauy — uyuavau,u) — (C — gn) Vaua(glw — ’U,M’U,V) + O(V2U)

Bound inspired by string theory:
KSS-bound

i)

[Kovtun, Son, Starinets, PRL (2005), arXiv:hep-th/0405231]

* There are no completely ideal fluids!
* Jtis believed that QGP near this limit
* does not cover case of Rindler space!

* Some “feeling”: according to the holographic principle, the viscosity is associated with the
scattering of gravitons on black brane, and entropy with the horizon area — their ratio will

be finite.
* Plenty of work about KSS Bound A similar bound for bulk viscosity
* The simplest illustration: the uncertainty [Buchel, PLB (2008), arXiv:0708.3459]
rinciple for ener
I7)7~afo g n £>2(1—c§>
ree
S ~ 1 :> gNngree:ETfreezh d p

[Dobado, Llanes-Estrada, Rincon, AIP Conf.Proc. (2008), e-Print: 0804.2601]



Emergent gravity and Membrane paradigm

(general idea and very superficial overview)
[Jacobson, PRL (1995), e-Print: gr-qc/9504004]
[Eling, JHEP (2008), e-Print: 0806.3165]

1 Scenario: Emergent gravity

The principle of equilibrium |:> Einstein equation

equivalence:

Ridler's local horizon at o) Q =T6S

each point Prediction for viscosity
kA ilibri

Horizon areais ¢ — B nonequiiibrium :> n 1

related to entropy 4[}% 5Q =T85S + SW s A

2 Scenario: Membrane paradigm

Stretched horizon: ¢ Due to the slowdown of the time near the horizon, the matter
[Susskind, The Black Hole War, 20091  falling on it “stucks” at a certain distance from horizon

* “Spread” in the transverse direction.

p =10 true horizon
p =1, stretched horizon :> Membrane : 0 <p < le

[Thorne, Price, Macdonald, Black holes: the membrane paradigm (1986)]
* Membrane paradigm  [parikh, wilczek, PRD (1998), arXiv:gr-qc/9712077]

e Tt has hydrodynamic properties By integrating the action, we can obtain the Navier-
n 1 Stokes equation
* It has viscosit _ 1 1 —
y T S =— /d4$\/ —gR—l— P /dBCU Zl:hK+ Smatter
s Am 167 87



Motivation: statistical quantum mechanics

N 1 > 1 Ty :
p=exp{ = B(0) P + St +€Q)

_ (0%

Zubarev density operator:
statistical interaction with
vorticity and acceleration

wu,,j“” = —2apffp—2ijp

* Plenty results on vorticity and magnetic field effects:

-- quantum anomaly transport effects:
. . [Fukushima, Kharzeev, Warringa,
chiral magnetic effect (CME), PRD (2008), e-Print: 0808.3382]

chiral vortical effect (CVE), [Son, Surowka, PRL (2009), e-Print: 0906.5044]

. . . [Prokhorov, Teryaev, Zakharov,
kinematical vortical effect (KVE), pg;"0000) e-print: 2207.04449)

many other effects...

. . ) [STAR, Nature (2017), arXiv: 1701.06657]
-- vortical polarization  [Rogachevsky, Sorin, Teryaev, PRC (2010), e-Print: 1006.1331]
[Becattini, Karpenko, Lisa, Upsal, Voloshin, PRC (2017), e-Print: 1610.02506]

-- Totation on the lattice [Braguta, Kotov, Kuznedelev, Roenko, PRC (2021), e-Print: 2102.05084]

[Daher, Sheng, Wagner, Becattini, (2025), e-Print: 2503.03713]
[Buzzegoli, (2025), e-Print: 2502.15520]

* Modern development: shear effects




I Statement of the problem

* Does Unruh radiation have viscosity? How is it related to the KSS limit?

* Direct calculation for quantum fluid above the membrane
(which considered mostly “classically”).




