
Topologically	protected	states	in	2D	
and	3D:	spin-momentum	and	valley-
momentum	locking	mechanism	

Maksim	Ulybyshev,	University	of	Regensburg	



The	Berry	phase	and	the	Berry	ConnecCon		

The	Chern	Number	

Chern	topological	insulators	(Haldane’s	model)	

Z2	topological	insulators	(Kane-Mele	model)	

3D	topological	topological	insulators,	different	
locking	mechanisms,	etc.	

The	General	Scheme	



The	Berry	phase	

The idea of the Berry phase arises in the following situation: we vary the parameters
λ but, ultimately, we put them back to their starting values. This means that we trace

out a closed path in the space of parameters. We will assume that this path did not go
through a point with level crossing. The question is: what state are we now in?

The adiabatic theorem tells us most of the answer. If we started in the ground state,
we also end up in the ground state. The only thing left uncertain is the phase of this
new state

|ψ⟩ → eiγ |ψ⟩

We often think of the overall phase of a wavefunction as being unphysical. But that’s

not the case here because this is a phase difference. For example, we could have started
with two states and taken only one of them on this journey while leaving the other
unchanged. We could then interfere these two states and the phase eiγ would have

physical consequence.

So what is the phase eiγ? There are two contributions. The first is simply the

dynamical phase e−iEt/! that is there for any energy eigenstate, even if the parameters
don’t change. But there is also another, less obvious contribution to the phase. This

is the Berry phase.

Computing the Berry Phase

The wavefunction of the system evolves through the time-dependent Schrödinger equa-
tion

i!
∂|ψ⟩
∂t

= H(λ(t))|ψ⟩ (1.36)

For every choice of the parameters λ, we introduce a ground state with some fixed
choice of phase. We call these reference states |n(λ)⟩. There is no canonical way to do

this; we just make an arbitrary choice. We’ll soon see how this choice affects the final
answer. The adiabatic theorem means that the ground state |ψ(t)⟩ obeying (1.36) can

be written as

|ψ(t)⟩ = U(t) |n(λ(t))⟩ (1.37)

where U(t) is some time dependent phase. If we pick the |n(λ(t = 0))⟩ = |ψ(t = 0)⟩
then we have U(t = 0) = 1. Our task is then to determine U(t) after we’ve taken λ
around the closed path and back to where we started.
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There’s always the dynamical contribution to the phase, given by e−i
∫
dtE0(t)/! where

E0 is the ground state energy. This is not what’s interesting here and we will ignore it

simply by setting E0(t) = 0. However, there is an extra contribution. This arises by
plugging the adiabatic ansatz into (1.36), and taking the overlap with ⟨ψ|. We have

⟨ψ|ψ̇⟩ = U̇U⋆ + ⟨n|ṅ⟩ = 0

where we’ve used the fact that, instantaneously, H(λ)|n(λ)⟩ = 0 to get zero on the

right-hand side. (Note: this calculation is actually a little more subtle than it looks.
To do a better job we would have to look more closely at corrections to the adiabatic
evolution (1.37)). This gives us an expression for the time dependence of the phase U ,

U⋆U̇ = −⟨n|ṅ⟩ = −⟨n| ∂
∂λi

|n⟩ λ̇i (1.38)

It is useful to define the Berry connection

Ai(λ) = −i⟨n| ∂
∂λi

|n⟩ (1.39)

so that (1.38) reads

U̇ = −iAi λ̇
iU

But this is easily solved. We have

U(t) = exp

(

−i

∫

Ai(λ) λ̇
i dt

)

Our goal is to compute the phase U(t) after we’ve taken a closed path C in parameter
space. This is simply

eiγ = exp

(

−i

∮

C

Ai(λ) dλ
i

)

(1.40)

This is the Berry phase. Note that it doesn’t depend on the time taken to change the
parameters. It does, however, depend on the path taken through parameter space.

The Berry Connection

Above we introduced the idea of the Berry connection (1.39). This is an example of a

kind of object that you’ve seen before: it is like the gauge potential in electromagnetism!
Let’s explore this analogy a little further.
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The	phase	factor	collected	aOer	the	walk	through	the	closed	path	in	parameter	space:		

AdiabaCc	change	of	parameter:	

The	final	phase	factor:	
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In the relativistic form of electromagnetism, we have a gauge potential Aµ(x) where
µ = 0, 1, 2, 3 and x are coordinates over Minkowski spacetime. There is a redundancy

in the description of the gauge potential: all physics remains invariant under the gauge
transformation

Aµ → A′
µ = Aµ + ∂µω (1.41)

for any function ω(x). In our course on electromagnetism, we were taught that if we
want to extract the physical information contained in Aµ, we should compute the field
strength

Fµν =
∂Aµ

∂xν
− ∂Aν

∂xµ

This contains the electric and magnetic fields. It is invariant under gauge transforma-

tions.

Now let’s compare this to the Berry connection Ai(λ). Of course, this no longer
depends on the coordinates of Minkowski space; instead it depends on the parameters
λi. The number of these parameters is arbitrary; let’s suppose that we have d of them.

This means that i = 1, . . . , d. In the language of differential geometry Ai(λ) is said to
be a one-form over the space of parameters, while Ai(x) is said to be a one-form over

Minkowski space.

There is also a redundancy in the information contained in the Berry connection
Ai(λ). This follows from the arbitrary choice we made in fixing the phase of the
reference states |n(λ)⟩. We could just as happily have chosen a different set of reference

states which differ by a phase. Moreover, we could pick a different phase for every choice
of parameters λ,

|n′(λ)⟩ = eiω(λ) |n(λ)⟩

for any function ω(λ). If we compute the Berry connection arising from this new choice,
we have

A′
i = −i⟨n′| ∂

∂λi
|n′⟩ = Ai +

∂ω

∂λi
(1.42)

This takes the same form as the gauge transformation (1.41).
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Following the analogy with electromagnetism, we might expect that the physical
information in the Berry connection can be found in the gauge invariant field strength

which, mathematically, is known as the curvature of the connection,

Fij(λ) =
∂Ai

∂λj
− ∂Aj

∂λi

It’s certainly true that F contains some physical information about our quantum system
and we’ll have use of this in later sections. But it’s not the only gauge invariant quantity

of interest. In the present context, the most natural thing to compute is the Berry phase
(1.40). Importantly, this too is independent of the arbitrariness arising from the gauge

transformation (1.42). This is because
∮

∂iω dλi = 0. In fact, it’s possible to write
the Berry phase in terms of the field strength using the higher-dimensional version of
Stokes’ theorem

eiγ = exp

(

−i

∮

C

Ai(λ) dλ
i

)

= exp

(

−i

∫

S

Fij dS
ij

)

(1.43)

where S is a two-dimensional surface in the parameter space bounded by the path C.

1.5.2 An Example: A Spin in a Magnetic Field

The standard example of the Berry phase is very simple. It is a spin, with a Hilbert
space consisting of just two states. The spin is placed in a magnetic field B⃗, with

Hamiltonian which we take to be

H = −B⃗ · σ⃗ +B

with σ⃗ the triplet of Pauli matrices and B = |B⃗|. The offset ensures that the ground
state always has vanishing energy. Indeed, this Hamiltonian has two eigenvalues: 0 and

+2B. We denote the ground state as |↓ ⟩ and the excited state as |↑ ⟩,

H|↓ ⟩ = 0 and H|↑ ⟩ = 2B|↑ ⟩

Note that these two states are non-degenerate as long as B⃗ ̸= 0.

We are going to treat the magnetic field as the parameters, so that λi ≡ B⃗ in this
example. Be warned: this means that things are about to get confusing because we’ll
be talking about Berry connections Ai and curvatures Fij over the space of magnetic

fields. (As opposed to electromagnetism where we talk about magnetic fields over
actual space).
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The	Berry	connecCon	

“Gauge	invariance”	due	to	phase	factors	in	basis	funcCons	:	

The	Berry	curvature	(gauge	invariant	quanCty):	
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The specific form of | ↑ ⟩ and | ↓ ⟩ will depend on the orientation of B⃗. To provide
more explicit forms for these states, we write the magnetic field B⃗ in spherical polar

coordinates

B⃗ =

⎛

⎜

⎜

⎝

B sin θ cosφ

B sin θ sin φ

B cos θ

⎞

⎟

⎟

⎠

with θ ∈ [0, π] and φ ∈ [0, 2π) The Hamiltonian then reads

H = −B

(

cos θ − 1 e−iφ sin θ

e+iφ sin θ − cos θ − 1

)

In these coordinates, two normalised eigenstates are given by

|↓ ⟩ =
(

e−iφ sin θ/2

− cos θ/2

)

and |↑ ⟩ =
(

e−iφ cos θ/2

sin θ/2

)

These states play the role of our |n(λ)⟩ that we had in our general derivation. Note,

however, that they are not well defined for all values of B⃗. When we have θ = π, the
angular coordinate φ is not well defined. This means that | ↓ ⟩ and | ↑ ⟩ don’t have

well defined phases. This kind of behaviour is typical of systems with non-trivial Berry
phase.

We can easily compute the Berry phase arising from these states (staying away from
θ = π to be on the safe side). We have

Aθ = −i⟨↓ | ∂
∂θ

|↓ ⟩ = 0 and Aφ = −i⟨↓ | ∂
∂φ

|↓ ⟩ = − sin2

(

θ

2

)

The resulting Berry curvature in polar coordinates is

Fθφ =
∂Aφ

∂θ
− ∂Aθ

∂φ
= − sin θ

This is simpler if we translate it back to cartesian coordinates where the rotational
symmetry is more manifest. It becomes

Fij(B⃗) = −ϵijk
Bk

2|B⃗|3

But this is interesting. It is a magnetic monopole! Of course, it’s not a real magnetic

monopole of electromagnetism: those are forbidden by the Maxwell equation. Instead
it is, rather confusingly, a magnetic monopole in the space of magnetic fields.
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angular coordinate φ is not well defined. This means that | ↓ ⟩ and | ↑ ⟩ don’t have

well defined phases. This kind of behaviour is typical of systems with non-trivial Berry
phase.

We can easily compute the Berry phase arising from these states (staying away from
θ = π to be on the safe side). We have

Aθ = −i⟨↓ | ∂
∂θ

|↓ ⟩ = 0 and Aφ = −i⟨↓ | ∂
∂φ

|↓ ⟩ = − sin2

(

θ

2

)

The resulting Berry curvature in polar coordinates is

Fθφ =
∂Aφ

∂θ
− ∂Aθ

∂φ
= − sin θ

This is simpler if we translate it back to cartesian coordinates where the rotational
symmetry is more manifest. It becomes

Fij(B⃗) = −ϵijk
Bk

2|B⃗|3

But this is interesting. It is a magnetic monopole! Of course, it’s not a real magnetic

monopole of electromagnetism: those are forbidden by the Maxwell equation. Instead
it is, rather confusingly, a magnetic monopole in the space of magnetic fields.
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Example	calculaCon	of	the	Berry	curvature	for	spin-1/2	in	external	magneCc	field.	
Parameters	=	magneCc	field	components.	

Berry	curvature	computed	for	the	filled	(spin-down)	band:	
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Figure 8: Integrating over S... Figure 9: ...or over S′.

Note that the magnetic monopole sits at the point B⃗ = 0 where the two energy levels
coincide. Here, the field strength is singular. This is the point where we can no longer

trust the Berry phase computation. Nonetheless, it is the presence of this level crossing
and the resulting singularity which is dominating the physics of the Berry phase.

The magnetic monopole has charge g = −1/2, meaning that the integral of the Berry
curvature over any two-sphere S2 which surrounds the origin is

∫

S2

Fij dS
ij = 4πg = −2π (1.44)

Using this, we can easily compute the Berry phase for any path C that we choose to
take in the space of magnetic fields B⃗. We only insist that the path C avoids the origin.
Suppose that the surface S, bounded by C, makes a solid angle Ω. Then, using the

form (1.43) of the Berry phase, we have

eiγ = exp

(

−i

∫

S

Fij dS
ij

)

= exp

(

iΩ

2

)

(1.45)

Note, however, that there is an ambiguity in this computation. We could choose to
form S as shown in the left hand figure. But we could equally well choose the surface

S ′ to go around the back of the sphere, as shown in the right-hand figure. In this case,
the solid angle formed by S ′ is Ω′ = 4π−Ω. Computing the Berry phase using S ′ gives

eiγ
′

= exp

(

−i

∫

S′

Fij dS
ij

)

= exp

(

−i(4π − Ω)

2

)

= eiγ (1.46)

where the difference in sign in the second equality comes because the surface now has
opposite orientation. So, happily, the two computations agree. Note, however, that

this agreement requires that the charge of the monopole in (1.44) is 2g ∈ Z. In the
context of electromagnetism, this was Dirac’s original argument for the quantisation of
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monopole charge. This quantisation extends to a general Berry curvature Fij with an
arbitrary number of parameters: the integral of the curvature over any closed surface

must be quantised in units of 2π,

∫

Fij dS
ij = 2πC (1.47)

The integer C ∈ Z is called the Chern number.

1.5.3 Particles Moving Around a Flux Tube

In our course on Electromagentism, we learned that the gauge potential Aµ is unphys-
ical: the physical quantities that affect the motion of a particle are the electric and
magnetic fields. This statement is certainly true classically. Quantum mechanically, it

requires some caveats. This is the subject of the Aharonov-Bohm effect. As we will
show, aspects of the Aharonov-Bohm effect can be viewed as a special case of the Berry

phase.

The starting observation of the Aharonov-Bohm effect is that the gauge potential A⃗
appears in the Hamiltonian rather than the magnetic field B⃗. Of course, the Hamil-

tonian is invariant under gauge transformations so there’s nothing wrong with this.
Nonetheless, it does open up the possibility that the physics of a quantum particle can
be sensitive to A⃗ in more subtle ways than a classical particle.

Spectral Flow

To see how the gauge potential A⃗ can affect the physics,

B=0

B

Figure 10: A par-

ticle moving around a

solenoid.

consider the set-up shown in the figure. We have a solenoid
of area A, carrying magnetic field B⃗ and therefore magnetic

flux Φ = BA. Outside the solenoid the magnetic field is
zero. However, the vector potential is not. This follows from

Stokes’ theorem which tells us that the line integral outside
the solenoid is given by

∮

A⃗ · dr⃗ =
∫

B⃗ · dS⃗ = Φ

This is simply solved in cylindrical polar coordinates by

Aφ =
Φ

2πr
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The	Chern	number	

Two	variants	of	calculaCon	should	coincide	

The	Chern	number,	C=0,+-1,	+-2….	



2.2. Bloch bundles
We consider a d-dimensional crystal in a tight-binding approach. We will describe its electronic properties

using a single electron Hamiltonian, i.e. neglecting interaction effects. Hence, from now on, we only focus on
first-quantized one-particle Hamiltonians. The discrete real space lattice periodicity of this Hamiltonian reflects
itself into the nature of its eigenstates, which are Bloch wavefunctions indexed by a quasi-momentum k. This
quasi-momentum k is restricted to the first Brillouin zone of the initial lattice: it is defined up to a reciprocal lattice
vector G. Hence this Brillouin zone has the topology of a d-dimensional torus Td , which we call the Brillouin torus.
From the initial Hamiltonian, we deduce for each value of this quasi-momentum k a « Bloch Hamiltonian » H(k)
acting on a 2n-dimensional Hilbert space, which accounts for the 2n electronic degrees of freedom in the unit cell
(e.g. sites, orbitals, or spin). Associated with this Bloch Hamiltonian are its Bloch eigenstates and eigen-energies
E↵(k), ↵ = 1, . . . , 2n. The evolution of each E↵(k) as k evolves in the Brillouin torus defines a band. An insulator
corresponds to the situation where a gap in energy separates the empty bands above the gap, from the filled bands
or valence bands below the gap (see Fig. 3). In this situation, when the chemical potential lies inside the gap,
electronic states of the crystal cannot be excited by a small perturbation such as the application of the difference
of potential: no current can be created. The ground state of such an insulator is determined from the ensemble of
single particle eigenstates corresponding to the filled bands. These eigenstates are defined for each valence band,
and for each point k of the Brillouin torus, up to a phase. The corresponding fiber bundle over the Brillouin zone
defined from the eigenstates of the valence bands is the object of study in the present paper.

0 ⇡�2k

E
µ

insulator

0 ⇡�2k

E

µ

metal

Figure 3: Schematic band structures of an insulator (left) and a metal (right). The variable k corresponds to the coordinate on some generic
curve on the Brillouin torus.

Bloch Hamiltonians H(k) define for each k Hermitian operators on the effective Hilbert space Hk
⇠= C2n at k.

The collection of spaces Hk forms a vector bundle on the base space Td . This vector bundle happens to be always
trivial, hence isomorphic to Td ⇥C2n, at least for low dimensions of space d  3 (this is due to the vanishing of
the total Berry curvature, see [22, 23]). This means that we may assume that the Bloch Hamiltonians H(k) are
k-dependent Hermitian 2n⇥ 2n matrices defined so that H(k) = H(k+ G) for G in the reciprocal lattice (note
that this does not always correspond to common conventions in particular on multi-partite lattices, see e.g. [24])

In an insulator, there are at least two well-defined subbundles of this complete trivial bundle: the valence
bands bundle, which corresponds to all the filled bands, under the energy gap, and the conduction bands bundle,
which corresponds to all the empty bands, over the energy gap. In the context of topological insulators, we
want to characterize the topology of the valence bands bundle, which underlies the ground state properties of
the insulators. In a topological insulator this valence bands subbundle possesses a twisted topology while the
complete bundle is trivial.

In the following, we will discuss two different kinds of topological orders. In the first one, we will discuss Chern
insulators (section 3): no symmetry constraints are imposed on the Bloch bundle, and in particular time-reversal
invariance is broken. In the second part, we will discuss Z2 insulators (section 4): here, time-reversal invariance is
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where h?A= A� h represents the connection form defined on the sphere pulled back by the map h to be defined
on the torus 3, and we used that @ h�1(UN) and @ h�1(US) have opposite orientations. We can now relate the Berry
connections on the two hemispheres with the transition function, by using (12) with the transition function (11),
we get

AN = t�1
N S AS tN S + t�1

NS

d
i

tNS = AS + d' (16)

so that

AN � AS = d' =
1
i

d log(tN S). (17)

Finally, we obtain the expression of the Chern number as the winding of the transition function

c1 =
1

2⇡

Z

BZ

F =
1

2⇡i

Z

@ h�1(UN)
d log(tNS � h). (18)

Hence, the filled eigenvector as well as the associated Berry connection are well defined on the whole Brillouin
torus only if the transition function tN S � h : @ h�1(UN)! U(1) can be continuously deformed to the identity, i.e.
when it does not wind around the circle, which corresponds to a trivial Chern class c1 = 0. The first Chern number
is therefore the winding number of the transition function ; when the Chern class is not trivial, it is not possible
to deform the transition function to the identity. Notice that a nonzero first Chern number can be seen as an
obstruction to Stokes theorem, as its expression (14) in terms of the Berry curvature would vanish if we could
write « F = dA » on the whole torus.

Let us now come back to our two-band model with the parameterization (4) where we have omitted the part
proportional to the identity (h01) :

H(k) =~h(k) · ~� (19)

In this case, the curvature 2-form takes the form [28]:

F =
1
4
✏i jk h�3 hi dhj ^ dhk, (20)

and the first Chern number reads:

c1 =
1

2⇡

Z

BZ

F =
1
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Z

BZ

1
4
✏i jk khk�3 hi dhj ^ dhk. (21)

As ~h(~k) depends on the two components kx et ky of the wavevector, we have:

dhj =
@ hj

@ ka
dka et dhj ^ dhk =

@ hj

@ ka

@ hk

@ kb
dka ^ dkb (22)

The curvature F can be written in the more practical form:

F =
1
4
✏i jk khk�3 hi

@ hj

@ ka
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@ kb
dka ^ dkb =

1
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~h

khk3
·
Ç
@~h
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⇥ @

~h
@ ky

å
dkx ^ dky , (23)

corresponding to the first Chern number

3. The attentive reader will notice that we actually considered a map h from the sphere to the sphere when assuming that h�1(UN) and
h�1(US) defines a open covering of the manifold we consider. To be more precise, we should consider two maps : from the torus (BZ) to the
sphere, and the map h from the sphere to the sphere. For the sake of simplicity, we have implicitly assumed in writing eq. (15) that the first
map from the torus to the sphere was topologically trivial.
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Let us now come back to our two-band model with the parameterization (4) where we have omitted the part
proportional to the identity (h01) :

H(k) =~h(k) · ~� (19)

In this case, the curvature 2-form takes the form [28]:

F =
1
4
✏i jk h�3 hi dhj ^ dhk, (20)

and the first Chern number reads:
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Z

BZ

F =
1

2⇡

Z

BZ

1
4
✏i jk khk�3 hi dhj ^ dhk. (21)

As ~h(~k) depends on the two components kx et ky of the wavevector, we have:

dhj =
@ hj

@ ka
dka et dhj ^ dhk =

@ hj

@ ka

@ hk

@ kb
dka ^ dkb (22)

The curvature F can be written in the more practical form:

F =
1
4
✏i jk khk�3 hi

@ hj

@ ka

@ hk

@ kb
dka ^ dkb =

1
2

~h

khk3
·
Ç
@~h
@ kx
⇥ @

~h
@ ky

å
dkx ^ dky , (23)

corresponding to the first Chern number

3. The attentive reader will notice that we actually considered a map h from the sphere to the sphere when assuming that h�1(UN) and
h�1(US) defines a open covering of the manifold we consider. To be more precise, we should consider two maps : from the torus (BZ) to the
sphere, and the map h from the sphere to the sphere. For the sake of simplicity, we have implicitly assumed in writing eq. (15) that the first
map from the torus to the sphere was topologically trivial.
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@ ky

å
dkx ^ dky (24)

One recognises in the expression (21) the index of the map ~h (see Appendix C). Hence, the first Chern
number c1 = deg(~h, 0). This identification provides a geometrical interpretation of the Chern number in the case
of two-band insulators. When k spreads over Brillouin torus, ~h describes a closed surface ⌃. The Chern number
can then be viewed as

– the (normalized) flux of a magnetic monopole located at the origin through the surface ⌃
– the number of times the surface ⌃ wraps around the origin (in particular, it is zero if the origin is « outside »
⌃ ; more precisely it is the homotopy class of ⌃ in the punctured space R3 � 0)

– the number of (algebraically counted) intersections of a ray coming from the origin with ⌃, which is the
method used in [29].

3.5. Haldane’s model
3.5.1. General considerations

In this section, we consider an explicit example of such a two band model displaying a topological insulating
phase, namely the model proposed by Haldane [5]. Besides its description using the semi-metallic graphene,
Haldane’s model describes a whole class of simple two bands insulating phases with possibly a nontrivial
topological structure, and proposes a description of one of the simplest examples of a topological insulator,
namely a Chern insulator. In this model, both inversion symmetry and time-reversal symmetry are simultaneously
broken in a sheet of graphene. Inversion symmetry is broken by assigning different on-site energies to the two
inequivalent sublattices of the honeycomb lattice, while time-reversal invariance is lifted by local magnetic fluxes
organized so that the net flux per unit cell vanishes. Therefore, the first neighbors hopping amplitudes are not
affected by the magnetic fluxes, whereas the second neighbors hopping amplitudes acquire an Aharonov–Bohm
phase.

