

Нейтринный сигнал от коллапсирующих сверхновых

А.В. Юдин, ИТЭФ

Дубна, 11.05.2016

Звёзды

$\begin{array}{lll} \underline{\mathrm{Mass \ fraction \ of}} & & & & & & & \\ \mathrm{Hydrogen} & & & & & & & & \\ \mathrm{Helium} & & & & & & & & \\ \mathrm{Metals} & & & & & & & & \\ \mathrm{Metals} & & & & & & & & \\ \mathrm{CNOF-isotopes} & & & & & & & & \\ \mathrm{CNOF-isotopes} & & & & & & & & \\ \alpha-\mathrm{nuclides} \left(^{20}\mathrm{Ne} \rightarrow^{40}\mathrm{Ca}\right) & & & & & & & & \\ \lambda_{\alpha} & & & & & & & & & & \\ \mathrm{a-nuclides} \left(^{20}\mathrm{Ne} \rightarrow^{40}\mathrm{Ca}\right) & & & & & & \\ \lambda_{\alpha} & & & & & & & & & \\ \mathrm{a-nuclides} \left(^{20}\mathrm{Ne} \rightarrow^{40}\mathrm{Ca}\right) & & & & & & \\ \lambda_{\alpha} & & & & & & & & & \\ \mathrm{a-nuclides} \left(^{20}\mathrm{Ne} \rightarrow^{40}\mathrm{Ca}\right) & & & & & & \\ \lambda_{\alpha} & & & & & & & & \\ \mathrm{a-nuclides} \left(^{20}\mathrm{Ne} \rightarrow^{40}\mathrm{Ca}\right) & & & & & & \\ X_{\alpha} & & & & & & & & \\ \mathrm{a-nuclides} \left(^{20}\mathrm{Ne} \rightarrow^{40}\mathrm{Ca}\right) & & & & & \\ X_{56} & & & & & & & & \\ \mathrm{a-nuclides} \left(^{21}\mathrm{Ne} \rightarrow^{40}\mathrm{Ca}\right) & & & & & \\ \mathrm{a-nuclides} & & & & & \\ \mathrm{a-nuclides} & & & & \\ \mathrm{a-nuclides} & & & & & \\ \mathrm{a-nuclides} & & & \\ \mathrm{a-nuclides} & & & & \\ \mathrm{a-nuclides} & & & \\ a-$	Table 10.1: Some integral properties of the cosmic mixture					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mass fraction of					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Hydrogen	Х	= 0.707			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Helium	Υ	= 0.274			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Metals	\mathbf{Z}	= 0.019			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CNOF-isotopes	$X_{\rm CNOF}$	$= 0.0137 = 0.726 \mathrm{Z}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	α -nuclides (²⁰ Ne \rightarrow ⁴⁰ Ca)	X_{α}	$= 3.30 \cdot 10^{-3} = 0.175 \mathrm{Z}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Iron-56	X_{56}	$= 1.16 \cdot 10^{-3} = 0.062 \mathrm{Z}$			
Heavies (beyond Iron-group) $X_{\rm h}$ $= 2.9 \cdot 10^{-6}$ Pure r-nuclides $X_{\rm r}$ $= 5.5 \cdot 10^{-8}$ Pure s-nuclides $X_{\rm s}$ $= 4.0 \cdot 10^{-8}$ p-nuclides $X_{\rm p}$ $= 3.9 \cdot 10^{-9}$ Metals: $Mean$ atomic number $\langle Z \rangle$ Mean atomic number $\langle A \rangle$ $= 16.94$ Mean molecular weight of the whole mixture μ Mean molecular weight per electron μ_e μ_e $= 1.179$	Iron-group (Ti \rightarrow Fe \rightarrow Cu)	X_{Fe}	$= 1.38 \cdot 10^{-3} = 0.073 \mathrm{Z}$			
Pure r-nuclides $X_{\rm r}$ $= 5.5 \cdot 10^{-8}$ Pure s-nuclides $X_{\rm s}$ $= 4.0 \cdot 10^{-8}$ p-nuclides $X_{\rm p}$ $= 3.9 \cdot 10^{-9}$ Metals: $Mean$ atomic number $\langle Z \rangle$ $= 8.409$ Mean atomic mass number $\langle A \rangle$ $= 16.94$ Mean molecular weight of the whole mixture μ $= 0.6176$ Mean molecular weight per electron μ_e $= 1.179$	Heavies (beyond Iron-group)	$X_{ m h}$	$= 2.9 \cdot 10^{-6}$			
Pure s-nuclides $X_{\rm s}$ $= 4.0 \cdot 10^{-8}$ p -nuclidesp-nuclides $X_{\rm p}$ $= 3.9 \cdot 10^{-9}$ Metals: $X_{\rm p}$ $= 8.409$ (\mathcal{A}) Mean atomic number $\langle \mathcal{A} \rangle$ $= 16.94$ Mean molecular weight of the whole mixture μ $= 0.6176$ Mean molecular weight per electron μ_e $= 1.179$	Pure r-nuclides	$X_{\mathbf{r}}$	$= 5.5 \cdot 10^{-8}$			
p-nuclides X_p $= 3.9 \cdot 10^{-9}$ <u>Metals:</u> Mean atomic number $\langle Z \rangle$ $= 8.409$ $\langle A \rangle$ Mean atomic mass number $\langle A \rangle$ $= 16.94$ Mean molecular weight of the whole mixture μ $= 0.6176$ Mean molecular weight per electron μ_e $= 1.179$	Pure s-nuclides	X_{s}	$= 4.0 \cdot 10^{-8}$			
Metals:Mean atomic number $\langle Z \rangle = 8.409$ Mean atomic mass number $\langle A \rangle = 16.94$ Mean molecular weight of the whole mixture $\mu = 0.6176$ Mean molecular weight per electron $\mu_e = 1.179$	p-nuclides	Xp	$= 3.9 \cdot 10^{-9}$			
Mean atomic number $\langle Z \rangle = 8.409$ Mean atomic mass number $\langle A \rangle = 16.94$ Mean molecular weight of the whole mixture $\mu = 0.6176$ Mean molecular weight per electron $\mu_e = 1.179$	Metals:					
Mean atomic mass number $\langle \mathcal{A} \rangle = 16.94$ Mean molecular weight of the whole mixture $\mu = 0.6176$ Mean molecular weight per electron $\mu_e = 1.179$	Mean atomic number	$\langle Z \rangle$	= 8.409			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mean atomic mass number	$\langle \mathcal{A} \rangle$	= 16.94			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mean molecular weight of		- 0 6176			
per electron $\mu_e = 1.179$	the whole mixture	μ	= 0.0170			
	per electron	U.e	= 1.179			
Normalizing constant $C = 2.515 \cdot 10^{-11}$	Normalizing constant	C	$= 2.515 \cdot 10^{-11}$			

