Topologically protected states in 2D and 3D: spin-momentum and valleymomentum locking mechanism

The General Scheme

The Berry phase and the Berry Connection
The Chern Number

Chern topological insulators (Haldane's model)

Z_{2} topological insulators (Kane-Mele model)

3D topological topological insulators, different locking mechanisms, etc.

The Berry phase

The phase factor collected after the walk through the closed path in parameter space:

$$
|\psi\rangle \rightarrow e^{i \gamma}|\psi\rangle
$$

Adiabatic change of parameter:

$$
i \hbar \frac{\partial|\psi\rangle}{\partial t}=H(\lambda(t))|\psi\rangle
$$

$$
|\psi(t)\rangle=U(t)|n(\lambda(t))\rangle
$$

$$
H(\lambda)|n(\lambda)\rangle=0
$$

The final phase factor:

$$
e^{-i \int d t E(t) / \hbar}
$$

$$
\begin{gathered}
\mathcal{A}_{i}(\lambda)=-i\langle n| \frac{\partial}{\partial \lambda^{i}}|n\rangle \\
e^{i \gamma}=\exp \left(-i \oint_{C} \mathcal{A}_{i}(\lambda) d \lambda^{i}\right)
\end{gathered}
$$

The Berry connection

"Gauge invariance" due to phase factors in basis functions :

$$
\begin{gathered}
\left|n^{\prime}(\lambda)\right\rangle=e^{i \omega(\lambda)}|n(\lambda)\rangle \\
\mathcal{A}_{i}^{\prime}=-i\left\langle n^{\prime}\right| \frac{\partial}{\partial \lambda^{i}}\left|n^{\prime}\right\rangle=\mathcal{A}_{i}+\frac{\partial \omega}{\partial \lambda^{i}}
\end{gathered}
$$

The Berry curvature (gauge invariant quantity):

$$
\begin{gathered}
\mathcal{F}_{i j}(\lambda)=\frac{\partial \mathcal{A}_{i}}{\partial \lambda^{j}}-\frac{\partial \mathcal{A}_{j}}{\partial \lambda^{i}} \\
e^{i \gamma}=\exp \left(-i \oint_{C} \mathcal{A}_{i}(\lambda) d \lambda^{i}\right)=\exp \left(-i \int_{S} \mathcal{F}_{i j} d S^{i j}\right)
\end{gathered}
$$

Example: spin in magnetic field

Example calculation of the Berry curvature for spin-1/2 in external magnetic field. Parameters $=$ magnetic field components.

$$
\begin{gathered}
H=-\vec{B} \cdot \vec{\sigma} \\
H=-B\left(\begin{array}{cc}
\cos \theta-1 & e^{-i \phi} \sin \theta \\
e^{+i \phi} \sin \theta & -\cos \theta-1
\end{array}\right) \\
|\downarrow\rangle=\binom{e^{-i \phi} \sin \theta / 2}{-\cos \theta / 2} \text { and }|\uparrow\rangle=\binom{e^{-i \phi} \cos \theta / 2}{\sin \theta / 2}
\end{gathered}
$$

Berry curvature computed for the filled (spin-down) band:

$$
\mathcal{F}_{i j}(\vec{B})=-\epsilon_{i j k} \frac{B^{k}}{2|\vec{B}|^{3}}
$$

The Chern number

$$
e^{i \gamma}=\exp \left(-i \int_{S} \mathcal{F}_{i j} d S^{i j}\right)=\exp \left(\frac{i \Omega}{2}\right)
$$

Two variants of calculation should coincide

$$
\int \mathcal{F}_{i j} d S^{i j}=2 \pi C
$$

The Chern number, $\mathrm{C}=0,+-1,+-2 \ldots$

$$
e^{i \gamma^{\prime}}=\exp \left(-i \int_{S^{\prime}} \mathcal{F}_{i j} d S^{i j}\right)=\exp \left(\frac{-i(4 \pi-\Omega)}{2}\right)=e^{i \gamma}
$$

The Chern number in momentum space

Momentum components as parameters:

Chern topological insulator (2D Haldane's model)

The model is written on hexagonal lattice:

Hamiltonian for spinless fermions:

$$
\hat{H}=t \sum_{\langle i, j\rangle}|i\rangle\langle j|+t_{2} \sum_{\langle i, j\rangle\rangle}|i\rangle\langle j|+M\left[\sum_{i \in A}|i\rangle\langle i|-\sum_{j \in B}|j\rangle\langle j|\right]
$$

Peierls substitution: $\quad t_{i j} \rightarrow t_{i j} \exp \left(-\mathrm{i} \frac{\mathrm{e}}{\hbar} \int_{\Gamma_{i j}} \vec{A} \cdot \mathrm{~d} \vec{\ell}\right)$

$$
t \rightarrow t \quad \text { and } \quad t_{2} \rightarrow t_{2} \mathrm{e}^{\mathrm{i} \phi}
$$