3.5.2. Notations
We consider a tight-binding model of spinless electrons on a two-dimensional hexagonal (honeycomb) lattice.

Crucially, this lattice is not a Bravais lattice, and the cristal is described as a triangular Bravais lattice with two
non-equivalent atoms in a unit cell, hence its description requires a two-level Hamiltonian. Let us denote by A and
B the two inequivalent sublattices corresponding to those atoms (See Fig. 5). The lattice parameter a, defined as
the shortest distance between nearest neighbors, sets the unit of length: a = 1.

A

B a1a2

a3

b1

b2

b3

Figure 5: Honeycomb lattice used in Haldane’s model

The vectors between nearest neighbors, i.e. between sites of different sublattices A and B, are:

a1 =
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3/2
1/2

◆
a2 =
✓
�
p

3/2
1/2

◆
a3 =
✓

0
�1

◆
= �(a1 + a2), (25)

whereas the vectors between second-nearest neighbors belonging to the same sublattice are:
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Figure C.27: Projection of N on the sphere by the map ⇡. In the depicted case, �(a)\ N = ⇡�1(a) =
�

g1, g2, g3
 
, with orientation numbers

(+1,�1,+1), so that the degree of N with respect to p is 1.

deg(N,p) = +1deg(N,p) = −1 deg(N,p) = 0 deg(N,p) = 2
Figure C.28: Examples in dimension n= 2 of curves N with different winding numbers with respect to the red point p.

The engulfing number is also given [56] by the Kronecker integral:

deg( f ) =
1

An�1

Z

M
f ?⌧ (C.3)

where ⌧ is the (n� 1)-form:

⌧=
1
rn ? rdr =

1
rn

nX

i=1

(�1)i�1 xi dx1 · · ·ddx j · · ·dxn (C.4)

The (n� 1)-form ?rdr (where ? is Hodge’s star) restricted to the sphere Sn�1 is the volume form on the
sphere. Integrated, it gives the area An�1 of the n� 1-sphere. The term decorated with a hat b is omitted. By
expliciting the pullback when p = 0, we obtain:

deg( f , 0) =
1

An�1

Z

M

2
4

nX

j=1

(�1) j�1
f j�� f
��n d f1 ^ · · ·^”d f j ^ · · ·^ d fn

3
5 (C.5)

When n= 3 (where A2 = 4⇡), the formula (C.5) can be written:

deg( f , 0) =
1

4⇡

Z

M

1
2
✏i jk k f k�3 fi d f j ^ d fk. (C.6)
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phase, namely the model proposed by Haldane [5]. Besides its description using the semi-metallic graphene,
Haldane’s model describes a whole class of simple two bands insulating phases with possibly a nontrivial
topological structure, and proposes a description of one of the simplest examples of a topological insulator,
namely a Chern insulator. In this model, both inversion symmetry and time-reversal symmetry are simultaneously
broken in a sheet of graphene. Inversion symmetry is broken by assigning different on-site energies to the two
inequivalent sublattices of the honeycomb lattice, while time-reversal invariance is lifted by local magnetic fluxes
organized so that the net flux per unit cell vanishes. Therefore, the first neighbors hopping amplitudes are not
affected by the magnetic fluxes, whereas the second neighbors hopping amplitudes acquire an Aharonov–Bohm
phase.

3.5.2. Notations
We consider a tight-binding model of spinless electrons on a two-dimensional hexagonal (honeycomb) lattice.

Crucially, this lattice is not a Bravais lattice, and the cristal is described as a triangular Bravais lattice with two
non-equivalent atoms in a unit cell, hence its description requires a two-level Hamiltonian. Let us denote by A and
B the two inequivalent sublattices corresponding to those atoms (See Fig. 5). The lattice parameter a, defined as
the shortest distance between nearest neighbors, sets the unit of length: a = 1.
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The vectors between nearest neighbors, i.e. between sites of different sublattices A and B, are:

a1 =
✓p

3/2
1/2

◆
a2 =
✓
�
p

3/2
1/2

◆
a3 =
✓

0
�1

◆
= �(a1 + a2), (25)

whereas the vectors between second-nearest neighbors belonging to the same sublattice are:
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b1 = a2 � a3 =
✓
�
p

3/2
3/2

◆
b2 = a3 � a1 =

✓
�
p

3/2
�3/2

◆
b3 = a1 � a2 =

✓p
3

0

◆
. (26)

Two of those vectors will serve as base vectors of the Bravais lattice ; we will choose b1 and b2. The reciprocal
lattice is then spanned by the two vectors b?1 and b?2 which satisfy:

bi b
?
j = 2⇡�i j , (27)

so

b?1 = 2⇡
✓
�1/
p

3
1/3

◆
b?2 = 2⇡

✓
�1/
p

3
�1/3

◆
. (28)

Two points of the Brillouin zone are of particular interest in graphene, corresponding to the origin of the
low-energy Dirac dispersion relations. They are defined by:

K =
1
2

Ä
b?1 + b?2

ä
and K 0 = �K . (29)

In the following, Gmn = mb?1 + nb?2 denotes an arbitrary reciprocal lattice vector (n, m 2 Z).

3.5.3. Haldane’s Hamiltonian
The first quantized Hamiltonian of Haldane’s model can be written as:

Ĥ = t
X

h i, j i
|ii h j|+ t2

X

� i, j�
|ii h j|+M

2
4
X

i2A

|ii hi|�
X

j2B

| ji h j|
3
5 (30)

where |ii represents an electronic state localized at site i (atomic orbital), h i, j i represents nearest neighbors
lattice sites i and j, � i, j � represents second nearest neighbors sites i and j, i 2 A represents sites in the sublattice
A (resp. i 2 B in the sublattice B). This Hamiltonian is composed of a first nearest neighbors hopping term with
a hopping amplitude t, a second neighbors hopping term with a hopping parameter t2, and a last sublattice
symmetry breaking term with on-site energies +M for sites of sublattice A, and �M for sublattice B, which
thus breaks inversion symmetry. Moreover, the Aharanov–Bohm phases due to the time-reversal breaking local
magnetic fluxes are taken into account through the Peierls substitution:

ti j ! ti j exp

 
�i

e
~h

Z

�i j

~A · d~̀
!

(31)

where ti j is the hopping parameter between sites i and j, and where �i j is the hop trajectory from site i to site j
and ~A is a potential vector accounting for the presence of the magnetic flux. In Haldane’s model, magnetic fluxes
are imposed such that the phase accumulated through a nearest neighbor A! B (or B! A) hopping vanishes,
whereas the phase accumulated through a second-neighbors hopping A! A or B! B is nonzero (see. Fig. 6 for
a possible flux distribution). The Aharonov–Bohm phase gained through A! A hopping is opposite of the one
gained through B! B hopping. Notice that to use Peierls substitution, we choose a gauge for the vector potential;
U(1) gauge invariance of the model is reflected in the independence of results of this particular choice of the
phases. The Peierls substitution amounts to the substitution:

t ! t and t2! t2ei� (32)

where the Aharonov–Bohm phase � due to the local magnetic flux is taken as a parameter of the model.
The Fourier transform of the Hamiltonian (30) with Aharonov–Bohm phases leads to a 2⇥2 Bloch Hamiltonian

in the (A, B) sublattices basis:

H(k) = hµ(k)�µ (33)
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whereas the phase accumulated through a second-neighbors hopping A! A or B! B is nonzero (see. Fig. 6 for
a possible flux distribution). The Aharonov–Bohm phase gained through A! A hopping is opposite of the one
gained through B! B hopping. Notice that to use Peierls substitution, we choose a gauge for the vector potential;
U(1) gauge invariance of the model is reflected in the independence of results of this particular choice of the
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where |ii represents an electronic state localized at site i (atomic orbital), h i, j i represents nearest neighbors
lattice sites i and j, � i, j � represents second nearest neighbors sites i and j, i 2 A represents sites in the sublattice
A (resp. i 2 B in the sublattice B). This Hamiltonian is composed of a first nearest neighbors hopping term with
a hopping amplitude t, a second neighbors hopping term with a hopping parameter t2, and a last sublattice
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where ti j is the hopping parameter between sites i and j, and where �i j is the hop trajectory from site i to site j
and ~A is a potential vector accounting for the presence of the magnetic flux. In Haldane’s model, magnetic fluxes
are imposed such that the phase accumulated through a nearest neighbor A! B (or B! A) hopping vanishes,
whereas the phase accumulated through a second-neighbors hopping A! A or B! B is nonzero (see. Fig. 6 for
a possible flux distribution). The Aharonov–Bohm phase gained through A! A hopping is opposite of the one
gained through B! B hopping. Notice that to use Peierls substitution, we choose a gauge for the vector potential;
U(1) gauge invariance of the model is reflected in the independence of results of this particular choice of the
phases. The Peierls substitution amounts to the substitution:

t ! t and t2! t2ei� (32)

where the Aharonov–Bohm phase � due to the local magnetic flux is taken as a parameter of the model.
The Fourier transform of the Hamiltonian (30) with Aharonov–Bohm phases leads to a 2⇥2 Bloch Hamiltonian

in the (A, B) sublattices basis:

H(k) = hµ(k)�µ (33)
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Figure 6: Example of a choice for magnetic flux in an Haldane cell (left). We have used ' = �/2 to simplify. Second-neighbors hopping
corresponds to a nonzero flux (middle), whereas first-neighbors hopping gives a zero flux (right), so the total flux through a unit cell is zero.

with

h0 = 2t2 cos�
3X

i=1

cos(k · bi) ; hz = M � 2t2 sin�
3X

i=1

sin(k · bi) ; (34a)

hx = t
⇥

1+ cos(k · b1) + cos(k · b2)
⇤

; hy = t
⇥

sin(k · b1)� sin(k · b2)
⇤

; (34b)

with a convention where ~h is periodic: ~h(k+ Gmn) =~h(k).

3.5.4. Phase diagram of Haldane’s model
To determine the phase diagram, let us find the points in the parameter space where the local gap closes

(i.e. h= khk = 0) at some points of the Brillouin torus. In graphene, which corresponds to (M ,�) = (0, 0) in the
diagram, the two energy bands are degenerate (h= 0) at the Dirac points K et K 0 (see eq. (29)). At a generic point
of the diagram, this degeneracy is lifted, and the system is an insulator (h 6= 0), except when |M |= 3

p
3t2 sin�.

The corresponding line separates four a priori different insulating states, see Fig. 7. Haldane has shown that for
|M |> 3

p
3t2 sin�, the Chern number of the filled band vanishes, which means that the corresponding insulator

is topologically trivial. On the contrary, when |M | < 3
p

3t2 sin�, the Chern number is ±1 [5]. This defines
Haldane’s phase diagram (Fig. 7); we will recover these results in section 3.5.6.

−⇡ 0 ⇡

0

3
√
3

−3√3
�

M�t2

C1 = −1 C1 = +1
C1 = 0

C1 = 0

Figure 7: Phase diagram of the Haldane model, giving the first Chern number c1 on the plane (�, M/t2) (the manifold of parameters is
S1 ⇥R, variable � being a phase).

Let us note that on the critical lines which separate insulating phases with different topologies, there is
a phase transition and the system is not insulating anymore: it is a semi-metal with low energy Dirac states.
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S1 ⇥R, variable � being a phase).

Let us note that on the critical lines which separate insulating phases with different topologies, there is
a phase transition and the system is not insulating anymore: it is a semi-metal with low energy Dirac states.
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The engulfing number is also given [56] by the Kronecker integral:
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where ⌧ is the (n� 1)-form:
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(�1)i�1 xi dx1 · · ·ddx j · · ·dxn (C.4)

The (n� 1)-form ?rdr (where ? is Hodge’s star) restricted to the sphere Sn�1 is the volume form on the
sphere. Integrated, it gives the area An�1 of the n� 1-sphere. The term decorated with a hat b is omitted. By
expliciting the pullback when p = 0, we obtain:
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When n= 3 (where A2 = 4⇡), the formula (C.5) can be written:

deg( f , 0) =
1
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Z

M

1
2
✏i jk k f k�3 fi d f j ^ d fk. (C.6)
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evolution of this surface ⌃0 as a function of M/t2 and �, we identify easily Haldane’s phase diagram, see Fig. 7
and Fig. 8. At a phase transition between two insulators with different Chern numbers, the origin necessarily
crosses the surface ⌃, corresponding to a gap closing (i.e. h= khk = 0) at least at one point on the Brillouin torus.
Therefore, the topological phase transition is a semi-metallic phase.

3.5.6. Determination of the Chern numbers in the phase diagram
To determine in a more rigorous manner the topological phase diagram of Haldane model requires the

evaluation of the Chern number c11 as a function of the parameters (M/t2,�). A simple method [29] consists in
using the geometric interpretation of the Chern number as the number of intersections between some ray coming
from the origin and the oriented closed surface ⌃ spanned by h (see Appendix C). Alternatively, we can consider
half of the number of intersections with a line instead of a ray. A natural choice for this line is the Oz axis. If D is
the set of pre-images by h of those intersections, i.e. D = h�1(Oz \⌃), the Chern number is:

c1 =
1
2

X

k2D

sign [h(k) · n(k)] , (35)

where n(k) is the normal vector to ⌃ at k (where it is ±êz in the formula). We obtain (with a slight abuse of
notation):

c1 =
1
2

X

k2D

sign [F(k)] , (36)

where F is the Berry curvature from eq. (23). More explicitely, we obtain:

c1 =
1
2

X

k2D

sign
⇥

hz(k)
⇤

sign

ñÇ
@~h
@ kx
⇥ @

~h
@ ky

å

z

ô
, (37)

the second term accounting for the direction of the normal. We now need to determine the set D, i.e. the set of
wavevectors k such that hx(k) = hy(k) = 0 (so that ~h lies the z axis). As the components hx and hy of (34) are
M/t2 and � independent, they are identical to those in pure graphene (which is the point (M/t2,�) = (0,0)),
these points are the Dirac points of graphene 4:

D =

®
K =

Ç
� 4⇡

3
p

3
0

å
et K 0 = �K

´
. (38)

Hence the quantities we need to compute are the masses of the Dirac points:

hz(K) = M � 3
p

3t2 sin� and hz(K 0) = M + 3
p

3t2 sin�, (39)

and the Chern number is thus given by:

c1 =
1
2


sign
✓

M
t2
+ 3
p

3 sin(�)
◆
� sign
✓

M
t2
� 3
p

3 sin(�)
◆�

, (40)

which corresponds to the original result of [5] (see also Fig. 7). Obviously this method is specific neither to
graphene nor to Haldane’s model; we can apply it very efficiently to two bands general models indexed by a
vector ~h, as it necessitate only to compute the sign of hz at points where hx and hy vanish.

4. As the Dirac points are on the boundary of the standard Brillouin zone, there appears six points on this Brillouin zone depicted in the
place, but only two inequivalent ones on the torus.
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3.5.7. Surface states
One of the crucial consequences of a nontrivial bulk topology is the appearance of metallic edge states at

the surface of a topological insulator. An sketchy way to understand the appearance of these surface states is
the following: as the Chern number is a topological quantity, it cannot change simply through a continuous
transformation, but only at a phase transition associated with a gap closing. Following [15] and [30], we discuss
the appearance of edge states due to the change in bulk topology.

Let us start with a time-reversal invariant, parity-invariant system like graphene. The time-reversal symmetry
implies hz(k) = hz(�k), whereas the inversion symmetry implies hz(k) = �hz(�k). Hence when both symmetries
are present, hz identically vanishes. A Dirac point is an isolated point K of the Brillouin torus where the gap
closes i.e. h(K) = 0, so that the dispersion relation around this point is linear. Nielsen–Ninomiya’s theorem
[31] implies that Dirac points come in pairs in a time-reversal invariant system. Hence, the simplest case is one
with two Dirac points K and K 0. This is the case of the Haldane model discussed in section 3.5. In Haldane’s
model, the time-reversal invariance is lifted. The gap at the Dirac points opens because hz(K) 6= 0, but we have
still hx(K) = hy(K) = 0. Hence, the Dirac points have gained a mass m = hz(K). Indeed, let us linearize the
Hamiltonian (4) around a Dirac point K by writing k = K + q :

Hl(q) = ~hvF q ·�2d +m�z (41)

with q = (qx , qy) and �2d = (�x ,�y), and m = hz(K). The linearization gives rise to a massive Dirac Hamiltonian
with mass m. In the following, we set ~hvF = 1. In Haldane’s model, we have (see eq.(34))

m= hz(K) = M � 3
p

3t2 sin� and m0 = hz(K 0) = M + 3
p

3t2 sin� (42)

As c1 = (sign m� sign m0)/2, the masses m and m0 of the Dirac points K and K 0 have the same sign in the trivial
case, whereas they have opposite signs in the topological case.

Let us now consider an interface at y = 0 between a (nontrivial) Haldane insulator with a Chern number
c1 = 1 for y < 0 and a (trivial) insulator with c1 = 0 for y > 0. Necessarily, one of the masses changes sign at the
interface: m(y < 0)< 0 and m(y > 0)> 0, whereas the other one has a constant sign m0 > 0 (see Fig. 10). It is
then natural to set m(0) = 0, which implies that the gap closes at the interface. A more precise analysis shows that
there are indeed surface states [15]. As the mass m depends on the position, it is more convenient to express the
single-particle Hamiltonian in space representation. By inverting the Fourier transform in (41) (which amounts to
the replacement q!�ir), we obtain the Hermitian Hamiltonian:

Hl = �ir ·�2d +m(y)�z =
✓

m(y) �i@x � @y
�i@x + @y �m(y)

◆
. (43)

In order to get separable PDE, let us rotate the basis with the unitary matrix:

U =
1
p

2

✓
1 1
1 �1

◆
(44)

to obtain the Schrödinger equation:

U ·Hl · U�1
✓
↵
�

◆
=
✓ �i@x @y +m(y)
�@y +m(y) i@x

◆✓
↵
�

◆
= E
✓
↵
�

◆
. (45)

This matrix equation corresponds to two separable PDE:

(�i@x � E)↵= S1 = �(@y +m(y))� (46a)

(i@x � E)� = S2 = �(�@y +m(y))↵ (46b)

In order to obtain integrable solutions, the corresponding separations constants S1 and S2 must be zero. We can
then solve separately for ↵ and � . For our choice of m(y), there is only one normalizable solution, which reads in
the original basis:
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evolution of this surface ⌃0 as a function of M/t2 and �, we identify easily Haldane’s phase diagram, see Fig. 7
and Fig. 8. At a phase transition between two insulators with different Chern numbers, the origin necessarily
crosses the surface ⌃, corresponding to a gap closing (i.e. h= khk = 0) at least at one point on the Brillouin torus.
Therefore, the topological phase transition is a semi-metallic phase.

3.5.6. Determination of the Chern numbers in the phase diagram
To determine in a more rigorous manner the topological phase diagram of Haldane model requires the

evaluation of the Chern number c11 as a function of the parameters (M/t2,�). A simple method [29] consists in
using the geometric interpretation of the Chern number as the number of intersections between some ray coming
from the origin and the oriented closed surface ⌃ spanned by h (see Appendix C). Alternatively, we can consider
half of the number of intersections with a line instead of a ray. A natural choice for this line is the Oz axis. If D is
the set of pre-images by h of those intersections, i.e. D = h�1(Oz \⌃), the Chern number is:

c1 =
1
2

X

k2D

sign [h(k) · n(k)] , (35)

where n(k) is the normal vector to ⌃ at k (where it is ±êz in the formula). We obtain (with a slight abuse of
notation):
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where F is the Berry curvature from eq. (23). More explicitely, we obtain:
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, (37)

the second term accounting for the direction of the normal. We now need to determine the set D, i.e. the set of
wavevectors k such that hx(k) = hy(k) = 0 (so that ~h lies the z axis). As the components hx and hy of (34) are
M/t2 and � independent, they are identical to those in pure graphene (which is the point (M/t2,�) = (0,0)),
these points are the Dirac points of graphene 4:
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wavevectors k such that hx(k) = hy(k) = 0 (so that ~h lies the z axis). As the components hx and hy of (34) are
M/t2 and � independent, they are identical to those in pure graphene (which is the point (M/t2,�) = (0,0)),
these points are the Dirac points of graphene 4:

D =

®
K =

Ç
� 4⇡

3
p

3
0

å
et K 0 = �K

´
. (38)

Hence the quantities we need to compute are the masses of the Dirac points:

hz(K) = M � 3
p

3t2 sin� and hz(K 0) = M + 3
p

3t2 sin�, (39)

and the Chern number is thus given by:

c1 =
1
2


sign
✓

M
t2
+ 3
p

3sin(�)
◆
� sign
✓

M
t2
� 3
p

3sin(�)
◆�

, (40)

which corresponds to the original result of [5] (see also Fig. 7). Obviously this method is specific neither to
graphene nor to Haldane’s model; we can apply it very efficiently to two bands general models indexed by a
vector ~h, as it necessitate only to compute the sign of hz at points where hx and hy vanish.

4. As the Dirac points are on the boundary of the standard Brillouin zone, there appears six points on this Brillouin zone depicted in the
place, but only two inequivalent ones on the torus.
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where a% 1.42 Å is the nearest-neighbour distance. It corresponds to a so-called
conjugated carbon–carbon bond (like in benzene) intermediate between a single
bond and a double bond, with lengths r1% 1.54 Å and r2% 1.31 Å, respectively.

The honeycomb lattice contains two atoms per elementary cell. They belong
to two sublattices, A and B, each atom from sublattice A being surrounded by
three atoms from sublattice B, and vice versa (a bipartite lattice). The nearest-
neighbour vectors are
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Fig. 1.3. The structure of graphite. Carbon atoms belonging to two different
sublattices are shown as black and light grey.
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Fig. 1.4. (a) A honeycomb lattice, subblattices A and B are shown as black
and grey. (b) Reciprocal lattice vectors and some special points in the
Brillouin zone.
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Edge	states	in	the	Chern	topological	insulator	

3.5.7. Surface states
One of the crucial consequences of a nontrivial bulk topology is the appearance of metallic edge states at

the surface of a topological insulator. An sketchy way to understand the appearance of these surface states is
the following: as the Chern number is a topological quantity, it cannot change simply through a continuous
transformation, but only at a phase transition associated with a gap closing. Following [15] and [30], we discuss
the appearance of edge states due to the change in bulk topology.