 $0.08M_{\odot} \le M \le 200M_{\odot}$ $10^{-4}L_{\odot} \le L \le 10^{6}L_{\odot}$ $10^{-2}R_{\odot} \le R \le 10^{3}L_{\odot}$

 $M_{\odot} \approx 2 \times 10^{33} c$ $R_{\odot} \approx 7 \times 10^{10} cM \approx 100 R_{\oplus}$ $L_{\odot} \approx 3.8 \times 10^{33} epc$

 $L = 4\pi R_s^2 \times \sigma_{SB} T_{eff}^4$

Диаграмма Герцшпрунга-Рассела

$t_{\rm H} \ll t_{\rm Th} \ll t_{\rm n}$

Table 2.1: Stellar time scales

Object	t_H	t_T	t_n
The Sun	$1000 \ s$	$2 \cdot 10^7 \mathrm{y}$	10 ¹⁰ y
Blue Supergiant on the Main Sequence $M = 30 M_{\odot}$	$3,500 \mathrm{~s}$	$3 \cdot 10^4 \mathrm{y}$	$5 \cdot 10^6 \mathrm{y}$
Red Supergiant (Betelgeuse) $M = 20M_{\odot}$	2 months	$1 \cdot 10^{3} y$	$1 \cdot 10^7 \mathrm{y}$
White Dwarf (Sirius B)	0.8 s	$3 \cdot 10^7 \mathrm{y}$	no nuclear burning