Shear viscocity
in Rindler space
from Kubo formula






I Rindler coordinates and stretched horizon

Rindler's metric describes the accelerated reference system:

ds* = p?dr® — dx* — dy* — dp”

* The relationship between Rindler t = psinht
coordinates and Minkowski coordinates: z = pcosht
Horizon :  ggo(p =0) =0

1
a = — Acceleration - the inverse distance to the horizon.
0

- 14
a, = u’'Vyu,

* As was said, the fields are stuck at a certain distance from the horizon:

p € [l 00)




I Kubo formula: Rindler space

Due to the fluctuation-dissipation theorem, dissipation coefficients can be found from
fluctuations in equilibrium:

Kubo's formula for Viscosity [Zubarev, Non.equilibri.um. statis.tical.
thermodynamics, Studies in soviet science, 1974]
1

n = lim - / A2 0(t) [Ty (), Ty (O)])

w—0 W
* Can be obtained from the interaction vertex with gravitons o gWT g
 Contains a double limitw, g — 0
First ¢ — 0 . Reflects the dissipative nature.

In the Rindler space: [Chirco, Eling, Liberati, PRD (2010), arXiv:1005.0475]

n =7 lim 0 dp// pdp/ dx dy dTGin<O’TXy(T, X, Y, p)Txy(O, 0,0, p")]0)Mm
l. —00

w—0 lc

* Inthelimit w — O, one can pass from the retarded Green's function to the
Wightman function.

per unit horizon area

n=/l dp’ Nioc(p’)

C

*  We consider free _ Tyy Tyy
fields: i = F /




Entropy derivation

[Becattini, Daher, Sheng, PLB

Thermodynamic relations are modified in a (2024), arXiv:2309.05789]
medium with spin: [Obukhov, Piskareva, Class.
Quantum Grav.(1989)]

1
dp = sdT + ndup + 55’“’de

In a state of global equilibrium, it contains the vorticity tensor.
For an accelerated medium:

— AyUy,
* Unlike viscosity case, it is necessary to
:> move away from the Minkowski vacuum
T =1Ty+dI’
p = —5({Tw)A"
Minkowsky vacuum: so.(T = Ty, ]a|) = S1oc(p)
la p

oo
Entropy per unit area of the horizon: ¢ — / dp S10c(p)
l

C




Spin 0

[Chirco, Eling, Liberati, PRD (2010), arXiv:1005.0475]



C O]."]."Elatﬂr With two EMTS [Birrell, Davies, Quantum Fields in Curved

Space, Cambridge University Press, 1982]

* Improved stress-energy tensor of a massless real scalar field:

1 N & o
Ty = (1 —2£)0,90,p + (26 — 5)77uv8a908 p —2£(0,0,p0)p + 577Wg08 O
* The correlator can be found in the Minkowski metric:
A A 4 240(¢ — 1/6)* ~
(0T 00 (2 Tas ()00 = 53 Twas (@ = ) + =Tl — 1)
\ J/ h e g
a piece universal for conformally e deviation from conformal
symmetric theories symmetry

[Erdmenger, Osborn, Nucl.Phys.B (1997), arXiv:hep-th/9605009]

Tovas(b) = bububabs  Muabibs _ Mvabubs  1usbuba  Mwsbuba | Mualvs | Musllve _ TwNas
SO AP 410 4b10 4b10 4b10 808 808 165°

* The general structure follows from symmetry and dimensional considerations
_ bubvbabs  Muabybs  Tvabubs  NMupbiba  Mupbuba | Muedlvs | Muplive | 137uwnas

-:Z- ro b) = 7 T 7 7 T T T 7
pa (0) b12 10510 10510 10510 10510 80b° 80b° 80b°
_377uybab/3 _ 37}a/3b“by
10510 10p10 -

b* = b* — icby poles are shifted



I Fourier transform in Rindler space

The dependence on f goes away after integration in the horizon plane:

1
30m3(82 — (z — 2/)2 — iet)?