Let us start with a time-reversal invariant, parity-invariant system like graphene. The time-reversal symmetry
implies hz(k) = hz(�k), whereas the inversion symmetry implies hz(k) = �hz(�k). Hence when both symmetries
are present, hz identically vanishes. A Dirac point is an isolated point K of the Brillouin torus where the gap
closes i.e. h(K) = 0, so that the dispersion relation around this point is linear. Nielsen–Ninomiya’s theorem
[31] implies that Dirac points come in pairs in a time-reversal invariant system. Hence, the simplest case is one
with two Dirac points K and K 0. This is the case of the Haldane model discussed in section 3.5. In Haldane’s
model, the time-reversal invariance is lifted. The gap at the Dirac points opens because hz(K) 6= 0, but we have
still hx(K) = hy(K) = 0. Hence, the Dirac points have gained a mass m = hz(K). Indeed, let us linearize the
Hamiltonian (4) around a Dirac point K by writing k = K + q :

Hl(q) = ~hvF q ·�2d +m�z (41)

with q = (qx , qy) and �2d = (�x ,�y), and m = hz(K). The linearization gives rise to a massive Dirac Hamiltonian
with mass m. In the following, we set ~hvF = 1. In Haldane’s model, we have (see eq.(34))

m= hz(K) = M � 3
p

3t2 sin� and m0 = hz(K 0) = M + 3
p

3t2 sin� (42)

As c1 = (sign m� sign m0)/2, the masses m and m0 of the Dirac points K and K 0 have the same sign in the trivial
case, whereas they have opposite signs in the topological case.

Let us now consider an interface at y = 0 between a (nontrivial) Haldane insulator with a Chern number
c1 = 1 for y < 0 and a (trivial) insulator with c1 = 0 for y > 0. Necessarily, one of the masses changes sign at the
interface: m(y < 0)< 0 and m(y > 0)> 0, whereas the other one has a constant sign m0 > 0 (see Fig. 10). It is
then natural to set m(0) = 0, which implies that the gap closes at the interface. A more precise analysis shows that
there are indeed surface states [15]. As the mass m depends on the position, it is more convenient to express the
single-particle Hamiltonian in space representation. By inverting the Fourier transform in (41) (which amounts to
the replacement q!�ir), we obtain the Hermitian Hamiltonian:

Hl = �ir ·�2d +m(y)�z =
✓

m(y) �i@x � @y
�i@x + @y �m(y)

◆
. (43)

In order to get separable PDE, let us rotate the basis with the unitary matrix:

U =
1
p

2

✓
1 1
1 �1

◆
(44)

to obtain the Schrödinger equation:

U ·Hl · U�1
✓
↵
�

◆
=
✓ �i@x @y +m(y)
�@y +m(y) i@x

◆✓
↵
�

◆
= E
✓
↵
�

◆
. (45)

This matrix equation corresponds to two separable PDE:

(�i@x � E)↵= S1 = �(@y +m(y))� (46a)

(i@x � E)� = S2 = �(�@y +m(y))↵ (46b)

In order to obtain integrable solutions, the corresponding separations constants S1 and S2 must be zero. We can
then solve separately for ↵ and � . For our choice of m(y), there is only one normalizable solution, which reads in
the original basis:
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 qx
(x , y)/ eiqx x exp

ñ
�
Z y

0

m(y 0)dy 0
ô ✓

1
1

◆
(47)

and has an energy E(qx) = EF + ~hvFqx . This solution is localized transverse to the interface where m changes
sign (see Fig. 10). The edge state crosses the Fermi energy at qx = 0, with a positive group velocity vF and thus
corresponds to a “chiral right moving” edge state. When considering a transition from an insulator with the
opposite Chern number to the vacuum, one would get a “chiral left moving” edge state.

nontrivial insulator trivial insulator

y

m(y) and � �2

Figure 10: Schematic view of edge states at a Chern–trivial insulator interface. The mass m(y) (blue dashed line) and the wavefunction
amplitude
�� 
��2 (red continuous line) are drawn along the coordinate y orthogonal to the interface y = 0.

3.6. Models with higher Chern numbers

O

Figure 11: Let us consider a site at O. The nearest neighbors (from the opposite sublattice) are located on the dotted black circle. The second
neigbors (from the same sublattice) are on the blue dashed circle. The third neighbors are on the continuous red circle.

Topological phases with higher Chern numbers can be incorporated into Haldane’s model by considering
interactions beyond second neighbors [29]. We briefly review an example with third nearest neighbors where the
Chern number can take values 0,±1,±2.
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Time-reversal	invariance	is	broken	

Linearized	Hamiltonian	near	the	K-point	(mass	should	change	the	sign	at	the	border):	

Single	edge	mode	with	linear	dispersion:	



Z2	Topological	insulator	
Appears	in	Cme-reversal	invariant	system	with	spin-orbital	coupling	

4.2. Time-reversal symmetry
4.2.1. The time-reversal operation

Time-reversal operation amounts to the transformation in time t ! �t. As such, quantities like spatial
position, energy, or electric field are even under time-reversal, whereas quantities like time, linear momentum,
angular momentum, or magnetic field are odd under time-reversal operation. Within quantum mechanics, the
time-reversal operation is described by an anti-unitary operator ⇥ (which is allowed by Wigner’s theorem)
[32, 33], that is to say (i) it is anti-linear, i.e. ⇥(↵x) = ↵?⇥(x) for ↵ 2 C and (ii) it satisfies ⇥†⇥ = 1, i.e.
⇥† = ⇥�1.

When spin degrees of freedom are included, time-reversal operation has to reverse the different spin expec-
tation values: the corresponding standard representation of the time-reversal operator is [33] ⇥ = e�i⇡Jy/~h K,
where Jy is the y component of the spin operator, and K is the complex conjugation (acting on the left). From
this expression, the time-reversal operator appears to be a ⇡ rotation in the spin space. Therefore, and because
the spin operator e�i⇡Jy/~h is real and unaffected by K, in an integer spin system, the time-reversal operator is
involutive, i.e. ⇥2 = 1. However, for the 1

2
-integer spin system, this operation is anti-involutive: ⇥2 = �1. This

property will have crucial consequences in the following. As usual, a first quantized single-particle Hamiltonian H

is time-reversal invariant if it commutes with the time-reversal operator, i.e. [H,⇥] = 0.

4.2.2. Time-reversal symmetry in Bloch bands
In the following, we consider the band theory of electrons in crystals [34], and hence we focus on the

case of spin 1
2

particles, with ⇥2 = �1. Focusing on non-interacting electrons, we can describe the electronic
bands through a first-quantized Hamiltonian, or equivalently through the Fourier-transformed effective Bloch
Hamiltonian k! H(k) defined on the Brillouin torus. In this context, the Bloch time-reversal operator ⇥ will
relate to the electronic Bloch states at k and �k, i.e. it is an anti-unitary map from the fiber at k to the fiber at �k
of the vector bundle on the Brillouin torus that represents the bands of the system. In a time-reversal invariant
system, the Bloch Hamiltonians at k and �k satisfy:

H(�k) = ⇥H(k)⇥�1. (49)

As time-reversal operation maps a fiber at k to a fiber at �k, it is useful to consider the application on the
Brillouin torus that relates the corresponding momenta: # : T2! T2, defined as # k = �k on the torus, i.e. up
to a lattice vector. The time-reversal operator is then viewed as a lift to this map # on the total Bloch bundle
T2 ⇥C2n describing the electronic states of all bands. It can be represented by an unitary matrix U⇥ which does
not depend on the momentum k on the Brillouin torus. Hence, it is a map:

T2 ⇥C2n! T2 ⇥C2n

(k, v) 7! (#k,⇥v) = (�k, U⇥K v)
(50)

which sends the fiber of all bands Hk ' C2n at k to the fiber H#k at #k = �k. We sum that up by ⇥ : Hk !H#k.
Notice that this implies that ⇥2 = �1, indeed maps a fiber to itself.

In a time-reversal invariant system of spin 1
2

particles, the Berry curvature within valence bands is odd:
F↵(k) = �F↵(�k). Hence the Chern number of the corresponding bands ↵ vanishes: the valence vector bundle is
always trivial from the point of view of Chern indices. It is only when the constraints imposed by time-reversal
symmetry on the eigenstates are considered that a different kind of non-trivial topology can emerge.

4.2.3. Kramers pairs
Time reversal implies the existence of Kramers pairs of eigenstates: equation (49) implies that the image by

time-reversal of any eigenstate of the Bloch Hamiltonian H(k) at k is an eigenstate of the Bloch Hamiltonian
H(�k) at �k, with the same energy. This is the Kramers theorem [33]. These two eigenstates, that a priori live in
different fibers, are called Kramers partners. ⇥2 = �1 implies that these two Kramers partners are orthogonal.
Note that the orthogonality of these Kramers partners in different fibers has only a meaning if we embed these
fibers in the complete trivial bundle T2 ⇥C2n corresponding to the whole state space of the Bloch Hamiltonian.
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Kramers	pairs:	

E

k

µ

�1 �2 �1

Figure 14: Typical energy spectrum of a time-reversal invariant system (continuous lines) on a closed loop of the Brillouin torus. At the
TRIM �i , there is always a degeneracy of the filled bands (resp. empty bands). A Kramers pair is drawn as two black circles. When inversion
symmetry is present, the filled bands (resp. empty bands) are everywhere degenerate (dashed lines).
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0

−⇡
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Figure 15: The four time-reversal invariant momenta in dimension d = 2: (0, 0), (⇡, 0), (0,⇡) et (⇡,⇡). The Brillouin torus T2 is represented
as a primitive cell, whose sides must be glued together; points equivalent up to a lattice vector have been drawn with the same symbol.
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Chern	Number	always	vanishes:	

for the four-level system. The sublattice (orbital) operators are expanded on the basis (�i), and the spin ones are
expanded on (si), where �i and si are sublattice (orbital) and spin Pauli matrices, and the zeroth Pauli matrix is
taken to be the identity matrix. With those choices, the time-reversal operator reads:

⇥ = i (1⌦ sy)K. (53)

Several conventions are possible for the gamma matrices, and it is judicious to choose them so that the
symmetries of the Hamiltonian reflect into simple condition on the functions di(k), di j(k) [35]. The expression for
the Z2 invariant will turn out to be simpler for parity-invariant systems: this motivate our choice to impose this
symmetry. Following Fu and Kane [35], we choose the first gamma matrix �1 to correspond to the parity operator:
�1 = P. Therefore, �1 is obviously even under P and also under ⇥. This choice ensures that the other �i matrices
are odd under parity, i.e. P�iP

�1 = ⌘i �i with ⌘1 = +1 and ⌘ j = �1 for j � 2. Similarly, we obtain for the �i j

matrices P�i jP
�1 = ⌘i⌘ j �i j . Let us now enforce the �i�2 matrices to be odd under time-reversal symmetry:

⇥�i⇥�1 = ⌘i �i . Due to the presence of i in their definition, the �i j now follow a different rule under time-reversal
symmetry than under parity: ⇥�i j⇥�1 = �⌘i⌘ j �i j Hence, with this convention, both P and ⇥ symmetries imply
consistent conditions on the function di(k): d1(k) is an even function around the TRIM points 6 : d1(k) = d1(�k),
while the functions di (i > 1) are odd, i.e. di(k) = �di(�k). On the other hand, the parity conditions imposed on
the functions di j(k) by P and ⇥ symmetries are opposite to each other and cannot be simultaneously satisfied:
the di j(k) must vanish. These constraints can equivalently be deduced from the behavior of the matrices under
the P⇥ symmetry: with our choice, the �i are even (P⇥) �i (P⇥)�1 = �i while their commutators are odd under
P⇥: (P⇥) �i j (P⇥)�1 = ��i j .

Hence with the above conventions, we have reduced our study of P⇥ invariant four band insulators from the
general Hamiltonian (51) to the simpler Hamiltonian:

H(k) = d0(k)1 +
5X

i=1

di(k)�i . (54)

Note that because of the P⇥ symmetry, the spectrum of such an Hamiltonian is everywhere degenerate (Fig. 14,
dashed lines). In the general case, it reads:

E±(k) = d0(k)±

s
5X

i=1

d2
i (k) (55)

In the following, we neglect the d0 coefficient, which plays no role in the topological properties of the system.
We will now turn to the detailed study of topological properties of two such four-band Hamiltonians. We

will use the notion of obstruction to illustrate the occurrence of topological order in the valence bands of these
models. Before proceeding, let us stress that in the presence of time-reversal symmetry, the bundle of filled bands
V is always trivial as a vector bundle. Hence, there is always a global basis of eigenstates |uii1i2 of the valence
bundle perfectly defined on the whole Brillouin torus. However, the valence bundle V is not always trivial when
endowed with the additional structure imposed by time reversal symmetry. Hence topological order will manifest
itself as an impossibility to continuously define Kramers pairs on the whole Brillouin torus when the insulator
is nontrivial, that is to say, the global basis cannot satisfy ⇥ |u1(k)i = |u2(�k)i. Hence, special care has to be
devoted to this Kramers constraints when determining the valence bands’ eigenstates. The aim of the following
section is to demonstrate the occurrence of such an obstruction, before describing more general expressions of the
topological index.

6. On the Brillouin torus, the odd or even behaviour of a function happens around any TRIM. Let us consider a function f and suppose
that we have f (k) = f (�k) for all k. Let � 2 ⇤ be a time-reversal invariant point. We have then � = ��, so f (�+ k) = f (��� k) = f (�� k)
for any k. Hence, if f is even, it is also “even” around any TRIM. It obviously also works for an odd function.
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4.2. Time-reversal symmetry
4.2.1. The time-reversal operation

Time-reversal operation amounts to the transformation in time t ! �t. As such, quantities like spatial
position, energy, or electric field are even under time-reversal, whereas quantities like time, linear momentum,
angular momentum, or magnetic field are odd under time-reversal operation. Within quantum mechanics, the
time-reversal operation is described by an anti-unitary operator ⇥ (which is allowed by Wigner’s theorem)
[32, 33], that is to say (i) it is anti-linear, i.e. ⇥(↵x) = ↵?⇥(x) for ↵ 2 C and (ii) it satisfies ⇥†⇥ = 1, i.e.
⇥† = ⇥�1.

When spin degrees of freedom are included, time-reversal operation has to reverse the different spin expec-
tation values: the corresponding standard representation of the time-reversal operator is [33] ⇥ = e�i⇡Jy/~h K,
where Jy is the y component of the spin operator, and K is the complex conjugation (acting on the left). From
this expression, the time-reversal operator appears to be a ⇡ rotation in the spin space. Therefore, and because
the spin operator e�i⇡Jy/~h is real and unaffected by K, in an integer spin system, the time-reversal operator is
involutive, i.e. ⇥2 = 1. However, for the 1

2
-integer spin system, this operation is anti-involutive: ⇥2 = �1. This

property will have crucial consequences in the following. As usual, a first quantized single-particle Hamiltonian H

is time-reversal invariant if it commutes with the time-reversal operator, i.e. [H,⇥] = 0.

4.2.2. Time-reversal symmetry in Bloch bands
In the following, we consider the band theory of electrons in crystals [34], and hence we focus on the

case of spin 1
2

particles, with ⇥2 = �1. Focusing on non-interacting electrons, we can describe the electronic
bands through a first-quantized Hamiltonian, or equivalently through the Fourier-transformed effective Bloch
Hamiltonian k! H(k) defined on the Brillouin torus. In this context, the Bloch time-reversal operator ⇥ will
relate to the electronic Bloch states at k and �k, i.e. it is an anti-unitary map from the fiber at k to the fiber at �k
of the vector bundle on the Brillouin torus that represents the bands of the system. In a time-reversal invariant
system, the Bloch Hamiltonians at k and �k satisfy:

H(�k) = ⇥H(k)⇥�1. (49)

As time-reversal operation maps a fiber at k to a fiber at �k, it is useful to consider the application on the
Brillouin torus that relates the corresponding momenta: # : T2! T2, defined as # k = �k on the torus, i.e. up
to a lattice vector. The time-reversal operator is then viewed as a lift to this map # on the total Bloch bundle
T2 ⇥C2n describing the electronic states of all bands. It can be represented by an unitary matrix U⇥ which does
not depend on the momentum k on the Brillouin torus. Hence, it is a map:

T2 ⇥C2n! T2 ⇥C2n

(k, v) 7! (#k,⇥v) = (�k, U⇥K v)
(50)

which sends the fiber of all bands Hk ' C2n at k to the fiber H#k at #k = �k. We sum that up by ⇥ : Hk !H#k.
Notice that this implies that ⇥2 = �1, indeed maps a fiber to itself.

In a time-reversal invariant system of spin 1
2

particles, the Berry curvature within valence bands is odd:
F↵(k) = �F↵(�k). Hence the Chern number of the corresponding bands ↵ vanishes: the valence vector bundle is
always trivial from the point of view of Chern indices. It is only when the constraints imposed by time-reversal
symmetry on the eigenstates are considered that a different kind of non-trivial topology can emerge.

4.2.3. Kramers pairs
Time reversal implies the existence of Kramers pairs of eigenstates: equation (49) implies that the image by

time-reversal of any eigenstate of the Bloch Hamiltonian H(k) at k is an eigenstate of the Bloch Hamiltonian
H(�k) at �k, with the same energy. This is the Kramers theorem [33]. These two eigenstates, that a priori live in
different fibers, are called Kramers partners. ⇥2 = �1 implies that these two Kramers partners are orthogonal.
Note that the orthogonality of these Kramers partners in different fibers has only a meaning if we embed these
fibers in the complete trivial bundle T2 ⇥C2n corresponding to the whole state space of the Bloch Hamiltonian.
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edge states21 and the QAHE.23,24 In such a case, the Z number is physically 

meaningful, and is the number of chiral edge states, similar to that in the 

QHE.17,20 

!
Figure!1.!Schematic!illustration!of!band!twist!in!2D!Brillouin!zone.!The!evolution!of!
θ(ky)!is!plotted!over!a!cylinder!surface,!whose!azimuth!is!θ!and!longitudinal!axis!is!
ky.!(a)!Trivial!insulator!with!Z!=!0;!(b)!nonGtrivial!Chern!insulator!with!Z!=!1;!(c)!
trivial!2D!insulator!with!Z2!=!0;!(d)!nonGtrivial!2D!TI!with!Z2!=!1;!and!(e)!trivial!2D!
insulator!with!|Z|!=!2,!but!Z2!=!0!(see!text!for!detailed!explanation.)!These!figures!
are!reGplotted!based!on!Reference!52.!

MRS Bulletin Formatted w/ Refs Fang/Oct14 

6 
!

edge states21 and the QAHE.23,24 In such a case, the Z number is physically 

meaningful, and is the number of chiral edge states, similar to that in the 

QHE.17,20 

!
Figure!1.!Schematic!illustration!of!band!twist!in!2D!Brillouin!zone.!The!evolution!of!
θ(ky)!is!plotted!over!a!cylinder!surface,!whose!azimuth!is!θ!and!longitudinal!axis!is!
ky.!(a)!Trivial!insulator!with!Z!=!0;!(b)!nonGtrivial!Chern!insulator!with!Z!=!1;!(c)!
trivial!2D!insulator!with!Z2!=!0;!(d)!nonGtrivial!2D!TI!with!Z2!=!1;!and!(e)!trivial!2D!
insulator!with!|Z|!=!2,!but!Z2!=!0!(see!text!for!detailed!explanation.)!These!figures!
are!reGplotted!based!on!Reference!52.!

ReducCon	to	1D	integrals:	

MRS Bulletin Formatted w/ Refs Fang/Oct14 

7 
!

The band topology discussed previously can be understood intuitively as a 

band twist. Here we consider the simplest case: a 2D lattice with only one single 

occupied band (the band index n can therefore be neglected). Let us chose a 

special gauge that is smooth and periodic along the kx direction, but not 

necessarily along the ky direction (this choice is always possible51). Thus, we can 

do the integration in Equation 1, explicitly for the kx direction with fixed ky and 

obtain 

)(=2
2

0

2

0 xyyxyx AAdkdkZ ∂−∂− ∫∫
ππ

π  

)),((=
2

0

2

0 yxxxyy kkAdkdk ∫∫ ∂
ππ

 

).(=
2

0 ykdθ
π

∫ ! (2) 

Here, xxy Adkk ∫
π

θ
2

0
=)(  is an angle calculated from the 1D integration of 

),( yxx kkA  along the kx axis for each fixed ky. We can plot θ (ky) over a cylinder 

surface (in the cylinder coordinates), as shown in Figure 1. ky is plotted along the 

longitudinal direction, and the azimuth is the angle θ (ky) for each fixed ky. 

Moving from ky = 0 to ky = 2π, we can see the difference between the trivial 

insulator (Z = 0) and the Chern insulator (Z ≠ 0). The winding number of θ (ky) 

over the cylinder surface is zero for the former (Figure 1a), and non-zero for the 

latter (Figure 1b). In this way, the Chern number can be related to the winding 

number of eigen wave functions, and see that the Chern insulator has “twisted” 

energy bands. 

The above is for Chern insulators, which break the time reversal symmetry 

(TRS). In the presence of TRS, however, the situation is different, because the 

total Z number (after summation over the band index n) should always be zero 

due to the Kramers degeneracy, the degeneracy of spin up and down eigenstates 

in time reversal invariant system. In this case, the total number of occupied 

electronic states must be even, and we can, in principle, divide them into two 

classes, ψI and ψII, which are TRS related and are called Kramers pairs. 

Evaluating the Chern number for each class independently, if one class has Chern 

number Z, the other one must have Chern number –Z (due to the TRS), and the 
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total Chern number of the system is zero. The question is whether |Z| can be used 

as the definition of the topological properties. The answer is no. This is because 

there are many different ways to divide the occupied wave functions into two 

classes in the presence of band degeneracies. A different way of dividing may 

lead to different |Z| numbers, which are different by an even number.32,50 

Therefore, although |Z| is not a well-defined number, |Z| mod 2 is a topological 

invariant, which is called the Z2 number, and can be used for the definition of 

topological insulators with TRS.26,30-32 

Let us again consider the simplest example of a 2D insulator with only 

two occupied eigenstates, ψ1k and ψ2k, which are related by TRS. The two states 

form a Kramers pair and must be degenerate at the time-reversal-invariant 

momentum (TRIM) of the BZ. We can evaluate the Berry connection and check 

the winding number of each occupied eigenstate (as we have done above for the 

Chern insulator). In general, there are three situations (as shown in Figure 1c–e). 

First, if the winding numbers of two states are zero (i.e., |Z| = 0), this is the trivial 

situation with Z2 index v = 0 (Figure 1c). Second, if the winding numbers of two 

states are ±1 (i.e., |Z| = 1), this is the non-trivial topological insulator with a Z2 

index v = 1, where the crossing of two θ(ky) curves at ky = π is protected by TRS 

(Figure 1d). Third, if the winding numbers of two states are ±2 (i.e., |Z| = 2), the 

two θ(ky) curves must cross at some ky other than the TRIM. Such crossings are 

not protected by TRS, and can be removed by small perturbations, which drive 

the crossings into anti-crossings. As a result, the original winding number |Z| = 2 

is reduced to zero, and the system becomes equivalent to the trivial case with a Z2 

index v = 0 (Figure 1e). 