 $M > 85M_{\odot}$ $O \to Of \to LBV \to WN \to WC \to SN$

 $\frac{85M_{\odot} > M > 40M_{\odot}}{O \rightarrow Of \rightarrow WN \rightarrow WC \rightarrow SN}$

 $40M_{\odot} > M > 25M_{\odot}$ $O \rightarrow RSG \rightarrow WN \rightarrow WC \rightarrow SN$

 $25M_{\odot} > M > 20M_{\odot}$ $O \rightarrow RSG \rightarrow WN \rightarrow SN$

 $20M_{\odot} > M > 10M_{\odot}$ $O \rightarrow RSG \rightarrow BSG \rightarrow SN$

Эволюция звёзд разных масс на Г-Р диаграмме (I.Iben)

 $0.5 \le M / M_{\odot} \le 2.5$

Горение водорода. Красный гигант, сжатие ядра, горение Н в слое, растущее Не ядро, вспышка гелия в вырожденных условиях, CO-WD, M ~ 0.5 Msun

 $2.5 \leq M/M_{\odot} \leq 8$

На стадии КГ невырожденное Не ядро, горение гелия, вырожденное СО ядро, тепловая неустойчивость, сброс оболочки, планетарная туманность. CO-WD с M ~ 0.6-0.7 Msun

$8 \le M / M_{\odot} \le 10 \div 12$

Горение О, Ne, Mg, планетарная туманность. О-Ne-Mg WD с массой M ~ MCh ~ 1.2 Msun

 $10 \div 12 \le M / M_{\odot} \le 30 \div 40$

Горение до "железного пика": Fe, Co, Ni. Mcore ~ 1.5-2 Msun. Коллапс, SN!

 $40 \le M / M_{\odot}$

"Тихий" коллапс? Гиперновая?

Планетарные туманности вокруг белых карликов

NGC 6543, Кошачий глаз

NGC 3132 Планетарная туманность в созвездии Паруса

SN1054 Крабовидная туманность

Свехновые звёзды: Стандартная Картина

Supernova 1994D in Galaxy NGC 4526

The Disappearance of the Red Supergiant Progenitor of Supernova 2008bk

Seppo Mattila,^{1,2*} Stephen Smartt,³ Justyn Maund,^{4,5} Stefano Benetti,⁶ Mattias Ergon¹

Type IIP SN 2008bk

Properties of supernovae and their classification

Overwhelming majority of information on SNe comes from observations of their spectra: fluxes, colors, doppler shift and width of spectral lines

Light curves of supernovae

Adapted from: F. Röpke (http://theor.jinr.ru/~ntaa/07/files/program.html) A. Filippenko (Annu. Rev. Astron. Astrophys. 1997, **35**, 309)

Массивная звезда на последней стадии своей эволюции перед коллапсом

Figure 5.6: Composition versus current mass m for a 15 M_{\odot} presupernova star just before its iron core collapse shown as the mass fractions X of various nuclear species. The curve labeled by "Fe" includes all nuclides of mass numbers $48 \leq A \leq 65$ having a neutron excess greater than ⁵⁶Fe (such as ⁴⁸Ti, ⁵¹V, ⁵²Cr, ^{57,58}Fe, ⁵⁹Co, ⁶²Ni, ⁶³Cu, and several other species). Note a scale break at $4.5 M_{\odot}$. Adapted from [32]

From Woosley & Weaver An.Rev. Astron. Astrophys. v. 24, p. 205 (1986)