/ dx dy <O\Tuy(t, X,V, Z)TQB(O, 0,0,z")|0)n =

Local viscosity — at a certain distance from the horizon

4
p |t + 4922 — 51 — 42(2p> + 12) In £]
240(p? — 12)*72

DI (p) =

Viscosity per unit area of the horizon:

. / / _
n = [ dp 7710c<p) > U 14407T2lg

C

* Diverges in the limit Typical for Rindler space

l N O [Solodukhin, Living Rev. Rel. (2011), arXiv:1104.3712]
C



Ent]_"() [Page, PRD 25, 1499 (1982)]
py [Dowker, Class. Quant. Grav. (1994), arXiv:hep-th/9401159]

The energy-momentum tensor of accelerated scalar fields is well known

. 274 la]* A For the case
Tscalar _ <7T . ) ( L — Mu)
L™ 30  480x2/\“" T T3 {=1/6
ANy = Guy — Uy,

Corresponding pressure:

scalar _ 1 T . ‘a’4
prTia) = 3( 30 4807T2>
Local entropy
a 3 T =a/2m 1
— _p scalar _ 27T Sscalar —

Entropy per unit area of the horizon:




I Shear viscosity/entropy ratio
* Viscosity and entropy diverge in the limit [, — 0

scalar __ 1 scalar __ 1

 144072]2  360m2

Ui

* But their ratio is finite and does not depend on [,.

Saturates KSS bound

* The ratio of local viscosity to local entropy is described by a function

depending on ..

T (p) = f(p/le)

Sloc

vt (x* +42% =5 —4(22° + 1) Inx)
Ar(x — 1)4







I Correlator with two EMTs

Belinfante energy-momentum tensor for free massless Dirac fields:
i _ _ _
Tw = 7 @100 = 0upyuth + 00t — 0u 7, 001))

Propagator (Wightman function)

_ N _ 2 (Vx)ab Tm
San(x) = (O1a @) B (0)I0)ar = g g s | o
The poles are shifted upward relative to the —1] | ER

real time axis:

For convenience, we split the point (not a regularization - no external fields):

(01T, (2)Tap(y)|0)m = lm DY (s, 05y ) Db Dy, Dys ) (01t (1) ¥ (2) Ve (y1)Ya(y2) |0)u

], —>T
Y1,Y2—Y

Wick's theorem for Wightman functions [Bogoliubov, Shirkov, Quantum Fields, 1983]

<O‘&a ($1)¢b ($2)&c(y1)¢d(y2) |O>M,connected — <O‘7La (x1)¢d (y2> ‘O>M <0‘¢b (562)77;0(3/1) ‘O>M

We take into account only connected contributions



Correlator with two EMTs

Substitute Green's functions, take derivatives, and calculate traces with gamma matrices:

<0’Tuu(x)fa5 (y)‘0>1\/1 = %Gtr{’ma S(b)’)/aaﬂsw) - 7#658V5<b) aS(b) + 7#81/5(())758045(17)
—Yu0a0,5(0)75(b) — 7S (0)7a0,,055(b) + 7,085(b)7a 0, S (b
—YuS (b)780a0,S (D) +%3 S(6)v50,S(b) + 70,5 (b)7a0sS (b
—Y030,5(0)7aS(0) + 70,5 (0) 18005 (b) — 7,040,.S(b) 785 (b
—YS(0)Ya089uS (b) + 7,955 (0) 100, S (b) — 75 (0)7000,S (b
(0)

+7,005(0)v50,5 (b }

/N TN TN TN
N N N NS

The result is:

(O () s )]0 = Ty — )

Up to a common coefficient, the same as for conformally symmetric scalar field:

b b b bﬁ nuabvbﬁ o nuab,ubﬁ o nuﬁbuba o nl/ﬁb,uboz Nualvp + NuBMva . NuvTaps

Tuvap(b) = 35 1510 1510 1510 1510 38 S° 1658



I Fourier transform in Rindler space

Let us perform integration in the Rindler horizon plane:

let's move on to polar coordinates

X =7rCcos¢, y=rsing

Integration can be done explicitly (poles are shifted from the real axis).

We obtain:

o0 2m
A~ A 1
/0 rdr/o do (0|Txy Ty |0)Mm = = 5.3

where o = —t?+ (2 — 2')? +ict




I Fourier transform in Rindler space

Let's move on to integration by Rindler time d7

We move on to the Rindler coordinates in the integrand

= Te = T
Sl o D2(p? 4 p'? — 2pp’ cosh(T) + ieT)3

_m —_—

An infinite number of periodic poles located parallel to the imaginary
axis:

r=+In L (1 i)+ 2min n=0,+1,42..
0




Fourier transform in Rindler space

Using the periodicity of the integrand with respect to the shift in the direction of

the imaginary axis, we can

close the integral:

: A ImT :
T | ar ;
: 2m :
.................. S A T <
e S NS N
/ : . \
i . . \
1 P . : p |
\ —|In = |: In — |
\ : : Ret
O P ° P » -
""""""""" N2 e N S
I : :
: — 27 :
, .................................. .