The 2D Z2 topological insulator with TRS is different from a Chern 

insulator in the sense that it supports helical (rather than chiral) edge states and 

the QSHE.25-28 Here, the helicity of edge states means the orientation of its spin 

and momentum is locked, and the scattering between counter-propagating 

channels is forbidden within TRS. The Z2 number can be physically related to the 

number of helical edge state pairs mod 2. The Chern number is defined only for 

2D insulators, while the idea of the Z2 number can be extended from 2D to 3D 

4.2. Time-reversal symmetry
4.2.1. The time-reversal operation

Time-reversal operation amounts to the transformation in time t ! �t. As such, quantities like spatial
position, energy, or electric field are even under time-reversal, whereas quantities like time, linear momentum,
angular momentum, or magnetic field are odd under time-reversal operation. Within quantum mechanics, the
time-reversal operation is described by an anti-unitary operator ⇥ (which is allowed by Wigner’s theorem)
[32, 33], that is to say (i) it is anti-linear, i.e. ⇥(↵x) = ↵?⇥(x) for ↵ 2 C and (ii) it satisfies ⇥†⇥ = 1, i.e.
⇥† = ⇥�1.

When spin degrees of freedom are included, time-reversal operation has to reverse the different spin expec-
tation values: the corresponding standard representation of the time-reversal operator is [33] ⇥ = e�i⇡Jy/~h K,
where Jy is the y component of the spin operator, and K is the complex conjugation (acting on the left). From
this expression, the time-reversal operator appears to be a ⇡ rotation in the spin space. Therefore, and because
the spin operator e�i⇡Jy/~h is real and unaffected by K, in an integer spin system, the time-reversal operator is
involutive, i.e. ⇥2 = 1. However, for the 1

2
-integer spin system, this operation is anti-involutive: ⇥2 = �1. This

property will have crucial consequences in the following. As usual, a first quantized single-particle Hamiltonian H

is time-reversal invariant if it commutes with the time-reversal operator, i.e. [H,⇥] = 0.

4.2.2. Time-reversal symmetry in Bloch bands
In the following, we consider the band theory of electrons in crystals [34], and hence we focus on the

case of spin 1
2

particles, with ⇥2 = �1. Focusing on non-interacting electrons, we can describe the electronic
bands through a first-quantized Hamiltonian, or equivalently through the Fourier-transformed effective Bloch
Hamiltonian k! H(k) defined on the Brillouin torus. In this context, the Bloch time-reversal operator ⇥ will
relate to the electronic Bloch states at k and �k, i.e. it is an anti-unitary map from the fiber at k to the fiber at �k
of the vector bundle on the Brillouin torus that represents the bands of the system. In a time-reversal invariant
system, the Bloch Hamiltonians at k and �k satisfy:

H(�k) = ⇥H(k)⇥�1. (49)

As time-reversal operation maps a fiber at k to a fiber at �k, it is useful to consider the application on the
Brillouin torus that relates the corresponding momenta: # : T2! T2, defined as # k = �k on the torus, i.e. up
to a lattice vector. The time-reversal operator is then viewed as a lift to this map # on the total Bloch bundle
T2 ⇥C2n describing the electronic states of all bands. It can be represented by an unitary matrix U⇥ which does
not depend on the momentum k on the Brillouin torus. Hence, it is a map:

T2 ⇥C2n! T2 ⇥C2n

(k, v) 7! (#k,⇥v) = (�k, U⇥K v)
(50)

which sends the fiber of all bands Hk ' C2n at k to the fiber H#k at #k = �k. We sum that up by ⇥ : Hk !H#k.
Notice that this implies that ⇥2 = �1, indeed maps a fiber to itself.

In a time-reversal invariant system of spin 1
2

particles, the Berry curvature within valence bands is odd:
F↵(k) = �F↵(�k). Hence the Chern number of the corresponding bands ↵ vanishes: the valence vector bundle is
always trivial from the point of view of Chern indices. It is only when the constraints imposed by time-reversal
symmetry on the eigenstates are considered that a different kind of non-trivial topology can emerge.

4.2.3. Kramers pairs
Time reversal implies the existence of Kramers pairs of eigenstates: equation (49) implies that the image by

time-reversal of any eigenstate of the Bloch Hamiltonian H(k) at k is an eigenstate of the Bloch Hamiltonian
H(�k) at �k, with the same energy. This is the Kramers theorem [33]. These two eigenstates, that a priori live in
different fibers, are called Kramers partners. ⇥2 = �1 implies that these two Kramers partners are orthogonal.
Note that the orthogonality of these Kramers partners in different fibers has only a meaning if we embed these
fibers in the complete trivial bundle T2 ⇥C2n corresponding to the whole state space of the Bloch Hamiltonian.
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The	Kane-Mele	model	
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FIG. 1. Intrinsic spin orbit terms with amplitude � according
(a) to (1) for the Kane–Mele model and (b) to (2) for the SI
model with multi-directional SOC amplitude �̃.

will crucially determine the magnetic order and disorder
phenomena which appear in the strong coupling limit.
Generically, the full SU(2) is broken for interacting topo-
logical band structure models because of spin orbit cou-
pling terms. Still, it is both possible that the spin orbit
terms break SU(2) down to U(1), leaving a continuous
axial spin symmetry intact, or completely break spin ro-
tation symmetry. Since its custodial time-reversal sym-
metry is una↵ected, it is irrelevant for the Z2 index of
the weakly coupled model whether the axial spin sym-
metry of the TI is conserved or not: although it has
been shown recently that breaking of axial spin symme-
try causes a momentum–dependent rotation of the spin
quantization axis of the helical edge states,32 the topo-
logical band structure with conserved spin symmetry can
still be transformed into one with broken spin symmetry
without closing of the bulk gap. In contrast, for strong
interactions, the resulting phase diagram crucially de-
pends on presence or absence of axial spin symmetry;
more specifically, it was claimed that the combination of
strong interactions and strong spin orbit coupling might
give rise to a topologically ordered phase on the hon-
eycomb lattice when spin is not conserved. This would
then be a paradigmatic candidate model which includes
both a topological band structure phase and topological
bulk order in its phase diagram.33 Unfortunately, only
the conserved U(1) symmetry appears to open up the
possibility to successfully perform quantum Monte Carlo
(QMC) simulations for the regime of intermediately cou-
pled topological band structure models; when this sym-
metry is absent, we instead have to rely on limited mean–
field, slave–particle, or other approximate methods.

In our work, we propose the strategy to first gain
insight about this kind of models in the limit of in-
finitely large interactions on the footing of an accurate
method adapted to this limit, and to find out which
of the approximate results at intermediate interaction
strength is compatible with it. For this purpose, we
employ pseudofermion functional renormalization group
(PFFRG) which has been recently developed and em-
ployed by two of us in the context of various models of

frustrated magnetism34–38. In particular, the anisotropic
spin terms do not pose additional challenges to the per-
formance of the PFFRG, which at the same time allows
us to study large system sizes beyond any other mi-
croscopic numerical procedure for two-dimensional spin
models.

In this paper, we investigate the strong coupling limit
of two di↵erent topological band structures accompanied
with Hubbard onsite interactions on the honeycomb lat-
tice: the Kane–Mele (KM) model6,7 preserving axial spin
symmetry and a related model which was proposed in the
context of Na2IrO3 by Shitade et al.

39 which explicitly
breaks axial spin symmetry. Because of its connection to
sodium iridate, it will be referred to as SI model in the
following. We find that while magnetism in the presence
of axial spin symmetry can generically avoid the frustra-
tion e↵ects caused by the anisotropic spin terms induced
by spin-orbit coupling and generically yields commensu-
rate magnetism, the broken axial spin symmetry scenario
naturally leads to commensurate-incommensurate transi-
tions and, as a consequence, a much more complex mag-
netic phase diagram. As such, we conjecture that the
latter scenario will be most promising to stabilize un-
conventional, possibly topologically bulk ordered phases
resulting from anisotropic spin terms. We also discuss
our findings in the context of recent results33 for the cor-
responding Hubbard models at finite coupling.

The paper is organized as follows. In Section II, we
introduce the KM and SI models and discuss their main
properties. The mean field phase diagrams of the cor-
responding Hubbard models – the Kane–Mele–Hubbard
(KMH) model as well as the sodium iridate Hubbard
(SIH) model – are briefly reviewed in Section III. We
subsequently introduce the corresponding spin models in
Section IV. In Section V, we elaborate on the PFFRG
method which we employ to investigate the magnetic
phase diagrams of the KM and SI spin models the results
of which are presented in Section VI. In Section VII, we
draw a line from our findings at infinite coupling to the
corresponding Hubbard models at finite coupling in the
context of the recently proposed QSH? phase, a topolog-
ically ordered phase in the SIH model.33 In particular,
we also point out important generalizations of our study
with respect to Rashba coupling, which will generically
break axial spin symmetry. In Section VIII, we conclude
that the role of the axial spin symmetry is crucial to
characterize magnetic order and disorder phenomena of
interacting topological honeycomb band structures and
leads to a better understanding of the general theme of
interaction e↵ects in topological insulators.

Throughout this paper we use the following notations:
the non–interacting topological insulators, i.e. the band
structures are denoted by hKM and hSI, respectively. The
corresponding Hubbard models are called HKM and HSI

while the spin models are denoted by HKM and HSI, re-
spectively. The real nearest neighbor hopping amplitude
is t; the intrinsic spin orbit couplings are called � for the
KM model and �̃ for the SI model.

2

II. TOPOLOGICAL BAND STRUCTURES

The QSH honeycomb models are particularly accessi-
ble from a theoretical perspective: as there are already
two sites per unit cell, it is su�cient to study a single
orbital scenario where complex hoppings generate the
band inversion giving rise to a non-trivial Z2 invariant.
There is hope that the QSH e↵ect on the honeycomb lat-
tice might be realized, e.g. by doping heavy adatoms in
graphene40 or by using silicene41 which has recently been
accomplished experimentally42. Depending on the con-
cise form of the spin-orbit coupling terms, the axial spin
symmetry may or may not be broken in the interacting
case. In this section we briefly introduce the two repre-
sentative models for both scenarios which are subject to
further investigation in the following.

A. Kane–Mele model

Kane and Mele 6,7 proposed the quantum spin Hall
(QSH) e↵ect in graphene based on symmetry considera-
tion. They realized that a mass term / �z⌧z⌘z does not
violate any symmetries of graphene and thus must be al-
lowed. Here, � is associated with the electron spin, ⌧ with
the valleys, and ⌘ with the sublattices. The Kane–Mele
model is governed by the tight–binding Hamiltonian

hKM = �t
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In principle, there is also the Semeno↵ mass term which
we will ignore for the moment. Similarly, the Rashba spin
orbit term with amplitude �R is neglected unless noted
otherwise. The first term in (1) is the usual nearest–
neighbor hopping on the honeycomb lattice giving rise
to the Dirac band structure. The second term in (1) is
the lattice version of the �z⌧z⌘z–term (a second neigh-
bor hopping) which corresponds to an intrinsic spin orbit
coupling (SOC). The convention of this hopping is illus-
trated in Fig. 1a. The nearest neighbor hopping term
preserves the C6v

lattice symmetry of the honeycomb
lattice as well as SU(2) symmetry of the electron spin.
The intrinsic SOC reduces the lattice symmetry to C3v

and the spin symmetry to U(1). Any finite � opens the
gap of the Dirac band structure and gives rise to QSH
e↵ect, i.e. to a topological insulator phase characterized
by a finite Z2 invariant, or, in this case, Chern number for
each spin species. This situation is very special since the
Hamiltonian fully decouples into two independent Chern
insulators with opposite Hall conductivity. Generically,
we expect the presence of additional terms breaking the
U(1) spin symmetry and mixing the spin channels. The
Rashba term is such an additional term which will be fur-
ther commented on in Section VII. Even for finite Rashba
coupling �

R

, however, the QSH phase is stable as long as
�

R

< 2
p

3�.6

B. Sodium iridate tight binding model

Soon after Kane and Mele’s milestone works, it turned
out that the spin orbit gap in graphene is vanishingly
small. Therefore other materials with e↵ective honey-
comb structure were considered as candidates for the
QSH e↵ect as proposed by Kane and Mele. In 2008, Shi-
tade et al.

39 came up with the sodium iridate Na2IrO3

as a layered honeycomb system. The authors claimed
that the QSH e↵ect might be realized if Coulomb inter-
actions are not too strong. A monolayer was shown to
be described by a Kane–Mele-type Hamiltonian. The in-
trinsic spin orbit coupling was assumed to be relatively
large due to the heavier iridium atoms in contrast to
graphene’s carbon atoms. Assuming trivial hybridiza-
tion between nearest neighbor Ir atoms, Shitade et al.

found an intrinsic SOC being similar but di↵erent to the
KM SOC. It depends on the direction of the spin orbit
hopping whether the spin degree of freedom is associated
with �x, �y, or �z. The sodium iridate model is governed
by the Hamiltonian

hSI = �t
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where � = x, y, z is associated with the di↵erent next–
nearest neighbor links on the honeycomb lattice (Fig. 1b).
The main di↵erence of this generalized SOC compared
to the KM SOC is that axial spin symmetry is not con-
served. As for the KM model, infinitesimally small �̃
opens the gap at the Dirac cones and causes QSH e↵ect.

The band structures of hKM and hSI both belong to
the Z2 universality class and are thus adiabatically con-
nected. Both systems exhibit helical edge states on open
geometries such as cylinder or disk.

III. CORRELATED TOPOLOGICAL
INSULATORS

Let us now add Hubbard onsite interactions,

H
I

= U
X

i

n
i"ni# (3)

which yields rich phase diagrams for both band struc-
tures. While the U–� phase diagram of the KMH model
is well understood 13,15,16,19,43,44, the U–�̃ phase diagram
of the SIH model is rarely studied33,39, and the available
results are controversial. In the following, we will briefly
review the phase diagrams of both Hubbard-type models.

A. Kane–Mele–Hubbard model

The KMH model is described by a combination of the
KM and Hubbard model,

HKM = hKM + H
I

. (4)
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for the four-level system. The sublattice (orbital) operators are expanded on the basis (�i), and the spin ones are
expanded on (si), where �i and si are sublattice (orbital) and spin Pauli matrices, and the zeroth Pauli matrix is
taken to be the identity matrix. With those choices, the time-reversal operator reads:

⇥ = i (1⌦ sy)K. (53)

Several conventions are possible for the gamma matrices, and it is judicious to choose them so that the
symmetries of the Hamiltonian reflect into simple condition on the functions di(k), di j(k) [35]. The expression for
the Z2 invariant will turn out to be simpler for parity-invariant systems: this motivate our choice to impose this
symmetry. Following Fu and Kane [35], we choose the first gamma matrix �1 to correspond to the parity operator:
�1 = P. Therefore, �1 is obviously even under P and also under ⇥. This choice ensures that the other �i matrices
are odd under parity, i.e. P�iP

�1 = ⌘i �i with ⌘1 = +1 and ⌘ j = �1 for j � 2. Similarly, we obtain for the �i j

matrices P�i jP
�1 = ⌘i⌘ j �i j . Let us now enforce the �i�2 matrices to be odd under time-reversal symmetry:

⇥�i⇥�1 = ⌘i �i . Due to the presence of i in their definition, the �i j now follow a different rule under time-reversal
symmetry than under parity: ⇥�i j⇥�1 = �⌘i⌘ j �i j Hence, with this convention, both P and ⇥ symmetries imply
consistent conditions on the function di(k): d1(k) is an even function around the TRIM points 6 : d1(k) = d1(�k),
while the functions di (i > 1) are odd, i.e. di(k) = �di(�k). On the other hand, the parity conditions imposed on
the functions di j(k) by P and ⇥ symmetries are opposite to each other and cannot be simultaneously satisfied:
the di j(k) must vanish. These constraints can equivalently be deduced from the behavior of the matrices under
the P⇥ symmetry: with our choice, the �i are even (P⇥) �i (P⇥)�1 = �i while their commutators are odd under
P⇥: (P⇥) �i j (P⇥)�1 = ��i j .

Hence with the above conventions, we have reduced our study of P⇥ invariant four band insulators from the
general Hamiltonian (51) to the simpler Hamiltonian:

H(k) = d0(k)1 +
5X

i=1

di(k)�i . (54)

Note that because of the P⇥ symmetry, the spectrum of such an Hamiltonian is everywhere degenerate (Fig. 14,
dashed lines). In the general case, it reads:

E±(k) = d0(k)±

s
5X

i=1

d2
i (k) (55)

In the following, we neglect the d0 coefficient, which plays no role in the topological properties of the system.
We will now turn to the detailed study of topological properties of two such four-band Hamiltonians. We

will use the notion of obstruction to illustrate the occurrence of topological order in the valence bands of these
models. Before proceeding, let us stress that in the presence of time-reversal symmetry, the bundle of filled bands
V is always trivial as a vector bundle. Hence, there is always a global basis of eigenstates |uii1i2 of the valence
bundle perfectly defined on the whole Brillouin torus. However, the valence bundle V is not always trivial when
endowed with the additional structure imposed by time reversal symmetry. Hence topological order will manifest
itself as an impossibility to continuously define Kramers pairs on the whole Brillouin torus when the insulator
is nontrivial, that is to say, the global basis cannot satisfy ⇥ |u1(k)i = |u2(�k)i. Hence, special care has to be
devoted to this Kramers constraints when determining the valence bands’ eigenstates. The aim of the following
section is to demonstrate the occurrence of such an obstruction, before describing more general expressions of the
topological index.

6. On the Brillouin torus, the odd or even behaviour of a function happens around any TRIM. Let us consider a function f and suppose
that we have f (k) = f (�k) for all k. Let � 2 ⇤ be a time-reversal invariant point. We have then � = ��, so f (�+ k) = f (��� k) = f (�� k)
for any k. Hence, if f is even, it is also “even” around any TRIM. It obviously also works for an odd function.
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Figure 16: Examples of lines of zero of d1 (continuous blue) and d2 (dashed red) in the topological case, where d1 is only negative (or only
positive) at the origin. For simplicity, these lines have been represented as straight lines, without loss of generality. At the intersections (green
points) where d1 = d2 = 0, singularities of the globally defined Kramers pairs of eigenvectors appear. These singularities cannot be removed
by continuously deforming the parameters, unless the gap closes or the time-reversal invariance is broken.

4.3. Atomic orbitals of identical parity: Kane–Mele-like model
4.3.1. Minimal model

Let us consider a time-reversal invariant band insulator on an inversion symmetric bipartite lattice with
spin, such as the Kane–Mele model introduced in [7] and [35]. We work in the « sublattice tensor spin » basis
(A ", A #, B ", B #), where the parity operator only exchanges A and B sites:

P= �x ⌦1 (56)

The model is written in the form of eq. (54), with the gamma matrices chosen to be:

�1 = P= �x ⌦1 �2 = �y ⌦1 �3 = �z ⌦ sx �4 = �z ⌦ sy �5 = �z ⌦ sz (57)

Following the discussion in the precious section 4.2.5, the parity and time-reversal constraints imply d1(k) to be
an even function in the Brillouin torus, while the di�2(k) are odd functions. Hence, all di except d1 vanish at the
time reversal invariants points. Moreover, the functions di�2(k) should vanish around time-reversal invariant lines
connecting those TRIM (see Fig. 16).

For the system to remain insulating, and due to the vanishing of the di�2(�), we must have d1(�) 6= 0 for all
TRIM � 2 ⇤. The quantities d1(�) correspond to the opposite of the parity eigenvalues ⇠(�) of the bands at the
TRIM 7. In the following, we will try to convince the reader that the bulk invariant unveiled by Fu and Kane (see
section 4.5.4): Y

�2⇤
sign d1(�) (58)

is indeed a topological index related to the obstruction to globally define Kramers pairs (especially of eigenvectors
of the Bloch Hamiltonian). Hence, for the model to display a topological insulating phase, the function d1(k)
cannot take values of same sign at all the TRIM. Hence, this function should vanish somewhere on the Brillouin
torus. As d1 is even, it will typically vanish on a time-reversal invariant loop around one or several TRIM. Hence,
to keep the gap open, at least two non-zero coefficients di�2 are needed (see Fig. 16). As these functions di�2 are
odd, they vanish on time-reversal invariant curves connecting the TRIM which cross necessarily the loop where d1

7. The energy of filled bands is always negative (with d0 = 0). Thus, at a TRIM �, the parity eigenvalue of the filled states is the opposite
of the sign of the coefficient d1(�). This is because E(�) |ui= d1(�)�1 |ui= d1(�)⇠(�) |ui so E(�) = d1(�)⇠(�). As the state is filled, we
have E(�)< 0, so we get sign[⇠(�)] = � sign[d1(�)].
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Figure 16: Examples of lines of zero of d1 (continuous blue) and d2 (dashed red) in the topological case, where d1 is only negative (or only
positive) at the origin. For simplicity, these lines have been represented as straight lines, without loss of generality. At the intersections (green
points) where d1 = d2 = 0, singularities of the globally defined Kramers pairs of eigenvectors appear. These singularities cannot be removed
by continuously deforming the parameters, unless the gap closes or the time-reversal invariance is broken.
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for the four-level system. The sublattice (orbital) operators are expanded on the basis (�i), and the spin ones are
expanded on (si), where �i and si are sublattice (orbital) and spin Pauli matrices, and the zeroth Pauli matrix is
taken to be the identity matrix. With those choices, the time-reversal operator reads:

⇥ = i (1⌦ sy)K. (53)

Several conventions are possible for the gamma matrices, and it is judicious to choose them so that the
symmetries of the Hamiltonian reflect into simple condition on the functions di(k), di j(k) [35]. The expression for
the Z2 invariant will turn out to be simpler for parity-invariant systems: this motivate our choice to impose this
symmetry. Following Fu and Kane [35], we choose the first gamma matrix �1 to correspond to the parity operator:
�1 = P. Therefore, �1 is obviously even under P and also under ⇥. This choice ensures that the other �i matrices
are odd under parity, i.e. P�iP

�1 = ⌘i �i with ⌘1 = +1 and ⌘ j = �1 for j � 2. Similarly, we obtain for the �i j
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�1 = ⌘i⌘ j �i j . Let us now enforce the �i�2 matrices to be odd under time-reversal symmetry:

⇥�i⇥�1 = ⌘i �i . Due to the presence of i in their definition, the �i j now follow a different rule under time-reversal
symmetry than under parity: ⇥�i j⇥�1 = �⌘i⌘ j �i j Hence, with this convention, both P and ⇥ symmetries imply
consistent conditions on the function di(k): d1(k) is an even function around the TRIM points 6 : d1(k) = d1(�k),
while the functions di (i > 1) are odd, i.e. di(k) = �di(�k). On the other hand, the parity conditions imposed on
the functions di j(k) by P and ⇥ symmetries are opposite to each other and cannot be simultaneously satisfied:
the di j(k) must vanish. These constraints can equivalently be deduced from the behavior of the matrices under
the P⇥ symmetry: with our choice, the �i are even (P⇥) �i (P⇥)�1 = �i while their commutators are odd under
P⇥: (P⇥) �i j (P⇥)�1 = ��i j .