РАВНОВЕСНЫЙ ЯДЕРНЫЙ СОСТАВ Уравнение состояния в коре нейтронной звезды

Sly EOS; Douchin & Haensel (2001)

$$\begin{split} H_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(A_{\nu} + A_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (B_{\nu} - B_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{3h^{3}c^{2}} \left[(C_{\nu} - C_{\overline{\nu}}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} + (D_{\nu} + D_{\overline{\nu}}) \frac{\partial \psi_{\nu}}{\partial r} \right] \\ F_{\nu} &= -\frac{4\pi}{5} \left[(C_{\nu} - C_{\nu}) \frac{1}{kT^{2}} \frac{\partial T}{\partial r} \frac{d\omega'}{\lambda_{m}(\omega')} \frac{d\omega'}{\lambda_{m}(\omega',\omega')} \frac{d\omega'}{\lambda_{m}(\omega',\omega')}$$

<u>The properties of the Neutrino flux</u>

Cumulative neutrino "light" curve (based on Nadyozhin 1978)

Liebendoerfer et al. 2003

Solid lines: 40 M_{Sun} progenetor dashed: 13 M_{Sun} progenetor

Neutrino spectra for thermal phase

Energy spectra.

Fermi-Dirac law: $S_{\nu} \sim \frac{\mathcal{E}_{\nu}^{3}}{1 + \exp\left(\frac{\mathcal{E}_{\nu}}{kT_{\nu ph}} - \psi_{\nu ph}\right)},$ $(\psi_{\nu ph} \approx 0).$

High-energy cutoff (*relevant to* V_{e}, \tilde{V}_{e}):

Schematic Supernova «light curves»

Core-collapse SNe (all other Types but Ia)

The SN outburst is triggered by the gravitational collapse of the "iron" core of a mass $M_{Fe}=(1.2-2) M_{\odot}$ into a neutron star. About (10–15)% $M_{Fe}c^2$ is radiated in the form of neutrinos and antineutrinos of all the flavors (e, μ , τ):

$$E_{V\tilde{V}} = (3-5) \times 10^{53} erg$$

The explosion energy (kinetic energy of the envelope expansion):

$$E_{exp} = (0.5-2) \times 10^{51} erg$$

it comes from the shock wave created at the boundary between a new-born neutron star and the envelope to be expelled.

$$E_{exp}/E_{V\tilde{V}} \sim 3 \times 10^{-3}$$

Rich nucleosynthesis — from neutrino-induced creation of light element in C-O and He shells through synthesis of heavy nuclides by neutron capture at the bottom of expelled envelope

The mechanism of the core-collapse SNe is still under detailed study

Spherically-symmetrical collapse.

An empirical theorem: Spherically-symmetrical models do not result in expulsion of an envelope; the SN outburst does not occur: the envelope falls back on the collapsed core. Corollary: One has to address to 2- and, perhaps, 3-dimensional models to convert the stalled accreting shock into an outgoing blast wave.

Multi-dimensional collapse.

- Large-scale neutrino-driven convection
- A. Burrows' group (Arisona); E. Müller, T. Janka (MPA, Garching)
- Interaction between rotation and magnetic field G.S. Bisnovatyi-Kogan's group (ICR, Keldysh IPM, Moscow)
- Massive fast-rotating collapsed core followed by rotational fission resulting in formation of a close neutron-star binary that evolves being driven by the emission of gravitational waves and mass-exchange and ends with the explosion of a low-mass neutron star (M≈0.1M_☉). V.S. Imshennik (Alikhanov ITEP, Moscow)

First collapse + Rotational fission	\rightarrow Neutron-star binary evolution
energetic V _e ; LSD signal	4.7 hour
\rightarrow Low-mass neutron star explosio	on + second collapse
$\nu\nu$ of all flavours; IMB, Kamioka, Ba	aksan signals; SN otburst
V.S. BEREZINSKY et al, Nuovo Cimento, v	v. 11 , p. 287, (1988).