Let's use Cauchy's theorem and find the residues at the poles:

1TW
(&

Ifull == 27T’i

To==xIn v

[p* + p'* — 2pp’ cosh(T)]?

The relationship between
the desired integral and the
integral over a closed
contour:

I=(1—e ™) Iy

Only two poles fall
inside the circuit.

T:ilnﬁl
I



I Fourier transform in Rindler space

Finding residues at the poles and passing to the limit of zero frequency, we
obtain:

lim I = P

w—0 57T2(,02 _ ;0/2)5

Taking the last integral over the distance to the horizon in the Fourier transform, we
obtain the local viscosity:

o ) P+ 4972 — 51 — 42207 +12)In £
Moc P) = 40(,02 _ lg)47-‘-2

By directly integrating over the distance to the horizon, we obtain the viscosity per
unit area of the horizon:




Entropy

[Page, PRD 25, 1499 (1982)]

The energy_momentum tensor iS known: [PFOkhOFOV, Teryaev, Zakharov, PRD (2019), arXiV:1903.09697]
[Buzzegoli, Grossi, Becattini, JHEP (2017), arXiv:1704.02808]

o 7 2T4 T2 2 17 4 A y
<T31rac> — ( n 4+ |CL| . |a| ) (’LLM’LL,/ R )
H 60 24 96072 3
Unlike a scalar field, the quadratic acceleration term contributes to the entropy

8p Di 77T2T3 T’CLP
e 1racC T —
T | ) she™(T,0) 5 36

Sloc =—

Local entropy (for Minkowski vacuum):

1
- 307p3

o)
loc (P)

Entropy per unit area of the horizon:




I Shear viscosity/entropy ratio

Viscosity and entropy differ from the case of the spin 0

Dirac 1 scalar 1

T 240722 T T 1440722

U

But the relation satisfies the KSS bound:

The ratio of local viscosity to local entropy is described by the same universal function
as for spin 0:

Toc (5) = F(p/le)

Sloc

t(xt +42° — 5 — 4(22* + 1) Inx)
4r(x — 1)4







[Birrell, Davies, Quantum Fields in Curved

I Correlator with two EMTs
Space, Cambridge University Press, 1982]

Let's consider electromagnetic fields in Rg gauge:

T = Tul\,i[ + TM(,}/ + Tugjl °5® " EMT contains three contributions
1
M « g . .
T,y =—FuF,% + an,lﬂ Maxwell's contribution
1 N 1 5 Contribution from the
E{Aﬁ,,(@A) + A,0,(04) = [0\ (04) + 5 (04) }} gauge-fixing term

TMthOSt = 0,0, ¢+ 0,¢0,,¢c — 1,,0,c0°¢c Faddeev-Popov ghosts

G _
1, =

Propagators (Wightman function) in coordinate representation:

(01 A,y () Ay (0)|0) nr = — <(1+§)mw N 2(1—5)%%)

82 \ x? — iexg (x? — dexq)?
1 1

(Ole(2)e(0)|0)ar =

472 12 — jexg




I Correlator with two EMTs

Expand the two-point correlator, selecting various contributions to the EMT operator

(01T (2) T (1)[0) ar = (O[T 00 ()T 05 (1)]0) s + (01T (2) T (1) 10) ar + (01T (2) T (1) 0) as
r a r oS ~ ghos
+(01T,5 (2)T o5 ()10 ar + (OT;88% ()T 55 (1)]0) s
T L
1 Xy Xy
0 = I +
N T TS N TS T N
I ﬁ I
0 ol 0
TG TG TxgyhOSt."/ Txgyhost




I Correlator with two EMTs

The logic of calculations is similar to the case with the Dirac field.
The contributions of the ghosts and gauge-fixing terms cancel each other:
(OIT;£ (@) T 23 ()]0 s = = (0T, (2)T.5 (1) [0) ua

The entire contribution is determined by the Maxwell term: the universal function

(010 () Tas () 002 = O M@V TH W)t = 3 Ty — )

Since the correlator differs only by the factor, the subsequent calculations are similar
to the case of scalar and Dirac fields.