Hence with the above conventions, we have reduced our study of P⇥ invariant four band insulators from the
general Hamiltonian (51) to the simpler Hamiltonian:

H(k) = d0(k)1 +
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Note that because of the P⇥ symmetry, the spectrum of such an Hamiltonian is everywhere degenerate (Fig. 14,
dashed lines). In the general case, it reads:
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In the following, we neglect the d0 coefficient, which plays no role in the topological properties of the system.
We will now turn to the detailed study of topological properties of two such four-band Hamiltonians. We

will use the notion of obstruction to illustrate the occurrence of topological order in the valence bands of these
models. Before proceeding, let us stress that in the presence of time-reversal symmetry, the bundle of filled bands
V is always trivial as a vector bundle. Hence, there is always a global basis of eigenstates |uii1i2 of the valence
bundle perfectly defined on the whole Brillouin torus. However, the valence bundle V is not always trivial when
endowed with the additional structure imposed by time reversal symmetry. Hence topological order will manifest
itself as an impossibility to continuously define Kramers pairs on the whole Brillouin torus when the insulator
is nontrivial, that is to say, the global basis cannot satisfy ⇥ |u1(k)i = |u2(�k)i. Hence, special care has to be
devoted to this Kramers constraints when determining the valence bands’ eigenstates. The aim of the following
section is to demonstrate the occurrence of such an obstruction, before describing more general expressions of the
topological index.

6. On the Brillouin torus, the odd or even behaviour of a function happens around any TRIM. Let us consider a function f and suppose
that we have f (k) = f (�k) for all k. Let � 2 ⇤ be a time-reversal invariant point. We have then � = ��, so f (�+ k) = f (��� k) = f (�� k)
for any k. Hence, if f is even, it is also “even” around any TRIM. It obviously also works for an odd function.
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All	di		except	d1	vanish	at	TRIM		Z2	topological	invariant:	

Hexagonal	laace:	



Edge	states	in	Kane-Mele	model:		
spin-momentum	locking	

Topological	insulator,	
where	only	d1	(λ0)	is	negaCve	

Trivial	insulator,	
where	all	di	are	posiCve	

y=0	

4.3.5. Edge states
At the boundary between a Kane–Mele topological insulator and a trivial insulator, a helical gapless edge

states occur: the spin and the direction of these edge states are tight together. To understand the origin of these
edge states we will proceed similarly to the Chern insulator’s discussion in Haldane’s model in section 3.5.7. Let
us consider the Kane–Mele model (54, 57) with only d1, d2, d5 non-zero parameter functions. In a trivial insulator,
the parity eigenvalues �d1 have a uniform sign, e.g. positive, at all TRIM, whereas in a nontrivial insulator it
changes sign between the TRIM : e.g. positive all TRIM except one �0 where it is negative. To continuously
describe an interface from a trivial to a Z2 topological phase without breaking time-reversal symmetry requires a
change of sign of d1 at this particular TRIM �0: this corresponds to a gap closing and the appearance of a surface
state. This suggests that the low energy physics of the interface is captured by an analysis around the TRIM in
Kane–Mele insulators.

We denote by �i (i = 0, · · · , 3) the four TRIM in d = 2. As an example, let us consider an interface at y = 0
between a trivial insulator for y > 0 where d1 is positive at all TRIM, and a Z2 topological insulator for y < 0
where only d1(�0) is negative. The dispersion relation at the �0 point is the only one involving a sign change of
d1: we naturally focus on the dispersion around this point, while a smooth evolution of the dispersion is expected
elsewhere on the Brillouin torus. Let us now define m(y) = d1[�0](y): we have always m(y > 0) > 0 and
m(y < 0)< 0. The linearized Hamiltonian around the TRIM �0 reads, up to a rotation of the local coordinates on
the Brillouin zone (qx , qy):

Hl(q) = qx�5 � qy�2 +m(y)�1, (64)

where we used the oddness of the functions di�2 around �0. We have chosen local coordinates so that d5(q) = qx
and d2(q) = �qy , in order to simplify the calculations. To describe edge states, it is useful to block-diagonalize
the Hamiltonian in the “sublattice tensored with spin” basis (A ", B ", A #, B #) in which it reads in real space
representation (through the substitution q!�ir):

Hl =
✓

H" 0
0 H#

◆
, (65)

with

H" =
✓ �i@x m(y) + @y

m(y)� @y i@x

◆
and H# =
✓

+i@x m(y) + @y
m(y)� @y i@x

◆
. (66)

As discussed in the section 3.5.7 for our choice of m(y), the Schrödinger equation:
✓

Ĥ" 0
0 Ĥ#

◆
 (x , y) = E (x , y) (67)

possesses solutions:

 qx ,"(x , y)/ e�iqx x exp

ñ
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Z y
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m(y 0)dy 0
ô
0
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0
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CCCA (68)

 qx ,#(x , y)/ e+iqx x exp

ñ
�
Z y

0

m(y 0)dy 0
ô
0
BBB@

0
0
0
1

1
CCCA , (69)

one of which is a spin-up right-moving state, while the other one is a spin-down left-moving state. These states
obviously constitute a Kramers pair of edge states. A schematic representation of such a pair of edge states
is represented in Fig. 22. This demonstrates the existence of helical edge states at the interface between a
trivial and a topological insulating phase in the Kane–Mele model. A mathematical discussion on this bulk-edge
correspondence that goes far beyond the present introduction can be found in [36], while a pedagogical discussion
of the existence of these edge states in Z2 insulators is presented in the book by Fradkin [30], in relation with
previous work by [41].

28

4.3.5. Edge states
At the boundary between a Kane–Mele topological insulator and a trivial insulator, a helical gapless edge

states occur: the spin and the direction of these edge states are tight together. To understand the origin of these
edge states we will proceed similarly to the Chern insulator’s discussion in Haldane’s model in section 3.5.7. Let
us consider the Kane–Mele model (54, 57) with only d1, d2, d5 non-zero parameter functions. In a trivial insulator,
the parity eigenvalues �d1 have a uniform sign, e.g. positive, at all TRIM, whereas in a nontrivial insulator it
changes sign between the TRIM : e.g. positive all TRIM except one �0 where it is negative. To continuously
describe an interface from a trivial to a Z2 topological phase without breaking time-reversal symmetry requires a
change of sign of d1 at this particular TRIM �0: this corresponds to a gap closing and the appearance of a surface
state. This suggests that the low energy physics of the interface is captured by an analysis around the TRIM in
Kane–Mele insulators.

We denote by �i (i = 0, · · · , 3) the four TRIM in d = 2. As an example, let us consider an interface at y = 0
between a trivial insulator for y > 0 where d1 is positive at all TRIM, and a Z2 topological insulator for y < 0
where only d1(�0) is negative. The dispersion relation at the �0 point is the only one involving a sign change of
d1: we naturally focus on the dispersion around this point, while a smooth evolution of the dispersion is expected
elsewhere on the Brillouin torus. Let us now define m(y) = d1[�0](y): we have always m(y > 0) > 0 and
m(y < 0)< 0. The linearized Hamiltonian around the TRIM �0 reads, up to a rotation of the local coordinates on
the Brillouin zone (qx , qy):

Hl(q) = qx�5 � qy�2 +m(y)�1, (64)

where we used the oddness of the functions di�2 around �0. We have chosen local coordinates so that d5(q) = qx
and d2(q) = �qy , in order to simplify the calculations. To describe edge states, it is useful to block-diagonalize
the Hamiltonian in the “sublattice tensored with spin” basis (A ", B ", A #, B #) in which it reads in real space
representation (through the substitution q!�ir):

Hl =
✓

H" 0
0 H#

◆
, (65)

with

H" =
✓ �i@x m(y) + @y

m(y)� @y i@x

◆
and H# =
✓

+i@x m(y) + @y
m(y)� @y i@x

◆
. (66)

As discussed in the section 3.5.7 for our choice of m(y), the Schrödinger equation:
✓
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obviously constitute a Kramers pair of edge states. A schematic representation of such a pair of edge states
is represented in Fig. 22. This demonstrates the existence of helical edge states at the interface between a
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correspondence that goes far beyond the present introduction can be found in [36], while a pedagogical discussion
of the existence of these edge states in Z2 insulators is presented in the book by Fradkin [30], in relation with
previous work by [41].
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Spin	up	 Spin	down	

Hamiltonian	at	the	border:	



3D	topological	insulators	

Weak	topological	insulators:		νx,	νy,	νz	–	separate	Z2	topological	invariants;			
each	of	them	can	be	computed	as	corresponding	2D	Z2	invariant	in	kx=π,	ky=π,	kz=π	
planes	correspondingly.	

Strong	topological	insulators:		new	Z2	invariant	ν0	=0,1.		
Here	two	planes	should	be	taken	into	account:	kx=0,	π	or	ky=0,	π	or	kz=0,	π.	If	usual	
Z2	invariants	are	different	in	those	planes,	ν0	=1	otherwise	ν0	=0.	
	



3D	topological	insulators	

Cubic	laace:	Bi2Se3.	
Can	be	described	by	laace	Wilson	fermions	(with	slightly	unconvenConal	parameters)		

2

parts: (I) answer the question that whether the topo-
logical insulator phase survives at the limit of infinitely
strong Coulomb interaction between the bulk electrons,
or not. To do this, we have to obtain the value of the
chiral condensate, which corresponds to a correction to
the bare mass, in the strong coupling limit. (II) search
for the phase in which time-reversal and inversion sym-
metries are spontaneously broken due to electron cor-
relation. Such a phase, ”Aoki phase” has been con-
firmed in the lattice quantum chromodynamics (QCD)
with Wilson fermions39–41 and was suggested recently in
a mean-field study of Wilson fermions with the short-
range interaction42.

II. MODEL

It is known that the effective Hamiltonian of 3D topo-
logical insulators such as Bi2Se3 is described by the Wil-
son fermion5:

H0(k) =
∑

j
sin kj · αj +m(k)β, (1)

where m(k) = m0+ r
∑

j (1− cos kj), r > 0, j (= 1, 2, 3)
denotes spacial axis, and αj , β are the Dirac gamma
matrices given by

αj =

[

0 σj
σj 0

]

, β =

[

1 0
0 −1

]

. (2)

The energy of this system is measured in units of vF/a
with vF and a being the Fermi velocity and the lat-
tice constant, respectively. The Hamiltonian (1) has
time-reversal (T ) symmetry and inversion (I) symmetry,
i.e., T H0(k)T −1 = H0(−k) and IH0(k)I−1 = H0(−k)
are satisfied, where T = 1 ⊗ (−iσ2)K (K is the com-
plex conjugation operator) and I = σ3 ⊗ 1. In the
Hamiltonian (1), the spinor is written in the basis of
[

c†
kA↑, c

†
kA↓, c

†
kB↑, c

†
kB↓

]

, where c† is the creation oper-

ator of an electron, A, B denote two orbitals, and ↑ (↓)
denotes up- (down-) spin5.
In the presence of time-reversal symmetry and inver-

sion symmetry, the Z2 invariant of the system is given
by3,4

(−1)ν =
8
∏

i=1

{−sgn [m (Λi)]} , (3)

where Λi are the eight time-reversal invariant momenta.
It is easily shown that if 0 > m0 > −2r or −4r > m0 >
−6r (m0 > 0, −2r > m0 > −4r, or −6r > m0), the
system is topologically nontrivial (trivial).
Let us consider a strongly correlated topological insula-

tor in the Euclidean spacetime, which is described by the
Wilson fermions with 1/r Coulomb interaction between
the bulk electrons. We start from the Euclidean action of
(3+1)D Wilson fermion interacting with electromagnetic

field on a lattice, which is given by

SF =−
∑

n,µ

[

ψ̄nP
−
µ Un,µψn+µ̂ + ψ̄n+µ̂P

+
µ U †

n,µψn

]

+ (m0 + 4r)
∑

n

ψ̄nψn,
(4)

where P±
µ = (r ± γµ)/2. Here n = (n0, n1, n2, n3) de-

notes a site on a spacetime lattice and µ̂ (µ = 0, 1, 2, 3)
denotes the unit vector along µ-direction. Un,µ is the
link variable, which is defined by Un,µ = eiagAµ(n+µ̂/2),
where Aµ = (A0,A) is the four-vector potential, a is
the lattice constant, and g2 = e2/ϵ with e and ϵ be-
ing electric charge and the permittivity of the system,
respectively. Although the timelike Wilson term (the
term proportional to r) is introduced artificially to elim-
inate fermion doublers, the spatial Wilson terms have
a physical meaning (arise due to strong spin-orbit cou-
pling). In this paper, according to the Hamiltonian (1),
we adopt the Dirac representation in the Euclidean space-
time ({γµ, γν} = 2δµν):

γ0 =

[

1 0
0 −1

]

, γj =

[

0 −iσj
iσj 0

]

, γ5 =

[

0 1
1 0

]

, (5)

where j = 1, 2, 3 and σj are the Pauli matrices.
In the case of 3D topological insulators, the Fermi ve-

locity vF is about 3× 10−3c where c is the speed of light
in vacuum. Then the interactions between the bulk elec-
trons can be regarded as only the instantaneous Coulomb
interaction (Aj = 0) like in the case of graphene30–38, so
the action (4) is rewritten as

SF = S(τ)
F + S(s)

F + (m0 + 4r)
∑

n

ψ̄nψn, (6)

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S(τ)
F = −

∑

n

[

ψ̄nP
−
0 Un,0ψn+0̂ + ψ̄n+0̂P

+
0 U †

n,0ψn

]

S(s)
F = −

∑

n,j

[

ψ̄nP
−
j ψn+ĵ + ψ̄n+ĵP

+
j ψn

]

,

(7)
and Un,0 = eiθn (−π ≤ θn ≤ π). The Wilson fermions
breaks chiral symmetry by itself (the terms proportional
to r and m0), i.e., the action (6) is not invariant under
the chiral transformation ψ → eiθγ5ψ. In our model,
chiral symmetry is equivalent to the symmetry of the
pseudospin for two p-orbitals A and B. The pure U(1)
gauge action on a lattice is given by

SG = β
∑

n

∑

µ>ν

[

1−
1

2

(

Un,µν + U †
n,µν

)

]

, (8)

where β = vF/g2. The plaquette contribution Un,µν is
defined by

Un,µν = Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν , (9)
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the lattice constant, and g2 = e2/ϵ with e and ϵ be-
ing electric charge and the permittivity of the system,
respectively. Although the timelike Wilson term (the
term proportional to r) is introduced artificially to elim-
inate fermion doublers, the spatial Wilson terms have
a physical meaning (arise due to strong spin-orbit cou-
pling). In this paper, according to the Hamiltonian (1),
we adopt the Dirac representation in the Euclidean space-
time ({γµ, γν} = 2δµν):

γ0 =

[

1 0
0 −1

]

, γj =

[

0 −iσj
iσj 0

]

, γ5 =

[

0 1
1 0

]

, (5)

where j = 1, 2, 3 and σj are the Pauli matrices.
In the case of 3D topological insulators, the Fermi ve-

locity vF is about 3× 10−3c where c is the speed of light
in vacuum. Then the interactions between the bulk elec-
trons can be regarded as only the instantaneous Coulomb
interaction (Aj = 0) like in the case of graphene30–38, so
the action (4) is rewritten as

SF = S(τ)
F + S(s)

F + (m0 + 4r)
∑

n

ψ̄nψn, (6)

where
⎧

⎪

⎪

⎪

⎨
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⎪

⎪

⎩

S(τ)
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n
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[

ψ̄nP
−
j ψn+ĵ + ψ̄n+ĵP

+
j ψn

]

,

(7)
and Un,0 = eiθn (−π ≤ θn ≤ π). The Wilson fermions
breaks chiral symmetry by itself (the terms proportional
to r and m0), i.e., the action (6) is not invariant under
the chiral transformation ψ → eiθγ5ψ. In our model,
chiral symmetry is equivalent to the symmetry of the
pseudospin for two p-orbitals A and B. The pure U(1)
gauge action on a lattice is given by

SG = β
∑

n

∑

µ>ν

[

1−
1

2

(

Un,µν + U †
n,µν

)

]

, (8)

where β = vF/g2. The plaquette contribution Un,µν is
defined by

Un,µν = Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν , (9)

2

parts: (I) answer the question that whether the topo-
logical insulator phase survives at the limit of infinitely
strong Coulomb interaction between the bulk electrons,
or not. To do this, we have to obtain the value of the
chiral condensate, which corresponds to a correction to
the bare mass, in the strong coupling limit. (II) search
for the phase in which time-reversal and inversion sym-
metries are spontaneously broken due to electron cor-
relation. Such a phase, ”Aoki phase” has been con-
firmed in the lattice quantum chromodynamics (QCD)
with Wilson fermions39–41 and was suggested recently in
a mean-field study of Wilson fermions with the short-
range interaction42.

II. MODEL

It is known that the effective Hamiltonian of 3D topo-
logical insulators such as Bi2Se3 is described by the Wil-
son fermion5:

H0(k) =
∑

j
sin kj · αj +m(k)β, (1)

where m(k) = m0+ r
∑

j (1− cos kj), r > 0, j (= 1, 2, 3)
denotes spacial axis, and αj , β are the Dirac gamma
matrices given by

αj =

[

0 σj
σj 0

]

, β =

[

1 0
0 −1

]

. (2)

The energy of this system is measured in units of vF/a
with vF and a being the Fermi velocity and the lat-
tice constant, respectively. The Hamiltonian (1) has
time-reversal (T ) symmetry and inversion (I) symmetry,
i.e., T H0(k)T −1 = H0(−k) and IH0(k)I−1 = H0(−k)
are satisfied, where T = 1 ⊗ (−iσ2)K (K is the com-
plex conjugation operator) and I = σ3 ⊗ 1. In the
Hamiltonian (1), the spinor is written in the basis of
[

c†
kA↑, c

†
kA↓, c

†
kB↑, c

†
kB↓

]

, where c† is the creation oper-

ator of an electron, A, B denote two orbitals, and ↑ (↓)
denotes up- (down-) spin5.
In the presence of time-reversal symmetry and inver-

sion symmetry, the Z2 invariant of the system is given
by3,4

(−1)ν =
8
∏

i=1

{−sgn [m (Λi)]} , (3)

where Λi are the eight time-reversal invariant momenta.
It is easily shown that if 0 > m0 > −2r or −4r > m0 >
−6r (m0 > 0, −2r > m0 > −4r, or −6r > m0), the
system is topologically nontrivial (trivial).
Let us consider a strongly correlated topological insula-

tor in the Euclidean spacetime, which is described by the
Wilson fermions with 1/r Coulomb interaction between
the bulk electrons. We start from the Euclidean action of
(3+1)D Wilson fermion interacting with electromagnetic

field on a lattice, which is given by
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where P±
µ = (r ± γµ)/2. Here n = (n0, n1, n2, n3) de-

notes a site on a spacetime lattice and µ̂ (µ = 0, 1, 2, 3)
denotes the unit vector along µ-direction. Un,µ is the
link variable, which is defined by Un,µ = eiagAµ(n+µ̂/2),
where Aµ = (A0,A) is the four-vector potential, a is
the lattice constant, and g2 = e2/ϵ with e and ϵ be-
ing electric charge and the permittivity of the system,
respectively. Although the timelike Wilson term (the
term proportional to r) is introduced artificially to elim-
inate fermion doublers, the spatial Wilson terms have
a physical meaning (arise due to strong spin-orbit cou-
pling). In this paper, according to the Hamiltonian (1),
we adopt the Dirac representation in the Euclidean space-
time ({γµ, γν} = 2δµν):

γ0 =
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, γ5 =

[
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, (5)

where j = 1, 2, 3 and σj are the Pauli matrices.
In the case of 3D topological insulators, the Fermi ve-

locity vF is about 3× 10−3c where c is the speed of light
in vacuum. Then the interactions between the bulk elec-
trons can be regarded as only the instantaneous Coulomb
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the action (4) is rewritten as
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where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S(τ)
F = −

∑

n

[

ψ̄nP
−
0 Un,0ψn+0̂ + ψ̄n+0̂P

+
0 U †

n,0ψn

]

S(s)
F = −

∑

n,j

[

ψ̄nP
−
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and Un,0 = eiθn (−π ≤ θn ≤ π). The Wilson fermions
breaks chiral symmetry by itself (the terms proportional
to r and m0), i.e., the action (6) is not invariant under
the chiral transformation ψ → eiθγ5ψ. In our model,
chiral symmetry is equivalent to the symmetry of the
pseudospin for two p-orbitals A and B. The pure U(1)
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SG = β
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, (8)

where β = vF/g2. The plaquette contribution Un,µν is
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†
n+ν̂,µU

†
n,ν , (9)
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with vF and a being the Fermi velocity and the lat-
tice constant, respectively. The Hamiltonian (1) has
time-reversal (T ) symmetry and inversion (I) symmetry,
i.e., T H0(k)T −1 = H0(−k) and IH0(k)I−1 = H0(−k)
are satisfied, where T = 1 ⊗ (−iσ2)K (K is the com-
plex conjugation operator) and I = σ3 ⊗ 1. In the
Hamiltonian (1), the spinor is written in the basis of
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†
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†
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]

, where c† is the creation oper-

ator of an electron, A, B denote two orbitals, and ↑ (↓)
denotes up- (down-) spin5.
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sion symmetry, the Z2 invariant of the system is given
by3,4

(−1)ν =
8
∏
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{−sgn [m (Λi)]} , (3)

where Λi are the eight time-reversal invariant momenta.
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−6r (m0 > 0, −2r > m0 > −4r, or −6r > m0), the
system is topologically nontrivial (trivial).
Let us consider a strongly correlated topological insula-

tor in the Euclidean spacetime, which is described by the
Wilson fermions with 1/r Coulomb interaction between
the bulk electrons. We start from the Euclidean action of
(3+1)D Wilson fermion interacting with electromagnetic

field on a lattice, which is given by
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∑
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−
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+
µ U †
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]

+ (m0 + 4r)
∑

n

ψ̄nψn,
(4)

where P±
µ = (r ± γµ)/2. Here n = (n0, n1, n2, n3) de-

notes a site on a spacetime lattice and µ̂ (µ = 0, 1, 2, 3)
denotes the unit vector along µ-direction. Un,µ is the
link variable, which is defined by Un,µ = eiagAµ(n+µ̂/2),
where Aµ = (A0,A) is the four-vector potential, a is
the lattice constant, and g2 = e2/ϵ with e and ϵ be-
ing electric charge and the permittivity of the system,
respectively. Although the timelike Wilson term (the
term proportional to r) is introduced artificially to elim-
inate fermion doublers, the spatial Wilson terms have
a physical meaning (arise due to strong spin-orbit cou-
pling). In this paper, according to the Hamiltonian (1),
we adopt the Dirac representation in the Euclidean space-
time ({γµ, γν} = 2δµν):

γ0 =

[

1 0
0 −1

]

, γj =

[

0 −iσj
iσj 0

]

, γ5 =

[

0 1
1 0

]

, (5)

where j = 1, 2, 3 and σj are the Pauli matrices.
In the case of 3D topological insulators, the Fermi ve-

locity vF is about 3× 10−3c where c is the speed of light
in vacuum. Then the interactions between the bulk elec-
trons can be regarded as only the instantaneous Coulomb
interaction (Aj = 0) like in the case of graphene30–38, so
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∑

n

ψ̄nψn, (6)
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ψ̄nP
−
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+
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]