Загадка SN1987A

SN 1987A 16 years old (HST Nov. 28, 2003) Interaction of shock wave with the circumstellar ring

		Фев	раль, 23, 19	987		
1	3	5	7	9	11	1 20
Опти	ческие наб.	пюдения	час,	UT		
1	$m_v = 12^n$	1		$m_{\rm v}$	$= 6^{m}$	_
Geogra	v 2:52:3	5,4				
LSD	5 2:52:3	6,8 3,8	2	7:36:00 19		
KII (2 2:52:3 4) 4	4 4	12	7:35:35 47		
IMB			8	7:35:41 47		ve
BUST	1 2:52:3	34	6	7: <mark>36:0</mark> 6		ve
×	1			21		+
Ň	$\tilde{v}_e + p \rightarrow$	$n + e^+$				Fe (2 cx
	$E_{\mathrm{e}^+} = \frac{E_{\tilde{v}}}{E_{v}}$	– 1,3 N	1эВ,		A	
r	$n + p \rightarrow 0$	$d + \gamma (2$,2 МэВ)			ass.vass.k
	D					9
-0.Г.	Ряжска	я, уФН	[1 76, №]	10, 2006		Eq(10 and)

Rotational breakup – neutron star explosion scenario

Imshennik, Sov. Astron. Lett. 18, 194 (1992)

The rotational energy of the collapsing core E_{rot} reaches the limit of stability with respect to fragmentation: $E_{rot}/|E_g| > 0.27$ (E_g is the core gravitational energy) The binary components begin to approach each other due to the loss of total angular momentum and kinetic energy of orbital motion through the radiation of gravitational waves. Less massive component fills its Roche lobe. There begins a rapid mass transfer from the component M_2 to the component M_1 . Low-mass NS explodes when its mass decreases to the minimum possible mass of a NS.

v _p Пульсар ци r x w v Нейтронная звезда w y	Модель* Параметры и результаты	M4	M7	M8	M6
	M/m	18	18	18,	12
	$V_{ m po},10^3{ m km}{ m c}^{-1}$	1	0,5	1,5	1
	E _{exp} , 10 ⁵¹ эрг	0,67	0,76	0,45	0,77
	$V_{ m pf},10^3{ m km}{ m c}^{-1}$	0,56	0,48	0,39	0,85

Зависимость масса – центральная плотность для компактных объектов

log column density [g/cm°2]

Fast Facts for RX J0822-4300 in Puppis A:

Guitar nebula

Runaway pulsar by Chandra

Механизмы с "экзотикой":

1. Кварковые и гибридные звёзды

Crab nebula and pulsar

Composition of a Neutron Star

Neutron star, quark star or hybrid?

Ordinary Phase Transition

Maxwellian-type phase transition causes a density jump inside the star

Maximum neutron star mass

J.M. Lattimer

Annual Review of Nuclear and Particle Science, vol. 62, issue 1, pp. 485-515 (2012)

Образование ударной волны в коллапсирующем ядре звезды

Механизмы с "экзотикой":

2. Стерильные нейтрино

FIG. 7. Resonance energy (left) and radius parameter r (right) in the in-falling, prebounce core are shown back-to-back as functions of density ρ (vertical axes). An example given resonance energy $E_{\rm res}$ corresponds to two locations, r_1 and r_2 , and two corresponding densities, ρ_1 and ρ_2 .

$$E_{\rm res} = \frac{\delta m^2 \cos 2\theta}{2V} \approx \frac{m_s^2}{2V}.$$

$$V = \frac{3\sqrt{2}}{2} G_{\rm F} n_{\rm b} \left(Y_e - \frac{1}{3} + \frac{4}{3} Y_{\nu_e} + \frac{2}{3} Y_{\nu_{\mu}} + \frac{2}{3} Y_{\nu_{\tau}} \right),$$

PHYSICAL REVIEW D 76, 083516 (2007)

Sterile neutrino-enhanced supernova explosions

Jun Hidaka* and George M. Fuller[†]

FIG. 8. High energy ν_e 's could be converted to sterile neutrinos deep in the core and then regenerated as ν_e further out, nearer the neutrino sphere (edge of core).

t=3 ms after bounce

Массивные звёзды на последних стадиях эволюции

Macca $100 \div 150 \text{ M}_{\odot}$ Радиус 240 R $_{\odot}$

 $4\pi GMc$ Пульсационная $L_{_{edd}}$ $\langle K \rangle$ неустойчивость

 $\begin{array}{r}
1600 - 2 \div 4^{m} \\
1837 - 0 \div -1^{m} \\
\sim 1900 - 8^{m} \\
\sim 2000 - 6
\end{array}$