Since <TT>

then 77photon — % 7,]Diranc

We finally obtain:

Does not depend on the gauge-parameter &

The result is gauge invariant.




I Entropy

Entropy can be found similarly to the case of spins 0 and 1/2

The energy-momentum tensor is known:  [Page, PRD 25, 1499 (1982)]

. 2T4 T2 2 11 4 A 5
<Tupyhoton> _ <7T 4+ ‘CL‘ o |a‘2) (Uuuu . )
15 6 2407 3
dp
oT

Also, the quadratic acceleration term contributes to the entropy

Sloc —

a

Local entropy (for Minkowski vacuum):

1
hoton

Entropy per unit area of the horizon:




I Shear viscosity/entropy ratio

Viscosity and entropy differ from the case of spins 0 and %2

n photon __ 1 S photon _ 1
1207212 3072

The ratio satisfies the KSS bound

U

S ‘photon 47

The ratio of local viscosity to local entropy is described by the same
universal function as for spins 0 and V5:

M loc
(p
S loc

— f(p/lc)

photon

vt (x* + 42° — 5 —4(22° + 1) Inx)
4 (x — 1)4

fla) =




Bulk viscosity



I Bulk viscosity

Kubo formula for bulk viscosity: [Jeon, PRD (1995), arXiv:hep-ph/9409250]

(=mlim [ pdp p’dp’/ dx dy dre™ T (0|P(r, z,y, p)P(0,0,0, p')|0)m

w—0 I, I, — 50
B _ 2750 1T75
where = Cglg +§ ;

In all cases considered:

Using equality
quaﬁ — I/u/oza =0

* The membrane paradigm problem — negative bulk viscosity of the black hole
membrane

* Translation invariance of the Rindler horizon - it should be expected that it
will not be negative



Discussion



I “Entanglement” viscosity?

* Thus, the view of the Unruh effect as an objective effect associated with the
emergence of the media is strengthened:

-- In an accelerated frame, the Minkowski vacuum behaves like a fluid

Temperature of “vacuum fluid” 1 =1y

Viscosity of the “vacuum liquid” n/s = 1/4x

[Buchel, Liu and Starinets, Nucl.Phys.B (2005) arXiv:hep-th/0406264]

n 1 i 135 (3) From string theory: KSS-bound is saturated
e E[ 8(2 gz Nc)3 /2 + ] for strong coupling (big ’t Hooft coupling)

* In our case, the opposite situation — KSS-bound is saturated for free fields.

Free fields - what is the source of viscosity?

Naively: 1) ~~ [ free :> N — 00
lfree — OO




“Entanglement” viscosity?

Indirect indication of a connection with entanglement:
Entropy is in the denominator

1 p; 1 1
Sscalar _ _SDlraC — _Sphoton _

6 12 36072

is related to entanglement

Rindler space has a horizon — + Entanglement
an open system

v

Mixed states, entanglement entropy, decoherence - “dissipation of information”

Energy dissipation - viscosity?




Species problem

Bekenstein-Hawking S A
ekenstein-Hawking: R = ——
4Gh
Entanglement entropy: Sentan gl ™ A Blng depe?;’l‘s i)dn the number
and type of fields

In particular, in accordance with that, we obtain:
1 1 hoton 1 . . . .
P = Let us consider viscosity in the membrane

scalar S Dirac _ s

S = — =
2

0 12 360l paradigm as an analogue of the

Beknestein-Hawking entropy. Then:

But the same for “entanglement™ viscosity:

1~ 1 1
scalar __ Dirac __ hoton __
A T LA VYT R T Nmembrane _ 1
SBH 47

Their relation will be universal:

Q [Parikh, Wilczek, An Action for black hole
membranes, PRD (1998), arXiv:gr-qc/9712077]

s Am

The “species problem” exists at the level of entropy and viscosity separately, but

disappears for their ratio.