,

(7)
and Un,0 = eiθn (−π ≤ θn ≤ π). The Wilson fermions
breaks chiral symmetry by itself (the terms proportional
to r and m0), i.e., the action (6) is not invariant under
the chiral transformation ψ → eiθγ5ψ. In our model,
chiral symmetry is equivalent to the symmetry of the
pseudospin for two p-orbitals A and B. The pure U(1)
gauge action on a lattice is given by

SG = β
∑

n

∑

µ>ν

[

1−
1

2

(

Un,µν + U †
n,µν

)

]

, (8)

where β = vF/g2. The plaquette contribution Un,µν is
defined by

Un,µν = Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν , (9)
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strong Coulomb interaction between the bulk electrons,
or not. To do this, we have to obtain the value of the
chiral condensate, which corresponds to a correction to
the bare mass, in the strong coupling limit. (II) search
for the phase in which time-reversal and inversion sym-
metries are spontaneously broken due to electron cor-
relation. Such a phase, ”Aoki phase” has been con-
firmed in the lattice quantum chromodynamics (QCD)
with Wilson fermions39–41 and was suggested recently in
a mean-field study of Wilson fermions with the short-
range interaction42.
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j
sin kj · αj +m(k)β, (1)
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∑
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denotes spacial axis, and αj , β are the Dirac gamma
matrices given by
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]

, β =
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with vF and a being the Fermi velocity and the lat-
tice constant, respectively. The Hamiltonian (1) has
time-reversal (T ) symmetry and inversion (I) symmetry,
i.e., T H0(k)T −1 = H0(−k) and IH0(k)I−1 = H0(−k)
are satisfied, where T = 1 ⊗ (−iσ2)K (K is the com-
plex conjugation operator) and I = σ3 ⊗ 1. In the
Hamiltonian (1), the spinor is written in the basis of
[

c†
kA↑, c

†
kA↓, c

†
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†
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]

, where c† is the creation oper-

ator of an electron, A, B denote two orbitals, and ↑ (↓)
denotes up- (down-) spin5.
In the presence of time-reversal symmetry and inver-

sion symmetry, the Z2 invariant of the system is given
by3,4

(−1)ν =
8
∏

i=1

{−sgn [m (Λi)]} , (3)

where Λi are the eight time-reversal invariant momenta.
It is easily shown that if 0 > m0 > −2r or −4r > m0 >
−6r (m0 > 0, −2r > m0 > −4r, or −6r > m0), the
system is topologically nontrivial (trivial).
Let us consider a strongly correlated topological insula-

tor in the Euclidean spacetime, which is described by the
Wilson fermions with 1/r Coulomb interaction between
the bulk electrons. We start from the Euclidean action of
(3+1)D Wilson fermion interacting with electromagnetic

field on a lattice, which is given by

SF =−
∑

n,µ

[

ψ̄nP
−
µ Un,µψn+µ̂ + ψ̄n+µ̂P

+
µ U †

n,µψn

]

+ (m0 + 4r)
∑

n

ψ̄nψn,
(4)

where P±
µ = (r ± γµ)/2. Here n = (n0, n1, n2, n3) de-

notes a site on a spacetime lattice and µ̂ (µ = 0, 1, 2, 3)
denotes the unit vector along µ-direction. Un,µ is the
link variable, which is defined by Un,µ = eiagAµ(n+µ̂/2),
where Aµ = (A0,A) is the four-vector potential, a is
the lattice constant, and g2 = e2/ϵ with e and ϵ be-
ing electric charge and the permittivity of the system,
respectively. Although the timelike Wilson term (the
term proportional to r) is introduced artificially to elim-
inate fermion doublers, the spatial Wilson terms have
a physical meaning (arise due to strong spin-orbit cou-
pling). In this paper, according to the Hamiltonian (1),
we adopt the Dirac representation in the Euclidean space-
time ({γµ, γν} = 2δµν):

γ0 =

[

1 0
0 −1

]

, γj =

[

0 −iσj
iσj 0

]

, γ5 =

[

0 1
1 0

]

, (5)

where j = 1, 2, 3 and σj are the Pauli matrices.
In the case of 3D topological insulators, the Fermi ve-

locity vF is about 3× 10−3c where c is the speed of light
in vacuum. Then the interactions between the bulk elec-
trons can be regarded as only the instantaneous Coulomb
interaction (Aj = 0) like in the case of graphene30–38, so
the action (4) is rewritten as

SF = S(τ)
F + S(s)

F + (m0 + 4r)
∑
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ψ̄nψn, (6)

where
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⎪
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ψ̄nP
−
j ψn+ĵ + ψ̄n+ĵP

+
j ψn

]

,

(7)
and Un,0 = eiθn (−π ≤ θn ≤ π). The Wilson fermions
breaks chiral symmetry by itself (the terms proportional
to r and m0), i.e., the action (6) is not invariant under
the chiral transformation ψ → eiθγ5ψ. In our model,
chiral symmetry is equivalent to the symmetry of the
pseudospin for two p-orbitals A and B. The pure U(1)
gauge action on a lattice is given by

SG = β
∑
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∑

µ>ν

[

1−
1

2

(

Un,µν + U †
n,µν

)

]

, (8)

where β = vF/g2. The plaquette contribution Un,µν is
defined by

Un,µν = Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν , (9)
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parts: (I) answer the question that whether the topo-
logical insulator phase survives at the limit of infinitely
strong Coulomb interaction between the bulk electrons,
or not. To do this, we have to obtain the value of the
chiral condensate, which corresponds to a correction to
the bare mass, in the strong coupling limit. (II) search
for the phase in which time-reversal and inversion sym-
metries are spontaneously broken due to electron cor-
relation. Such a phase, ”Aoki phase” has been con-
firmed in the lattice quantum chromodynamics (QCD)
with Wilson fermions39–41 and was suggested recently in
a mean-field study of Wilson fermions with the short-
range interaction42.
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It is known that the effective Hamiltonian of 3D topo-
logical insulators such as Bi2Se3 is described by the Wil-
son fermion5:

H0(k) =
∑

j
sin kj · αj +m(k)β, (1)

where m(k) = m0+ r
∑

j (1− cos kj), r > 0, j (= 1, 2, 3)
denotes spacial axis, and αj , β are the Dirac gamma
matrices given by

αj =

[

0 σj
σj 0

]

, β =

[

1 0
0 −1

]

. (2)

The energy of this system is measured in units of vF/a
with vF and a being the Fermi velocity and the lat-
tice constant, respectively. The Hamiltonian (1) has
time-reversal (T ) symmetry and inversion (I) symmetry,
i.e., T H0(k)T −1 = H0(−k) and IH0(k)I−1 = H0(−k)
are satisfied, where T = 1 ⊗ (−iσ2)K (K is the com-
plex conjugation operator) and I = σ3 ⊗ 1. In the
Hamiltonian (1), the spinor is written in the basis of
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c†
kA↑, c

†
kA↓, c

†
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†
kB↓

]

, where c† is the creation oper-

ator of an electron, A, B denote two orbitals, and ↑ (↓)
denotes up- (down-) spin5.
In the presence of time-reversal symmetry and inver-

sion symmetry, the Z2 invariant of the system is given
by3,4

(−1)ν =
8
∏

i=1

{−sgn [m (Λi)]} , (3)

where Λi are the eight time-reversal invariant momenta.
It is easily shown that if 0 > m0 > −2r or −4r > m0 >
−6r (m0 > 0, −2r > m0 > −4r, or −6r > m0), the
system is topologically nontrivial (trivial).
Let us consider a strongly correlated topological insula-

tor in the Euclidean spacetime, which is described by the
Wilson fermions with 1/r Coulomb interaction between
the bulk electrons. We start from the Euclidean action of
(3+1)D Wilson fermion interacting with electromagnetic

field on a lattice, which is given by

SF =−
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where P±
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ing electric charge and the permittivity of the system,
respectively. Although the timelike Wilson term (the
term proportional to r) is introduced artificially to elim-
inate fermion doublers, the spatial Wilson terms have
a physical meaning (arise due to strong spin-orbit cou-
pling). In this paper, according to the Hamiltonian (1),
we adopt the Dirac representation in the Euclidean space-
time ({γµ, γν} = 2δµν):

γ0 =

[

1 0
0 −1

]

, γj =

[

0 −iσj
iσj 0

]

, γ5 =

[

0 1
1 0

]

, (5)

where j = 1, 2, 3 and σj are the Pauli matrices.
In the case of 3D topological insulators, the Fermi ve-

locity vF is about 3× 10−3c where c is the speed of light
in vacuum. Then the interactions between the bulk elec-
trons can be regarded as only the instantaneous Coulomb
interaction (Aj = 0) like in the case of graphene30–38, so
the action (4) is rewritten as

SF = S(τ)
F + S(s)

F + (m0 + 4r)
∑
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where
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,
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and Un,0 = eiθn (−π ≤ θn ≤ π). The Wilson fermions
breaks chiral symmetry by itself (the terms proportional
to r and m0), i.e., the action (6) is not invariant under
the chiral transformation ψ → eiθγ5ψ. In our model,
chiral symmetry is equivalent to the symmetry of the
pseudospin for two p-orbitals A and B. The pure U(1)
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where β = vF/g2. The plaquette contribution Un,µν is
defined by

Un,µν = Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν , (9)

Topological	properCes	are	defined	by	the	sign	of	m(k)	at	TRIM	

Can	be	modeled	with	laace	QCD	algorithms	without	sign	problem!	
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Spontaneous gap generation on the surface of weakly interacting topological insulators using
nonmagnetic impurities

Annica M. Black-Schaffer and Dmitry Yudin
Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden

(Dated: July 10, 2014)

Strong nonmagnetic impurities on the surface of three-dimensional topological insulators (TIs) generate lo-
calized resonance peaks close to the Dirac point. We show that this results in a strongly reduced critical Coulomb
interaction strength to reach a magnetic surface state, following a Stoner-like criterion. Thus even weakly in-
teracting TIs host a finite (local) magnetization around strong nonmagnetic impurities. The local magnetization
gives rise to a global energy gap, linearly dependent on the maximum value of the magnetization but decreasing
with reduced impurity concentration.

PACS numbers: 73.20.At, 73.20.Hb, 73.22.Gk, 73.90.+f

Topological insulators (TIs) are insulating in the bulk but
have conducting surfaces due to a nontrivial topology of the
bulk band structure [1, 2]. The surface states are described
by a two-dimensional (2D) massless Dirac Hamiltonian [3–6],
with the momentum locked to the electron spin, and TIs thus
belong to the newly emergent class of Dirac Materials [7]. In
strong TIs there are only one (or odd number) Dirac cone per
surface and the spectrum can only be gapped by impurities
or other perturbations breaking time-reversal symmetry [3–
5]. Accordingly, magnetic impurities have been predicted to
generate an energy gap [8], whereas their nonmagnetic coun-
terparts should neither gap the spectrum nor allow full 180◦
back-scattering, which requires a spin-flip [9].

Despite this clear expected distinction between magnetic
and nonmagnetic impurities, no experimental consensus has
yet appeared as to the properties of the TI surface state in the
presence of impurities. Magnetic impurities in the bulk and
thin films have been shown to generate features resembling a
gap in the surface spectrum [10–12], but no energy gap has
been reported for magnetic impurities deposited directly on
the surface [13–16]. Interestingly, several studies have also
reported no significant difference in the behavior of magnetic
and nonmagnetic surface impurities [14, 17].

Beyond possibly distorting the Dirac surface spectrum by
opening an energy gap, impurities have also been shown to
induce resonances in the energy spectrum [18–20], confirmed
experimentally for both nonmagnetic impurities [21, 22] and
step edges [23]. Even for a nonmagnetic impurity the reso-
nance peak approaches the Dirac point in the strong scattering
limit, where it splits the original Dirac point into two points
which move off-center with the resonance peak in-between
[19].

The resonance peak resulting from a strong nonmagnetic
impurity provides a very large density of states (DOS) at the
Fermi level in pristine TIs. It therefore seems natural to ask
the question if this system is unstable towards spontaneous
spin-polarization? The unperturbed Dirac spectrum has a van-
ishing DOS at the Fermi level and should thus be very stable
against a phase transition to a magnetic state. However, in the
presence of a low-energy impurity-induced resonance peak,
spontaneously breaking time-reversal symmetry and generat-

ing a (local) magnetization might lower the energy even for
weak electron-electron interactions.

In this Letter we show that in the presence of even
weak electron-electron interactions nonmagnetic impurities
can generate a magnetic state locally around the impurities.
More specifically, the critical interaction strength to reach a
spin-polarized state is dependent on the impurity strength and
concentration, following a Stoner-like criterion and approach-
ing zero for dilute concentrations of strong impurities. More-
over, we find that the magnetic state induces an energy gap,
which is directly proportional to the maximum value of the
magnetization, but reduced with decreasing impurity concen-
tration. Thus, nonmagnetic impurities can in the presence of
even weak electron-electron interactions spontaneously gen-
erate a finite mass in the Dirac surface state of a TI.

For the main calculations we employ a simple and often
used tight-binding model for a strong TI consisting of s-
orbitals on the 3D diamond lattice with nearest neighbor hop-
ping t and spin-orbit coupling λ [3]:

H0 =
∑

⟨i,j⟩,σ

(t+ δtij)c
†
iσcjσ +

4iλ

a2

∑

⟨⟨i,j⟩⟩,σσ′

c†iσs ·(d
1
ij × d

2
ij)cjσ′ .

(1)

Here c†iσ is the creation operator on site i with spin-index σ,√
2a is the cubic cell size with a = 1 the unit of length, s

denote the Pauli spin matrices, and d
1,2
ij are the two bond vec-

tors connecting next-nearest neighbor sites i and j. We further
set λ = 0.3t and assume an undoped system. By choosing
δtij = 0.25t for only one of the nearest neighbor directions
not parallel to (111), a strong TI with a single Dirac surface
cone is created [3]. We construct a TI surface by creating a
slab in the (111) direction with ABBCC ... AABBC stacking
termination. To avoid cross-talk between the two surfaces we
use ! 5 lateral unit cells [19]. We furthermore set t = 2,
which gives the slope !vF " 1 of the surface Dirac cone.

We study nonmagnetic (potential) impurities on the sur-
face of the TI by creating a rectangular-shaped surface su-
percell with n sites along each direction, resulting in the sur-
face area

√
3n2a2/2. A single nonmagnetic impurity with

strength V is then added to the supercell through Himp =

3D	topological	insulators	

Diamond	laace:	

Nearest-neighbor	hoppings	are	modified	in	one	direcCon	

Spin-orbital	coupling	
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moments [20] which potentially spoil the time-reversal
symmetry protecting the QSH effect. Moreover, adatoms
generically mediate both intrinsic and Rashba spin-orbit
coupling. The latter is believed to be detrimental to the
QSH phase [6], and previous work has indeed established
that certain kinds of adatoms do generate substantial
Rashba coupling in graphene that typically overwhelms
the intrinsic contribution [21–23]. (As Ref. [23] showed,
however, magnetic adatoms inducing strong Rashba cou-
pling can induce an interesting ‘‘quantum anomalous
Hall’’ state in graphene.) The adatoms may also favor
competing, ordinary insulating states depending on their
precise locations in the lattice. And finally, since spin-orbit
coupling is generated nonuniformly in graphene, the stabi-
lization of a QSH phase even in an otherwise ideal situation
is unclear a priori.

After an extensive search using tight-binding and first-
principles analyses, we have found that two elements,
indium and thallium, are capable of stabilizing a robust
QSH state in graphene. Neither element forms a magnetic
moment, and although they do generate significant Rashba
coupling, for symmetry reasons this remarkably does not
suppress the QSH state. We find that gaps many orders of
magnitude larger than that predicted in pure graphene can
form even with coverages of only a few percent; for
example, at 6% coverage, indium yields a gap on the order
of 100 K, while for thallium the gap approaches room
temperature. These predictions revive graphene as a viable
QSH candidate, and they can be verified by probing the gap
and associated edge states using spectroscopic and con-
ductance measurements.

II. PHYSICS OFA SINGLE HEAVYADATOM

To set the stage, let us first briefly review the Kane-Mele
model [6] describing pure, undoped graphene with spin-
orbit coupling. The Hamiltonian can be expressed as
HKM ¼ Ht þHso, where Ht describes the usual nearest-
neighbor hopping and Hso encodes intrinsic spin-orbit
coupling. In terms of operators cyr! that add electrons
with spin ! to site r of the honeycomb lattice and Pauli
matrices sx;y;z that act on the spin indices, Ht and Hso

explicitly read

Ht ¼ #t
X

hrr0i
ðcyr cr0 þ H:c:Þ; (1)

Hso ¼ "so

X

hhrr0ii
ði#rr0c

y
r szcr0 þ H:c:Þ: (2)

Here and below, spin indices are implicitly summed when-
ever suppressed. In Eq. (2) the sum runs over second-
nearest-neighbor lattice sites, and #rr0 are signs that equal
þ1, if an electron hops in the direction of the arrows in
Fig. 1(c), and #1 otherwise. Thus Hso describes ‘‘chiral’’
spin-dependent second-neighbor electron hopping. When
"so ¼ 0, the band structure exhibits the familiar gapless

Dirac cones centered on momenta &Q, resulting in semi-
metallic behavior. Turning on "so ! 0 generates an energy
gap [6] ! ¼ 6

ffiffiffi
3

p
j"soj at the Dirac points, transforming the

system into a (very fragile [7–11]) QSH insulator.
Importantly, if mirror symmetry with respect to the
graphene plane is broken, then Rashba coupling—which
involves spin flips and thus breaks the U(1) spin symmetry
enjoyed by H—will also be present [6]. Rashba coupling
competes with the intrinsic spin-orbit term in pure gra-
phene, and, beyond a critical value, it closes the gap and
destroys the QSH state.
If heavy adatoms are to stabilize a more robust QSH

phase in graphene, then, at a minimum, they should be
nonmagnetic (to preserve T ) and modify the physics near
the Dirac points primarily by inducing large intrinsic spin-
orbit coupling. The latter criterion leads us to focus on
elements favoring the ‘‘hollow’’ (H) position in the gra-
phene sheet indicated in Fig. 1(a). Compared to the
‘‘bridge’’ (B) and ‘‘top’’ (T) positions, adatoms in the
H position can most effectively mediate the spin-dependent
second-neighbor hoppings present in the Kane-Mele
model, while simultaneously avoiding larger competing
effects such as local sublattice symmetry-breaking gener-
ated in the T case.

b) c)

a)

T

H

4

2

B

1
6

5

3

FIG. 1. Adatoms in graphene. (a) Depending on the element,
adatoms favor either the high-symmetry ‘‘bridge’’ (B), ‘‘hollow’’
(H), or ‘‘top’’ (T) position in the graphene sheet. (b) Detailed
view of an H-position adatom, which is best suited for inducing
the intrinsic spin-orbit coupling necessary for stabilizing the
topological phase. The desired spin-orbit terms mediated by
the adatom are illustrated in (c). Red and yellow bonds represent
the induced second-neighbor imaginary hopping, whose sign is
indicated by the arrows for spin-up electrons. For spin-down
electrons, the arrows are reversed.
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Induces	spin-orbit		
coupling	

Since H-position adatoms generically reside on one side
of the graphene sheet, they will clearly mediate Rashba
spin-orbit coupling as well, leading to a potentially delicate
competition. If the adatoms’ outer-shell electrons derive
from p orbitals, however, the induced intrinsic spin-orbit
terms always dominate over the induced Rashba interac-
tions. One can establish this key result by studying
graphene with a single adatom of this type. To model this
setup, we employ operators dm! for the adatom states, with
m ¼ 0, "1 and ! ¼" , # labeling the orbital and spin
angular-momentum quantum numbers. The coupling of
these orbitals to graphene is conveniently expressed in
terms of the following operators:

Cm! ¼ 1ffiffiffi
6

p
X6

j¼1

e#ið"=3Þmðj#1Þcrj!; (3)

where the sum runs over the six sites surrounding the
adatom shown in Fig. 1(b). Guided by symmetry
(see Appendix A), we consider the following minimal
Hamiltonian for this single-adatom problem:

H ¼ Hg þHa þHc; (4)

Hg ¼ Ht # #$
X6

j¼1

cyrjcrj ; (5)

Ha ¼
X

m¼0;"1

%jmjd
y
mdm þ!soðdy1 szd1 # dy#1s

zd#1Þ

þ
ffiffiffi
2

p
!0

soðdy0 s#d#1 þ dy0 s
þd1 þ H:c:Þ; (6)

Hc ¼ #
X

m¼0;"1

ðtjmjC
y
mdm þ H:c:Þ; (7)

with s" ¼ ðsx " isyÞ=2. Here Hg represents the nearest-
neighbor hopping model of graphene supplemented by a
chemical potential #$ for the six sites surrounding the
adatom. Physically, a nonzero #$ leads to an excess
electron density at those sites, screening any net charge
from the adatom. Crystal-field effects and spin-orbit cou-
pling split the adatom p orbitals through the %jmj and !so,
!0

so terms in Ha. Finally, Hc allows electrons to tunnel
between the adatom and its neighboring carbon sites. All
couplings in H are real except t1, which is pure imaginary.
Note also that we have ignored the exceedingly weak
spin-orbit terms that couple the electrons in graphene
directly, as well as Coulomb interactions for the adatom.
Exclusion of these latter terms is justified for the non-
magnetic adatoms that we will consider below.

Recalling that intrinsic spin-orbit coupling in graphene
conserves the Sz spin component while Rashba coupling
does not, one can readily understand how the adatom
mediates both kinds of interactions by viewing the tunnel-
ings in Hc perturbatively. For example, when an electron
hops onto them ¼ 0 orbital via t0, flips its spin through the

!0
so coupling, and then hops back to the honeycomb lattice

via t1, spin-orbit coupling of the Rashba type is locally
generated in graphene. In sharp contrast to the situation for
the Kane-Mele model, however, Rashba terms mediated in
this fashion are irrelevant for the low-energy physics. This
crucial feature can be understood by Fourier transforming
C0!; remarkably, the components with Dirac-point mo-
menta "Q vanish identically. More physically, electrons
near the Dirac points interfere destructively when hopping
onto the m ¼ 0 adatom orbital. (See Appendixes A and D
for complementary perspectives.) We stress that this argu-
ment holds only for p orbitals. If the relevant adatom
orbitals carry higher angular momentum, spin-flip pro-
cesses which do affect the Dirac points will generically
appear. The induced Rashba terms may still be subdomi-
nant, although whether this is the case depends on details
of the Hamiltonian, unlike the situation for p orbitals.
In contrast, Sz-conserving events whereby an electron

hops both onto and then off an m ¼ "1 orbital via t1
locally mediate the desired intrinsic spin-orbit interactions.
No obstruction exists for tunneling onto the m ¼ "1 orbi-
tals via t1, so these processes can effectively modify the
physics near the Dirac points. It is important to note,
however, that t1 hopping mediates additional couplings
as well, so the dominance of these spin-orbit terms remains
unclear. Nevertheless, given the high symmetry preserved
by the H-site adatom, none of the conventional broken-
symmetry gapped phases of graphene—such as charge-
density wave or ‘‘Kekule’’ orders—is obviously favored
here, so it is reasonable to expect these additional terms to
play a relatively minor role. We explicitly confirm this
intuition in the multiadatom situation, to which we now
turn.