Эта Киля (η Carinae)

Расстояние 2.3 кпк Тип – LBV Large Blue Variable $T \sim 15 \div 30 \times 10^3 K$ $L \sim 10^6 L_{\odot}$ $V \sim 650 \text{ Km/c}$ $\dot{M} \sim 10^{-3} M_{\odot}$ /год

	(Adapted from [33])*						
Burning Stage	<i>Т</i> _с (К)	$ ho_c \ ({ m g/cm^3})$	$L_{ u ilde{ u}}$ (erg/s)	L (erg/s)	T _{eff} (K)	$egin{array}{c} R_{ m ph} \ (R_{ m \odot}) \end{array}$	Time Scale
Hydrogen	${3.4(7)}\atop{3.7(7)}$	$5.9(0)\ 3.8(0)$	$5.3(36)\ 2.0(37)$	$8.1(37)\ 3.1(38)$	$3.26(4) \ 3.98(4)$	4.6(0) 6.0(0)	$1.2(7){ m y}$ $7.3(6){ m y}$
Helium	$rac{1.6(8)}{1.8(8)}$	$1.3(3)\ 6.2(2)$	$3.9(33)\7.3(34)$	$2.3(38) \\ 9.5(38)$	$1.59(4) \\ 1.58(4)$	${3.2(1)}\atop{6.8(1)}$	$1.3(6){ m y}\ 6.7(5){ m y}$
Carbon	$6.2(8)\ 7.2(8)$	$\frac{1.7(5)}{6.4(5)}$	$3.4(38) \\ 1.0(40)$	${3.3(38)\ 1.2(39)}$	$\begin{array}{c} 4.26(3) \\ 4.36(3) \end{array}$	$5.3(2) \\ 9.6(2)$	$6.3(3){ m y}\ 1.6(2){ m y}$
Neon	$1.3(9)\\1.4(9)$	$rac{1.6}{3.7} egin{pmatrix} (7) \ 3.7 \ (6) \end{bmatrix}$	$6.7(41)\ 7.8(42)$	${3.7(38)\ 1.2(39)}$	$\begin{array}{c} 4.28(3) \\ 4.36(3) \end{array}$	$5.6(2) \\ 9.6(2)$	$7.0(0){ m y}\ 1.2(0){ m y}$
Oxygen	$1.9(9)\\1.8(9)$	$9.7(6)\ 1.3(7)$	$7.9(42) \\ 2.3(43)$	${3.7(38)\ 1.2(39)}$	$\begin{array}{c} 4.28(3) \\ 4.36(3) \end{array}$	$5.6(2) \\ 9.6(2)$	$1.7(0){ m y}\ 0.5(0){ m y}$
Silicon	$3.1(9)\ 3.4(9)$	$2.3(8)\ 1.1(8)$	$3.4(44)\ 3.8(45)$	$3.7(38)\ 1.2(39)$	$\begin{array}{c} 4.28(3) \\ 4.36(3) \end{array}$	$5.6(2) \\ 9.6(2)$	${ m 6.0(0)d}\ { m 1.4(0)d}$
Collapse	$8.3(9) \\ 8.3(9)$	$6.0(9)\ 3.5(9)$	6.8(48) 8.1(48)	$3.7(38)\ 1.2(39)$	$4.28(3) \\ 4.36(3)$	$5.6(2) \\ 9.6(2)$	0.30 s 0.35 s

Table 5.1: Major nuclear burning stages for $15 M_{\odot}$ and $25 M_{\odot}$ stars

*Notation: $3.4(7) \equiv 3.4 \cdot 10^7$ etc.

Weaver, Zimmerman, Woosley ApJ v. 225, p. 1021 (1978)

During Si-burning phase 1 neutron/day/kiloton of water 1kpc distance

Спасибо за внимание!

Бетельгейзе