Local vs global

For all cases considered, the ratio of local shear viscosity and entropy is described
by the universal function

ot (x* + 42% — 5 — 4(22° + 1) Inx)
where f(z) = dr(z — 1)

* The viscosity to entropy ratio can be

MNloc

Stoe Ko 3 below the KSS bound:
47
020 = Noc/S10c(p) < 1/4m
S p < 1.66...1,
0.15 o
3
010, & *  On the surface of the membrane:
ni
0.05 Slzz (p_l ) — 87r
i § ° le * On the contrary, far away from the
 Analytical continuation to the real membrane, the ratio is higher than the
horizon: KSS bound:
orizon:
oc M loc N 3
Z;OC (p — O) Sloc (’0 ’ OO) — 47



I Generalization

The two-point function has a universal form for conformal field theory:
[Erdmenger, Osborn, Nucl.Phys.B (1997), arXiv:hep-th/9605009]

<O’Tw/ (x)Tw (0)|0)m = cZpvap()

C is defined by conformal central charge
So, in general case: n~c/l-

What can be said about entropy?

2 - for example, in theories with AdS/CFT duality
s~ c/l
C [Kovtun, Ritz, PRL (2008), arXiv:0801.2785]

If performed in our case, then for any conformal field theories:

M 1

s Am



Conclusion

and
Outlook



I Conclusion

* The obtained results support the “objective” interpretation of the Unruh effect — a
medium arises that has finite temperature 7" = Ty, and viscosity 1/s = 1/4mw .

* The viscosity in the Rindler space for fields with spins %2 and 1 is calculated
directly. This viscosity is not related to the interaction, and therefore, apparently, is a
manifestation of entanglement.

* The average values of shear viscosity and entropy are different for different fields.

* However, their ratio satisfies the KSS bound for all considered fields: 77/s = 1/4m .

Could such universality be useful to understand the correspondence between
Bekenstein-Hawking and entanglement entropies?

* Locally, the viscosity-to-entropy ratio may violate KSS bound. On the stretched
horizon 710c / Sloc = 1 / 87 . In general, the ratio is described by a universal
function that is the same for different types of fields.



Outlook

* Beyond Unruh temperature 1" £ Ty, ?

> A more complicate analysis — conical space.

1
> It would make it possible to demonstrate explicitly that g = 1 is a lower bound.

> The role of phase transition at the Unruh temperature?

[Prokhorov, Teryaev, Zakharov, Novel phase transition at the
Unruh temperature, (2023), arXiv:2304.13151]

* Higher spins (work in progress)?

* Explicitly show the relationship with entanglement (by averaging over states
inside the “black hole”)?




Emergent gravity and Membrane paradigm

(general idea and very superficial overview)
[Jacobson, PRL (1995), e-Print: gr-qc/9504004]

1 Scenario: Emergent gravity
[Eling, JHEP (2008), e-Print: 0806.3165]

EMT of matter contributes to the

heat flux (and entropy increase)

inside horizon

[TpuHUMT
5KBUBAJ/IECHTHOCTHU:
JIOKAJIbHBIV TOPU30HT

Punepa B KaKI0M TOUKe . 6 Q =T 6 S S Q — f Tyv Eu d>v

Raychaudhuri equation relates
horizon area (and entropy)
nonequilibrium increase to Einstein tensor

equilibrium

+

Horizon area is
related to entropy

- 5Q = TS + W !
4l

A

S =

Einstein equation

Work of shear forses in
hydrodynamics

Raychaudhuri equation relates
horizon area (and entropy)

increase to shear (constructed SW = 277 / g oY
— L

from tangent vectors to

geodesics) :> g = E




The membrane paradigm problem — negative bulk visco

Bulk viscosity

Translation invariance of the Rindler horizon - it should
Kubo formula for shear viscosity: R e

¢ = lim ,Odp/ p dp/ dx dy dre™™ (0[P (7,2, y, p)P(0,0,0, p')|0)m

w—0

C

where 75 = C2TO -+ 3T7’

In all cases considered:

For example, for photons:

e =3
<Tph0ton> o (7T2T4 4+ T2’CL‘2 . 11|CL|4> (’LL U, — A/v”/) |:> p
Hy -\ 15 6 2402/ \HTY 3 , Op 1
Then the correlator contains the trace of EMT Cs Oe 3

2=1/3 = P=TF

Using equality ¢ )
oo(t-a
TV as =Zwa” =0 1 P
We obtain the vanishing of the

bulk viscosity for spins 0, V% C > O

e
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