III. PERIODIC ADATOM CONFIGURATIONS

As a first step in understanding the multiadatom case, we
examine a periodic system with one adatom residing in a
large N ' N supercell. This situation allows us to utilize
density functional theory (DFT) to ascertain suitable heavy
elements and obtain a quantitative understanding of their
effects on graphene. (See Appendix B for computational
details.) To ensure large spin-orbit coupling, we focused on
elements in rows five and six of the periodic table, includ-
ing In, Sn, Sb, Te, I, La, Hf, Pt, Au, Hg, Tl, Pb and Bi.
For each element, we calculated the total energy in the
three adsorption geometries shown in Fig. 1(a) along
with the adatom’s spin moment. Our calculations reveal
that two elements—indium (atomic number Z ¼ 49) and
thallium (Z ¼ 81)—satisfy our criteria of both favoring
the high-symmetry H position and being nonmagnetic.
Furthermore, both elements exhibit partially filled p shells,
ensuring that the Rashba coupling they mediate in gra-
phene is benign at the Dirac points.
It is instructive to first examine the electronic properties

of indium on graphene in a 4' 4 supercell, without
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In	the	first	approximaCon	can	be	modeled	
through	local	Kane-Mele	SOC	terms			



λeff ¼ nλ ≈ 8.1 meV [39]. This formula sheds light on the
interplay between SOC and adatom density in determining
the rise of a topological phase. For example, adatoms with a
smaller SOC, such as indium, would require a higher
density to obtain the same effect as thallium. A closer
inspection of the conductance shows that the plateau region
is not perfectly flat, but varies within the range [1.92,2.02]
e2=h. This indicates that the separation between spin
polarized chiral edge channels is not fully complete, partly
because of existing randomness in the adatom distribution.
Figures 3(a) and 3(b) show the spin-resolved local spectral
current for electrons injected from the right contact at
energy E ≈ −33.5 meV, indicated by the dot in Fig. 2(a).We
observe that the electrons injected from the source
(x > 50 nm) are rapidly and completely deviated along the
top edge for spin down, see Fig. 3(a), and along
the lower edge for spin up, see Fig. 3(b). The width of
the polarized edge channels in armchair ribbons does
not depend on the energy but only on the SOC [40] as
aγ=ð2

ffiffiffi
3

p
λeffÞ ≈ 13.5 nm, where a is the carbon interatomic

distance. The separation between the right-to-left and left-to-
right moving channels, which is opposite for different spin
polarizations, is at theoriginof theQSHE.Note that no current
flows through the bulk, where a topological gap is present.
This picture is markedly modified when adatoms seg-

regate into larger islands. Figure 2(b) shows the differential
conductance when the islands have a radius r ¼ 1.5 nm
(the adatom concentration is kept at n ¼ 15%). While a

residual signature of the conductance plateau remains for
certain energies, it is clear that quantization is almost
completely lost despite the short intercluster distance. This
indicates that adatom segregation has a detrimental effect
on the formation of a topological phase in graphene.
Considering that adatom clustering is unavoidable at room
temperature, our findings provide an explanation for the
absence of experimental confirmation of the existence of
the QSHE in chemically functionalized graphene.
An illuminating insight into the effect of segregation is

further provided by the spin-resolved spectral current
distribution reported in Figs. 3(c) and 3(d) for the energy
E ¼ 21.5 meV indicated by the black dot in Fig. 2(b),
where the conductivity is about 2.4e2=h, i.e., above the
plateau. In the absence of a topological bulk band gap, the
spectral current flows within the bulk, excluding the for-
mation of the QSHE.
However, a residual spin polarization still develops at the

sample edges, as a result of spin-dependent bulk scattering
of the electrons on thallium islands, which resembles the
SHE mechanism. To corroborate this picture, the insets ofFIG. 2 (color online). Differential conductance for an armchair

ribbon of width W ¼ 50 nm with a concentration n ¼ 15% of
thallium adatoms segregated into islands with radius r ¼ 0.5 nm
(a), r ¼ 1.5 nm (b), and r ¼ 2 nm (c), over a section with
length L ¼ 50 nm. The potential energy on the contacts is
set to V ¼ −2.5 eV. The dotted lines indicate the conductance
value 2e2=h.

FIG. 3 (color online). Spin-resolved spectral current distribu-
tion for r ¼ 0.5 nm and E ¼ −33.5 meV (a),(b); r ¼ 1.5 nm
and E ¼ 21.5 meV (c),(d); and r ¼ 2 nm and E ¼ −33.5 meV
(e),(f). The corresponding energies and conductance are indicated
by black dots in Fig. 2. The insets in panels (c)–(f) illustrate
the local average current distribution in the regions indicated by
the squares.

PRL 113, 246603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
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Engineering	the	topological	state:		
clusterizaCon	of	adatoms	

ClusterizaCon	of	adatoms	destroy	the		
topological	state	in	a	sense	that	the	
currents	are	concentrated	not	at	the	
edges	of	the	sample,	but	at	the	edge	of	
the	“islands”	[PRL	113,	246603].	
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Valley-momentum locking in a graphene superlattice

with Y-shaped Kekulé bond texture
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(Dated: October 2017)

Recent experiments by Gutiérrez et al. [Nature Phys. 12, 950 (2016)] on a graphene-copper
superlattice have revealed an unusual Kekulé bond texture in the honeycomb lattice — a Y-shaped
modulation of weak and strong bonds with a wave vector connecting two Dirac points. We show
that this socalled “Kek-Y” texture produces two species of massless Dirac fermions, with valley
isospin locked parallel or antiparallel to the direction of motion. In a magnetic field B the valley
degeneracy of the B-dependent Landau levels is removed by the valley-momentum locking — but a
B-independent and valley-degenerate zero-mode remains.

I. INTRODUCTION

The coupling of orbital and spin degrees of freedom is
a promising new direction in nano-electronics, referred to
as “spin-orbitronics”, that aims at non-magnetic control
of information carried by charge-neutral spin currents [1–
3]. Graphene o↵ers a rich platform for this research [4,
5], because the conduction electrons have three distinct
spin quantum numbers: In addition to the spin magnetic
moment s = ±1/2, there is the sublattice pseudospin � =
A,B and the valley isospin ⌧ = K,K 0. While the coupling
of the electron spin s to its momentum p is a relativistic
e↵ect, and very weak in graphene, the coupling of � to p is
so strong that one has a pseudospin-momentum locking:
The pseudospin points in the direction of motion, as a
result of the helicity operator p ·� ⌘ p

x

�
x

+ p
y

�
y

in the
Dirac Hamiltonian of graphene.

The purpose of this paper is to propose a way to ob-
tain a similar handle on the valley isospin, by adding a
term p · ⌧ to the Dirac Hamiltonian, which commutes
with the pseudospin helicity and locks the valley to the
direction of motion. We find that this valley-momentum
locking should appear in a superlattice that has recently
been realized experimentally by Gutiérrez et al. [6, 7]: A
superlattice of graphene grown epitaxially onto Cu(111),
with the copper atoms in registry with the carbon atoms.
One of six carbon atoms in each superlattice unit cell
(
p
3 ⇥

p
3 larger than the original graphene unit cell)

have no copper atoms below them and acquire a shorter
nearest-neighbor bond. The resulting Y-shaped peri-
odic alternation of weak and strong bonds (see Fig. 1)
is called a Kekulé-Y (Kek-Y) ordering, with reference to
the Kekulé dimerization in a benzene ring (called Kek-O
in this context) [7].

The Kek-O and KeK-Y superlattices have the same
Brillouin zone, with the K and K 0 valleys of graphene
folded on top of each other. The Kek-O ordering couples
the valleys by opening a gap in the Dirac cone [8–12], and
it was assumed by Gutiérrez et al. that the same applies
to the Kek-Y ordering [6, 7]. While it is certainly possi-
ble that the graphene layer in the experiment is gapped
by the epitaxial substrate (for example, by a sublattice-

FIG. 1: Honeycomb lattices with a Kek-O or Kek-Y bond
texture, all three sharing the same superlattice Brillouin zone
(yellow hexagon, with reciprocal lattice vectors K±). Black
and white dots label A and B sublattices, black and red
lines distinguish di↵erent bond strengths. The lattices are
parametrized according to Eq. (4) (with � = 0) and distin-
guished by the index ⌫ = 1+q�p modulo 3 as indicated. The
K and K0 valleys (at the green Dirac points) are coupled by
the wave vector G = K+ � K� of the Kekulé bond texture
and folded onto the center of the superlattice Brillouin zone
(blue point).

symmetry breaking ionic potential [13–15]), we find that
the Y-shaped Kekulé bond ordering by itself does not
impose a mass on the Dirac fermions [16]. Instead, the
valley degeneracy is broken by the helicity operator p ·⌧ ,
which preserves the gapless Dirac point while locking the
valley degree of freedom to the momentum. In a mag-
netic field the valley-momentum locking splits all Landau
levels except for the zeroth Landau level, which remains
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pinned to zero energy.

II. TIGHT-BINDING MODEL

A. Real-space formulation

A monolayer of carbon atoms has the tight-binding
Hamiltonian

H = �
P

r

P3
`=1tr,` a

†
rbr+s`

+H.c., (1)

describing the hopping with amplitude tr,` between an
atom at site r = na1 + ma2 (n,m 2 Z) on the A sub-
lattice (annihilation operator ar) and each of its three
nearest neighbors at r + s

`

on the B sublattice (an-
nihilation operator br+s`). The lattice vectors are de-
fined by s1 = 1

2 (
p
3,�1), s2 = � 1

2 (
p
3, 1), s3 = (0, 1),

a1 = s3 � s1, a2 = s3 � s2. All lengths are measured in
units of the unperturbed C–C bond length a0 ⌘ 1.

For the uniform lattice, with tr,` ⌘ t0, the band struc-
ture is given by [17]

E(k) = ±|"(k)|, "(k) = t0
P3

`=1e
ik·s` . (2)

There is a conical singularity at the Dirac points K± =
2
9⇡

p
3(±1,

p
3), where E(K±) = 0. For later use we note

the identities

"(k) = "(k + 3K±) = e2⇡i/3"(k +K+ +K�). (3)

The bond-density wave that describes the Kek-O and
Kek-Y textures has the form

tr,`/t0 = 1 + 2Re
⇥
�ei(pK++qK�)·s`+iG·r⇤ (4a)

= 1 + 2�0 cos[�+ 2
3⇡(m� n+N

`

)], (4b)

N1 = �q, N2 = �p, N3 = p+ q, p, q 2 Z3.

The Kekulé wave vector

G ⌘ K+ �K� = 4
9⇡

p
3(1, 0) (5)

couples the Dirac points. The coupling amplitude � =
�0e

i� may be complex, but the hopping amplitudes tr,`
are real in order to preserve time-reversal symmetry.

As illustrated in Fig. 1, the index

⌫ = 1 + q � p mod 3 (6)

distinguishes the Kek-O texture (⌫ = 0) from the Kek-Y
texture (⌫ = ±1). Each Kekulé superlattice has a 2⇡/3
rotational symmetry, reduced from the 2⇡/6 symmetry
of the graphene lattice. The two ⌫ = ±1 Kek-Y textures
are each others mirror image [18].

B. Transformation to momentum space

The Kek-O and Kek-Y superlattices have the same
hexagonal Brillouin zone, with reciprocal lattice vectors

K± — smaller by a factor 1/
p
3 and rotated over 30�

with respect to the original Brillouin zone of graphene
(see Fig. 1). The Dirac points of unperturbed graphene
are folded from the corner to the center of the Brillouin
zone and coupled by the bond density wave.

To study the coupling we Fourier transform the tight-
binding Hamilonian (1),

H(k) = � "(k)a†kbk ��"(k + pK+ + qK�)a
†
k+Gbk

��⇤"(k � pK+ � qK�)a
†
k�Gbk +H.c. (7)

The momentum k still varies over the original Bril-
louin zone. In order to restrict it to the superlat-
tice Brillouin zone we collect the annihilation oper-
ators at k and k ± G in the column vector ck =
(ak, ak�G, ak+G, bk, bk�G, bk+G) and write the Hamilto-
nian in a 6⇥ 6 matrix form:

H(k) = �c†k

✓
0 E

⌫

(k)
E†
⌫

(k) 0

◆
ck, (8a)

E
⌫

=

0

@
"0 �̃"

⌫+1 �̃⇤"�⌫�1

�̃⇤"1�⌫
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where we used Eq. (3).

III. LOW-ENERGY HAMILTONIAN

A. Gapless spectrum

The low-energy spectrum is governed by the four
modes uk = (ak�G, ak+G, bk�G, bk+G), which for small
k lie near the Dirac points at ±G. (We identify the K
valley with +G and the K 0 valley with �G.) Projection
onto this subspace reduces the six-band Hamiltonian (8)
to an e↵ective four-band Hamiltonian,
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Corrections to the low-energy spectrum from virtual
transitions to the higher bands are of order �2

0. We
will include these corrections later, but for now assume
�0 ⌧ 1 and neglect them.

The k-dependence of "
n

may be linearized near k = 0,

"0 = 3t0, "±1 = ~v0(⌥k
x

+ ik
y

) + order (k2), (10)

with Fermi velocity v0 = 3
2 t0a0/~. The corresponding

3
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FIG. 2: Dispersion relation near the center of the superlattice
Brillouin zone, for the Kek-O texture (blue dashed curves)
and for the Kek-Y texture (black solid). The curves are cal-
culated from the full Hamiltonian (8) for |�̃| = �0 = 0.1.

4-component Dirac equation has the form

H
✓
 

K

0

 
K

◆
= E

✓
 

K

0

 
K

◆
, H =

✓
v0p · � �̃Q

⌫

�̃⇤Q†
⌫

v0p · �

◆
,

(11a)

 
K

0 =

✓
� 

B,K

0

 
A,K

0

◆
,  

K

=

✓
 
A,K

 
B,K

◆
, (11b)

Q
⌫

=

✓
"⇤�⌫

0
0 �"

⌫

◆
=

(
3t0�z if ⌫ = 0,

v0(⌫px � ip
y

)�0 if |⌫| = 1.
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The spinor  
K

contains the wave amplitudes on the A
and B sublattices in valley K and similarly  

K

0 for val-
ley K 0, but note the di↵erent ordering of the compo-
nents [19]. We have defined the momentum operator
p = �i~@/@r, with p · � = p

x

�
x

+ p
y

�
y

. The Pauli
matrices �

x

,�
y

,�
z

, with �0 the unit matrix, act on the
sublattice degree of freedom.

For the Kek-O texture we recover the gapped spectrum
of Kekulé dimerized graphene [8],

E2 = v20 |p|2 + (3t0�0)
2 for ⌫ = 0. (12)

The Kek-Y texture, instead, has a gapless spectrum,

E2
± = v20(1±�0)

2|p|2, for |⌫| = 1, (13)

consisting of a pair of linearly dispersing modes with dif-
ferent velocities v0(1±�0). The two qualitatively di↵er-
ent dispersions are contrasted in Fig. 2.

B. Valley-momentum locking

The two gapless modes in the Kek-Y superlattice are
helical, with both the sublattice pseudospin and the val-
ley isospin locked to the direction of motion. To see

this, we consider the ⌫ = 1 Kek-Y texture with a real
�̃ = �0. (Complex �̃ and ⌫ = �1 are equivalent upon
a unitary transformation.) The Dirac Hamiltonian (11)
can be written in the compact form
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�0 ⌦ (p · ⌧ ), (14)

with the help of a second set of Pauli matrices ⌧
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and unit matrix ⌧0 acting on the valley degree of freedom.
The two velocities are defined by v
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= v0 and v
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An eigenstate of the current operator
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with eigenvalue v
�

±v
⌧

is an eigenstate of �
↵

with eigen-
value +1 and an eigenstate of ⌧

↵

with eigenvalue ±1.
(The two Pauli matrices act on di↵erent degrees of free-
dom, so they commute and can be diagonalized indepen-
dently.) This valley-momentum locking does not violate
time-reversal symmetry, since the time-reversal operation
in the superlattice inverts all three vectors p, �, and ⌧ ,
and hence leaves H una↵ected [20]:
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) = H. (16)

The valley-momentum locking does break the sublat-
tice symmetry, since H no longer anticommutes with �

z

,
but another chiral symmetry involving both sublattice
and valley degrees of freedom remains:

(�
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z

)H = �H(�
z
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). (17)

C. Landau level quantization

A perpendicular magnetic field B in the z-direction
(vector potential A in the x–y plane), breaks the
time-reversal symmetry (16) via the substitution p 7!
�i~@/@r + eA(r) ⌘ ⇧. The chiral symmetry (17) is
preserved, so the Landau levels are still symmetrically
arranged around E = 0, as in unperturbed graphene.
Because the two helicity operators ⇧ ·� and ⇧ ·⌧ do not
commute for A 6= 0, they can no longer be diagonalized
independently. In particular, this means the Landau level
spectrum is not simply a superposition of two spectra of
Dirac fermions with di↵erent velocities.
It is still possible to calculate the spectrum analyti-

cally (see App. A). We find Landau levels at energies
E+

n

, E�
n
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n

,�E�
n

, n = 0, 1, 2, . . ., given by
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with the definitions v̄ =

p
v2
�

+ v2
⌧

and E
B

= v̄
p
~eB.

In unperturbed graphene all Landau levels have a
twofold valley degeneracy [21]: E+

n

= E�
n+1 for v

⌧

= 0.
This includes the zeroth Landau level: E�

0 = 0 = �E�
0 .

A nonzero v
⌧

breaks the valley degeneracy of all Lan-
dau levels at E 6= 0, but a valley-degenerate zero-mode
E�

0 = 0 remains, see Fig. 3.
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pinned to zero energy.

II. TIGHT-BINDING MODEL

A. Real-space formulation

A monolayer of carbon atoms has the tight-binding
Hamiltonian

H = �
P

r

P3
`=1tr,` a

†
rbr+s`

+H.c., (1)

describing the hopping with amplitude tr,` between an
atom at site r = na1 + ma2 (n,m 2 Z) on the A sub-
lattice (annihilation operator ar) and each of its three
nearest neighbors at r + s

`

on the B sublattice (an-
nihilation operator br+s`). The lattice vectors are de-
fined by s1 = 1

2 (
p
3,�1), s2 = � 1

2 (
p
3, 1), s3 = (0, 1),

a1 = s3 � s1, a2 = s3 � s2. All lengths are measured in
units of the unperturbed C–C bond length a0 ⌘ 1.

For the uniform lattice, with tr,` ⌘ t0, the band struc-
ture is given by [17]

E(k) = ±|"(k)|, "(k) = t0
P3

`=1e
ik·s` . (2)

There is a conical singularity at the Dirac points K± =
2
9⇡

p
3(±1,

p
3), where E(K±) = 0. For later use we note

the identities

"(k) = "(k + 3K±) = e2⇡i/3"(k +K+ +K�). (3)

The bond-density wave that describes the Kek-O and
Kek-Y textures has the form

tr,`/t0 = 1 + 2Re
⇥
�ei(pK++qK�)·s`+iG·r⇤ (4a)

= 1 + 2�0 cos[�+ 2
3⇡(m� n+N

`

)], (4b)

N1 = �q, N2 = �p, N3 = p+ q, p, q 2 Z3.

The Kekulé wave vector

G ⌘ K+ �K� = 4
9⇡

p
3(1, 0) (5)

couples the Dirac points. The coupling amplitude � =
�0e

i� may be complex, but the hopping amplitudes tr,`
are real in order to preserve time-reversal symmetry.

As illustrated in Fig. 1, the index

⌫ = 1 + q � p mod 3 (6)

distinguishes the Kek-O texture (⌫ = 0) from the Kek-Y
texture (⌫ = ±1). Each Kekulé superlattice has a 2⇡/3
rotational symmetry, reduced from the 2⇡/6 symmetry
of the graphene lattice. The two ⌫ = ±1 Kek-Y textures
are each others mirror image [18].

B. Transformation to momentum space

The Kek-O and Kek-Y superlattices have the same
hexagonal Brillouin zone, with reciprocal lattice vectors

K± — smaller by a factor 1/
p
3 and rotated over 30�

with respect to the original Brillouin zone of graphene
(see Fig. 1). The Dirac points of unperturbed graphene
are folded from the corner to the center of the Brillouin
zone and coupled by the bond density wave.

To study the coupling we Fourier transform the tight-
binding Hamilonian (1),

H(k) = � "(k)a†kbk ��"(k + pK+ + qK�)a
†
k+Gbk

��⇤"(k � pK+ � qK�)a
†
k�Gbk +H.c. (7)

The momentum k still varies over the original Bril-
louin zone. In order to restrict it to the superlat-
tice Brillouin zone we collect the annihilation oper-
ators at k and k ± G in the column vector ck =
(ak, ak�G, ak+G, bk, bk�G, bk+G) and write the Hamilto-
nian in a 6⇥ 6 matrix form:

H(k) = �c†k
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�̃ = e2⇡i(p+q)/3�, "
n

= "(k + nG), (8c)

where we used Eq. (3).

III. LOW-ENERGY HAMILTONIAN

A. Gapless spectrum

The low-energy spectrum is governed by the four
modes uk = (ak�G, ak+G, bk�G, bk+G), which for small
k lie near the Dirac points at ±G. (We identify the K
valley with +G and the K 0 valley with �G.) Projection
onto this subspace reduces the six-band Hamiltonian (8)
to an e↵ective four-band Hamiltonian,
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Corrections to the low-energy spectrum from virtual
transitions to the higher bands are of order �2

0. We
will include these corrections later, but for now assume
�0 ⌧ 1 and neglect them.

The k-dependence of "
n

may be linearized near k = 0,

"0 = 3t0, "±1 = ~v0(⌥k
x

+ ik
y

) + order (k2), (10)

with Fermi velocity v0 = 3
2 t0a0/~. The corresponding
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III. LOW-ENERGY HAMILTONIAN

A. Gapless spectrum

The low-energy spectrum is governed by the four
modes uk = (ak�G, ak+G, bk�G, bk+G), which for small
k lie near the Dirac points at ±G. (We identify the K
valley with +G and the K 0 valley with �G.) Projection
onto this subspace reduces the six-band Hamiltonian (8)
to an e↵ective four-band Hamiltonian,
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Corrections to the low-energy spectrum from virtual
transitions to the higher bands are of order �2

0. We
will include these corrections later, but for now assume
�0 ⌧ 1 and neglect them.

The k-dependence of "
n

may be linearized near k = 0,

"0 = 3t0, "±1 = ~v0(⌥k
x

+ ik
y

) + order (k2), (10)

with Fermi velocity v0 = 3
2 t0a0/~. The corresponding

Hamiltonian:	

Low	energy	effecCve	theory	in	the	vicinity	of	superlaace	K-points:	

τ	acts	in	valley	space	and	plays	the	role	of	spin.			
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∑ ∑ ∑ε= + +
′ ′

′ ′
† † †H c c t c c t c c ,

(1)i
i i

i j
i j

i j
i j0 0

,
1

,

where ci is the annihilation operator of electron at atomic site i with on-site energy ε0 satisfying the 
anti-commutation relation, 〈 i , j〉  and 〈  i  ′ , j′ 〉  run over NN sites inside and between hexagonal unit cells with 
hopping energies t0 and t1 respectively [see Fig. 1(a)]. The orbitals are considered to be the simplest one without 
any internal structure, such as the π electron of graphene. Below we are going to detune the hopping energy t1 
while keeping t0 constant, and elucidate possible changes in the electronic state. In this case, the pristine honey-
comb lattice of individual atomic sites is better to be considered as a triangular lattice of hexagons, with the latter 
characterized by C6 symmetry.

Let us start with the Hamiltonian within a single hexagonal unit cell

= Ψ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Ψ†H t

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

,

(2)

0 0

where Ψ  =  [c1, c2, c3, c4, c5, c6]T [see Fig. 1(a)]. The eigen states of Hamiltonian H0 are given by

=

= − −

| 〉 = − − −

| 〉 = − −

| 〉 = − −

| 〉 = − − −

−

−

s
p
p

d

d

f

[1, 1, 1, 1, 1, 1] ;
[1, 1, 0, 1, 1, 0] ;

[1, 1, 2, 1, 1, 2] ;

[1, 1, 2, 1, 1, 2] ;

[1, 1, 0, 1, 1, 0] ;

[1, 1, 1, 1, 1, 1] (3)

T

x
T

y
T

x y
T

xy
T

y x y
T

(3 )

2 2

2 2

with eigen energies 2t0, t0, t0, − t0, − t0 and − 2t0 respectively, up to normalization factors. As shown in Fig. 1(b), 
the emergent orbitals accommodated on the hexagonal “artificial atom” take the shapes similar to the conventional 
s, p, d and f atomic orbitals.

Figure 1. Hopping texture in honeycomb lattice and emergent orbitals. (a) Honeycomb lattice with hopping 
energies between NN sites: t0 inside hexagons as denoted by the green bonds and t1 between hexagons by red 
ones. The red dashed hexagon is the primitive cell of triangular lattice with lattice vectors →a1, →a2 and lattice 
constant = → = →a a a0 1 1 . Numbers …1, , 6 in circle index atomic sites within a hexagon. (b) Emergent orbitals 
in the hexagonal artificial atom.
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Hoppings	distribuCon	

EffecCve	Wannier	funcCons	within	
the	supercell	
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It is easy to check that the wave functions

= | 〉 ± | 〉 = | 〉 ± | 〉± ± −p p i p d d i d1
2

( ); 1
2

( )
(4)x y x y xy2 2

are related each other by the operator T UK= : =± B Bp ip,  and , =± B Bd id  with # the complex conjugate 
operator and σ= i z- , where σz is the Pauli matrix. Therefore, the operator ,  can be taken as a pseudo-TR oper-
ator, and the orbital angular momentum plays the role of a pseudospin. The relation , = −12  yields the Kramers 
doubling, a property originating from the C6 symmetry. It is noticed that the high-energy states |s〉  and f  are 
singlets, and thus the pseudospin and pseudo-TR symmetry are valid only for low-energy physics, which however 
is sufficient for realizing nontrivial topological properties in the present system (see also ref. 21).

Distinguished from the intrinsic spin, the pseudospin is directly related to the chiral current density on the 
hexagon. For a lattice model, the current density between two sites is given by �= −† ⁎ †I i t c c t c c( / )[ ]jk j k k j0 0 . The 
current distributions evaluated using wave functions in Eq. (4) for the pseudospin-up and -down states are shown 
in Fig. 2(a,b) with anticlockwisely and clockwisely circulating currents. By considering the hexagonal artificial 
atoms composed by six sites in honeycomb lattice, one harvests states with angular momenta merely from simple 
orbitals, such as π electrons in graphene. The pseudo-TR symmetry is supported by the C6 crystal symmetry, 
sharing the same underlying physics with the topological crystalline insulator24. However, for 
crystal-symmetry-protected topological insulators addressed so far, strong SOCs are required to achieve band 
inversions25–27, which is different from the present approach as revealed below.

Topological phase transition. We calculate the energy dispersion of Eq. (1) for several typical values of t1 
(hereafter the on-site energy is put as ε0 =  0 without losing generality). As shown in Fig. 2, there are two two-fold 
degeneracies at the Γ  point corresponding to the two two-dimensional (2D) representations of C6 point group. 
Projecting the wave functions for t1 =  0.9t0 onto the orbitals given in Fig. 1(b), it is found that the topmost two 
valance bands show the character of d orbitals whereas the lowest two conduction bands behave like p orbitals 
[see Fig. 2(c)], with the order in energy same as those listed in Eq. (3). For t1 =  t0, the d and p bands become 
degenerate at the Γ  point and double Dirac cones appear [see Fig. 2(d)], which are equivalent to the ones at K 
and K′  points in the unfolded Brillouin zone of honeycomb lattice with the rhombic unit cell of two sites. When 
t1 increases further from t0, a band gap reopens at the Γ  point. As shown in Fig. 2(e) for t1 =  1.1t0, the valence 
(conduction) bands are now occupied by p (d) orbitals around the Γ  point, opposite to the order away from the 
Γ  point and to that before gap closing. Therefore, a band inversion between p and d orbitals takes place at the Γ  
point when the inter-hexagon hopping energy is increased across the topological transition point t1 =  t0, namely 
the pristine honeycomb lattice.

We can characterize the topological property of the gap-opening transition shown in Fig. 2 by a low-energy 
effective Hamiltonian around the Γ  point. Since the bands near the Fermi level are predominated by p and d orbit-
als, it is sufficient to downfold the six-dimensional Hamiltonian H(k) associated with the tight-binding model (1) 
into the four-dimensional subspace [p+, d+, p−, d−]. The second term in Eq. (1) is then simply given by

′ =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

−

−

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.h

t
t

t
t

0 0 0
0 0 0
0 0 0
0 0 0 (5)

0

0

0

0

0

Figure 2. Band inversion and topological phase transition. (a,b) Current densities in the pseudospin-up 
channel (p+ or d+) and pseudospin-down channel (p− or d−) respectively. Band dispersions for the system given 
in Fig. 1: (c) t1 =  0.9t0 (Inset: Brillouin zone of the triangular lattice), (d) t1 =  t0 and (e) t1 =  1.1t0. Blue and red 
are for |p±〉  and |d±〉  orbitals respectively, and rainbow for hybridization between them. The on-site energy is 
taken ε0 =  0.

Different	valleys	correspond	now	to	different	orbital	
momentum	within	the	supercell	



Stability	of	TIs	with	respect	to	interacCon	effects	

Kane-Mele-Hubbard	model:	

II. TOPOLOGICAL BAND STRUCTURES

The QSH honeycomb models are particularly accessi-
ble from a theoretical perspective: as there are already
two sites per unit cell, it is su�cient to study a single
orbital scenario where complex hoppings generate the
band inversion giving rise to a non-trivial Z2 invariant.
There is hope that the QSH e↵ect on the honeycomb lat-
tice might be realized, e.g. by doping heavy adatoms in
graphene40 or by using silicene41 which has recently been
accomplished experimentally42. Depending on the con-
cise form of the spin-orbit coupling terms, the axial spin
symmetry may or may not be broken in the interacting
case. In this section we briefly introduce the two repre-
sentative models for both scenarios which are subject to
further investigation in the following.

A. Kane–Mele model

Kane and Mele 6,7 proposed the quantum spin Hall
(QSH) e↵ect in graphene based on symmetry considera-
tion. They realized that a mass term / �z⌧z⌘z does not
violate any symmetries of graphene and thus must be al-
lowed. Here, � is associated with the electron spin, ⌧ with
the valleys, and ⌘ with the sublattices. The Kane–Mele
model is governed by the tight–binding Hamiltonian

hKM = �t
X
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In principle, there is also the Semeno↵ mass term which
we will ignore for the moment. Similarly, the Rashba spin
orbit term with amplitude �R is neglected unless noted
otherwise. The first term in (1) is the usual nearest–
neighbor hopping on the honeycomb lattice giving rise
to the Dirac band structure. The second term in (1) is
the lattice version of the �z⌧z⌘z–term (a second neigh-
bor hopping) which corresponds to an intrinsic spin orbit
coupling (SOC). The convention of this hopping is illus-
trated in Fig. 1a. The nearest neighbor hopping term
preserves the C6v

lattice symmetry of the honeycomb
lattice as well as SU(2) symmetry of the electron spin.
The intrinsic SOC reduces the lattice symmetry to C3v

and the spin symmetry to U(1). Any finite � opens the
gap of the Dirac band structure and gives rise to QSH
e↵ect, i.e. to a topological insulator phase characterized
by a finite Z2 invariant, or, in this case, Chern number for
each spin species. This situation is very special since the
Hamiltonian fully decouples into two independent Chern
insulators with opposite Hall conductivity. Generically,
we expect the presence of additional terms breaking the
U(1) spin symmetry and mixing the spin channels. The
Rashba term is such an additional term which will be fur-
ther commented on in Section VII. Even for finite Rashba
coupling �

R

, however, the QSH phase is stable as long as
�

R

< 2
p

3�.6

B. Sodium iridate tight binding model

Soon after Kane and Mele’s milestone works, it turned
out that the spin orbit gap in graphene is vanishingly
small. Therefore other materials with e↵ective honey-
comb structure were considered as candidates for the
QSH e↵ect as proposed by Kane and Mele. In 2008, Shi-
tade et al.

39 came up with the sodium iridate Na2IrO3

as a layered honeycomb system. The authors claimed
that the QSH e↵ect might be realized if Coulomb inter-
actions are not too strong. A monolayer was shown to
be described by a Kane–Mele-type Hamiltonian. The in-
trinsic spin orbit coupling was assumed to be relatively
large due to the heavier iridium atoms in contrast to
graphene’s carbon atoms. Assuming trivial hybridiza-
tion between nearest neighbor Ir atoms, Shitade et al.

found an intrinsic SOC being similar but di↵erent to the
KM SOC. It depends on the direction of the spin orbit
hopping whether the spin degree of freedom is associated
with �x, �y, or �z. The sodium iridate model is governed
by the Hamiltonian

hSI = �t
X
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c
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+ i�̃
X

⌧ij��

X

↵�

c†
i↵

��

↵�

c
j�
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where � = x, y, z is associated with the di↵erent next–
nearest neighbor links on the honeycomb lattice (Fig. 1b).
The main di↵erence of this generalized SOC compared
to the KM SOC is that axial spin symmetry is not con-
served. As for the KM model, infinitesimally small �̃
opens the gap at the Dirac cones and causes QSH e↵ect.

The band structures of hKM and hSI both belong to
the Z2 universality class and are thus adiabatically con-
nected. Both systems exhibit helical edge states on open
geometries such as cylinder or disk.

III. CORRELATED TOPOLOGICAL
INSULATORS

Let us now add Hubbard onsite interactions,

H
I

= U
X

i

n
i"ni# (3)

which yields rich phase diagrams for both band struc-
tures. While the U–� phase diagram of the KMH model
is well understood 13,15,16,19,43,44, the U–�̃ phase diagram
of the SIH model is rarely studied33,39, and the available
results are controversial. In the following, we will briefly
review the phase diagrams of both Hubbard-type models.

A. Kane–Mele–Hubbard model

The KMH model is described by a combination of the
KM and Hubbard model,

HKM = hKM + H
I

. (4)
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FIG. 2. (color online). (a) phase diagram of the Kane–Mele–Hubbard model as obtained in Ref. 13. The transition from a
topological insulator (TI) to XY -plane antiferromagnet (AFM) was derived within slave-rotor theory which underestimates
U

c

. (b) mean field phase diagram of the sodium–iridate Hubbard model as obtained in Ref. 33. The transition from TI to a
valence bond solid (VBS) phase that links to AFM was derived within slave-spin theory which overestimates U

c

. The phase
diagram of (b) is qualitatively similar to (a) apart from the additional “QSH? phase”. At � = �̃ = 0 and not too large U the
semi-metal (SM) phase of graphene is present. See main text for details.

In Ref. 13 the phase diagram shown in Fig. 2a was de-
rived through slave rotor theory. The semi–metal (SM)
phase of graphene (� = 0) as well as the topological in-
sulator phase (� 6= 0) are stable up to moderate inter-
actions. Above a critical interaction strength U

c

, one
finds an antiferromagnetically ordered phase which is of
Néel type (� = 0) or of XY –type (� 6= 0), respectively.
At � = 0 and intermediate U , a quantum spin liquid
phase has been proposed 45 recently; this conjecture has
been challenged lately. 46 For very small � it survives but
eventually vanishes for �  0.05t15,16,43,44. Since the spin
liquid is destroyed by finite � and just a remnant of the
non–topological � = 0 case, we omit the phase here for
clarity. Also for the strong coupling analysis in this paper
we will assume that we are deep in the strong coupling
regime where this intermediate coupling phenomenon is
irrelevant for our analysis.

B. Sodium iridate Hubbard model

Recently, Rüegg and Fiete have studied the SIH
model 33 governed by the Hamiltonian

HSI = hSI + H
I

. (5)

They used a Z2 slave–spin mean–field approach and pro-
posed an interesting phase diagram (Fig. 2b). It is simi-
lar to the KMH model, while there is an additional phase
for large SOC �̃ and large U , dubbed QSH? phase, which
presumably extends to the strong coupling regime. Note
that this is not a quantum spin Hall phase, but a topo-
logical liquid which is characterized by a four–fold de-
generacy on a torus, where the elementary excitations
are fractional particles obeying Abelian statistics. Re-
cently it was questioned, however, whether the employed
Z2 slave spin approach is justified.47 Also, within the Z2

slavespin approach one cannot find local moments such

as an antiferromagnetically ordered phase (AFM), but
instead obtains a valence bond solid (VBS) phase. In the
limit �̃ ! 0 it is obvious that one should find Neel or-
der instead and that the VBS order is an artifact of the
specific slave particle approach.

Regarding the values of U
c

(e.g. for � = �̃ = 0), one
should keep in mind that the microscopic U

c

⇠ 4.3 as
found within QMC 45 is understimated by slave rotor the-
ory (U

c

= 1.68) while it is overestimated by the slave spin
approach (U

c

⇠ 8) (Fig. 2).

IV. STRONG COUPLING LIMIT

We consider the limit of infinitely strong electron–
electron interactions. As a result, charge fluctuations
are frozen out and we obtain a pure spin Hamiltonian at
half filling. Most importantly, the complex next–nearest
neighbor spin orbit hoppings result in anisotropic and
more complicated second neighbor spin exchange terms
which we analyze in the following.

A. Kane–Mele spin model

Taking the limit U ! 1 of the Kane–Mele–Hubbard
model (4) results in the e↵ective spin model 13

HKM = J1

X
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S
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⇥�Sx

i

Sx

j

� Sy

i

Sy

j

+ Sz

i

Sz

j

⇤

(6)
where J1 = 4t2/U and J

�

= 4�2/U . The second neigh-
bor exchange term (indicated by ⌧ · �) acting merely
on individual, i.e. triangular sublattices partially frus-
trates the system. The XY -spin terms prefer ferromag-
netic order on the individual sublattices which is consis-
tent with antiferromagnetic order on the original honey-

4

AnCferromagneCc	mass	term:	the	same	sign	at	different	K	points.	
Topological	mass	term:	different	signs	at	K-points	
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AFM	and	topological	
mass	terms.	
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MagneCc	impuriCes	can	cause	spin-flip	
process	and	introduce	the	possibility	for	
backsca`ering.	

Spin	up	

Spin	down	

However,	in	the	presence	of	interacCon,	spontaneous	magneCzaCon	appears	in	the	
vicinity	of	resonant	sca`erers:		 3
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FIG. 2: Distibution of average spin. Color scale
corresponds to ⟨Sz⟩ at the site in the zero bare mass

limit.

verse temperature, M is the fermionic operator (inverse
fermionic Green’s function at a given configuration of
auxiliary field). We use its particular form [22]. In more
details (including issues with continuous limit δτ → 0) it
was discussed in Ref. [23]. The particle-hole symmetry
for graphene at neutrality point makes the integration
weight in (2) positive due to appearance of the squared
modulus of the determinant, thus, we have no fermionic
sign problem [24]. For both sets of inter-electron interac-
tion potentials, the action of the Hubbard-Stratonovich
field S [ϕx,n] is also a positive definite quadratic form.
Thus we generate configurations of ϕx,n by a Monte-
Carlo method and calculate physical quantities as av-
erages over the generated configurations. Here we follow
Refs. [21, 22, 25] and use so-called Φ-algorithm.

We used lattices with spatial sizes 18× 18, 24× 24 and
36 × 36 in order to study finite-size effects. We studied
lattice with 5 % adatoms (in the most of calculations),
scattered uniformly in the whole sample. Three differ-
ent temperatures were studied: T=0.5 eV (corresponds
to Nt = 20), T=0.125 eV (Nt = 80) and T=0.0625 eV
(Nt = 160). For all temperatures we generated config-
urations with four masses, for example in the case of
T=0.125 eV we used m = 0.05, 0.1, 0.15, 0.2 eV. Physical
results are obtained via extrapolation to zero mass. In
all calculations except energies of midgap states we use
“ordinary potentials”.

According to Lieb theorem for the Hubbard model
[2, 26] the ground state for the case of vacancies equally
distributed between two sublattices should be spin sin-
glet, and there are no physical reasons to expect that the
long-range character of Coulomb interactions can change
this conclusion. Keeping in mind that single vacancy or
adatom induces magnetic moment one should consider
opportunity of antiferromagnetic ordering at finite con-
centration (ferromagnetism is impossible). In this case
the order parameter is the difference in average spin be-
tween sublattices (denoted as A and B in the formula):

⟨∆n ⟩ = ⟨ 1
NA

∑

x∈A

(â†x,↑âx,↑−â†x,↓âx,↓)−
1

NB

∑

x∈B

(â†x,↑âx,↑−

â†x,↓âx,↓) ⟩, NA and NB are the overall number of sites in
A and B sublattice, respectively. The results are pre-
sented in Fig. 1a. In case of the highest temperature
(0.5 eV) the order parameter is equal to zero in the phys-
ical limit of zero bare mass disregarding the presence of
adatoms. Only at lower temperature (0.125 eV) the order
parameter acquires nonzero value in presence of adatoms
and remain almost stable with further decreasing of the
temperature (0.0625 eV). Fig. 1b presents the temper-
ature dependence of AFM order parameter. This calcu-
lation was also performed using one particular random
distribution of adatoms for each concentration. One can
clearly see a sharp transition at certain critical temper-
ature (Neel temperature). The results were fitted with
“step function” f(T ) = C(1 − tanh(b(T − a))), where
parameter a gives us the value of the critical tempera-
ture. Thus we have an estimation of effective antiferro-
magnetic coupling (for 1 % of defects) J ∼ 0.1 eV. This
value is two orders of magnitude larger than the one es-
timated from recent experimental data for vacancies in
graphene [27]. This is an important point showing that
probably exchange interaction is very sensitive to real
electronic srtucture (we mentioned in the introduction
that for the real vacancies it is very strongly affected by
atomic reconstruction) and that the use of the simplest
one-band tight-binding model instead of full-electron cal-
culations can be dangerous for the problems related to
magnetism. Recent density functional calculations of ex-
change interactions in single-site hydrogenated or fluo-
rinated graphene [28] predict complicated noncollinear
magnetic ground states, in a sharp contrast with predic-
tions of Lieb theorem for the single-band model (satu-
rated ferromagnetism). This issue requires further inves-
tigations.

Spatial distribution of electron spin density is pre-
sented in Fig. 2. It represents the quantity fx =
⟨â†x,↑âx,↑⟩ at each lattice site. Since the particle-hole sym-

metry is unbroken, the equality ⟨â†x,↑âx,↑⟩+⟨â†x,↓âx,↓⟩ = 1
is satisfied exactly for each lattice site. It means that re-
gions with positive fx have non-compensated spin up and
negative fx corresponds to non-compensated spin down.
It is clearly seen that antiferromagnetic order is gener-
ated in the vicinity of adatoms. Moreover, one isolated
adatom has nonzero average spin (see the first row in
the table I). This spins tend to be parallel for adatoms
at one sublattice and antiparallel for adatoms at differ-
ent sublattices. If adatoms are placed equivalently at
both sublattices, they generate the same spin excess at
both sublattices and thus the full spin will be close to
zero. This means that, indeed, the statement of the Lieb
theorem [26] remains correct in the case of long-range
Coulomb interaction. More detailed description of spin-
spin correlations including explicit evidence of sponta-
neous breaking of SU(2) spin symmetry is presented in
supplementary material.

In order to characterize the correlation between

Example	calculaCon	for	graphene	[PRL	114,	246801]		
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FIG. 1: (Color Online) LDOS plots showing the low energy resonance(s) near (A) the scalar/potential impurity, (B) the z-
polarized and (C,D) the x-polarized magnetic impurities. (C) and (D) show the x-spin projected LDOS, at a point on the x

and y-axis respectively. Note from (C) that on the x-axis, the negative energy states have excess states with spins parallel to
the x-polarized impurity. In all these cases, U = 100, r = 20. In the system of units used above, ~, vF and W are unity.

of the potential and classical types respectively:

V̂

pot

= U I�(r̂), V̂
mag

= US · ��(r̂) (3)

For the magnetic case we have assumed a local Heisen-
berg exchange J between the band electrons and the im-
purity spin S, whose direction is given by the unit vector
S. Thus, U = JS/2 in V̂

mag

.
To address the e↵ect of impurity scattering we use the

T-matrix technique1. The T-matrix is defined via:

T̂ (!) = V̂ + V̂ Ĝ

ret

0

(!)T̂ (!) (4)

where G

ret

0

is the retarded Green’s function for the
impurity-free material and ! is the energy. For ! ⌧ 1
and ⇢ � 1/W (⇢ ⌘ r � r0), it has the following form:

hr |Gret
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+ s(!)J
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and |!|⇢ is the argument of the Bessel functions J
0/1 and

Y

0/1. Also, s(·) ⌘ sgn(·) and ✓ ⌘ ⇥(1�|!|). We shall also
require the unperturbed on-site Green’s function valid for
short distances . 1:

G
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(!)) I, where

g

0

(!) =
!

4⇡
ln

����
1

!

2

� 1

���� , g1(!) =
|!|
4
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In (3), we have used a local form for the impurity po-
tential hr|V̂ |r0i = V �(r)�(r0), where V is a 2⇥ 2 matrix
in spin-space. The T-matrix also becomes hr|T̂ |r0i =
T �(r)�(r0), with T satisfying the following equation

T = V+ VG
0

T = (I� VG
0

)�1 V (8)

From the algebraic relations involving (3), (7) and (8),
we analytically calculate the T-matrix, the full Green’s
function Ĝ

ret,

Ĝ

ret(!) = Ĝ
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(!) (9)

the full (spin-unresolved) LDOS,

⇢(r,!) = � 1

⇡

ImTr
D
r
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��� r
E
, (10)

the local density of spin up/down states (in direction µ),
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and the energy-resolved spin density averages:
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III. RESULTS

For the scalar and magnetic impurity cases, we find
that the additional GTG ⌘ �G pieces in the Green’s
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