Finally in momentum space:

$$
\begin{aligned}
& \mathcal{H}(k)=h^{\mu}(k) \sigma_{\mu} \\
& \vec{h}\left(k+G_{m n}\right)=\vec{h}(k)
\end{aligned}
$$

Chern topological insulator (2D Haldane's model)

Phase diagram:

Edge states in the Chern topological insulator

Connection between mass gap and the Chern number

Calculation through the intersection number

$$
c_{1}=\frac{1}{2} \sum_{k \in D} \operatorname{sign}[h(k) \cdot n(k)] \quad n(k) \text {-normal vector to } \Sigma
$$

We choose z-direction: $\quad h_{x}(k)=h_{y}(k)=0$
k at K-points

$$
m=h_{z}(K)=M-3 \sqrt{3} t_{2} \sin \phi
$$

Masses:

$$
m^{\prime}=h_{z}\left(K^{\prime}\right)=M+3 \sqrt{3} t_{2} \sin \phi
$$

Chern number:

$$
c_{1}=\left(\operatorname{sign} m-\operatorname{sign} m^{\prime}\right) / 2
$$

Edge states in the Chern topological insulator

Linearized Hamiltonian near the K-point (mass should change the sign at the border):

$$
H_{1}=-\mathrm{i} \nabla \cdot \sigma_{2 \mathrm{~d}}+m(y) \sigma_{z}=\left(\begin{array}{cc}
m(y) & -\mathrm{i} \partial_{x}-\partial_{y} \\
-\mathrm{i} \partial_{x}+\partial_{y} & -m(y)
\end{array}\right)
$$

Single edge mode with linear dispersion:

$$
\psi_{q_{x}}(x, y) \propto \mathrm{e}^{\mathrm{i} q_{x} x} \exp \left[-\int_{0}^{y} m\left(y^{\prime}\right) \mathrm{d} y^{\prime}\right]\binom{1}{1} \quad E\left(q_{x}\right)=E_{\mathrm{F}}+\hbar v_{\mathrm{F}} q_{x}
$$

Time-reversal invariance is broken

Z_{2} Topological insulator

Appears in time-reversal invariant system with spin-orbital coupling

$$
\begin{gathered}
\Theta=\mathrm{e}^{-\mathrm{i} \pi J_{y} / \hbar} \mathcal{K} \\
\Theta^{2}=-\mathbb{1} \\
H(-k)=\Theta H(k) \Theta^{-1}
\end{gathered}
$$

Kramers pairs:

$$
\Theta\left|u_{1}(k)\right\rangle=\left|u_{2}(-k)\right\rangle
$$

Chern Number always vanishes: $F_{\alpha}(k)=-F_{\alpha}(-k)$
Time-Reversal Invariant Momenta (TRIM):

Z_{2} Topological insulator

Reduction to 1D integrals:

Chern insulator

$$
\begin{aligned}
& 2 \pi Z=-\int_{0}^{2 \pi} \int_{0}^{2 \pi} d k_{x} d k_{y}\left(\partial_{x} A_{y}-\partial_{y} A_{x}\right) \\
&= \int_{0}^{2 \pi} d k_{y} \partial_{y}\left(\int_{0}^{2 \pi} d k_{x} A_{x}\left(k_{x}, k_{y}\right)\right) \\
&= \int_{0}^{2 \pi} d \theta\left(k_{y}\right) . \\
& \theta\left(k_{y}\right)=\int_{0}^{2 \pi} d k_{x} A_{x}
\end{aligned}
$$

guarantees the intersection at TRIM
Z_{2} insulator:
New topological invariant:

$$
|Z| \bmod 2
$$

Can be computed from the eigenstates at TRIM

The Kane-Mele model

Hexagonal lattice:

The basis

$(A \uparrow, A \downarrow, B \uparrow, B \downarrow)$ $H(k)=d_{0}(k) \mathbb{1}+\sum_{i=1}^{5} d_{i}(k) \Gamma_{i} \quad E_{ \pm}(k)=d_{0}(k) \pm \sqrt{\sum_{i=1}^{5} d_{i}^{2}(k)}$

$$
\Gamma_{1}=\mathcal{P}=\sigma_{x} \otimes \mathbb{1} \quad \Gamma_{2}=\sigma_{y} \otimes \mathbb{1} \quad \Gamma_{3}=\sigma_{z} \otimes s_{x} \quad \Gamma_{4}=\sigma_{z} \otimes s_{y} \quad \Gamma_{5}=\sigma_{z} \otimes s_{z}
$$

z_{2} topological invariant: $\prod_{\lambda \in \Lambda} \operatorname{sign} d_{1}(\lambda)$ All d_{i} except d_{1} vanish at TRIM

Edge states in Kane-Mele model: spin-momentum locking

Topological insulator, where only $\mathrm{d}_{1}\left(\lambda_{0}\right)$ is negative

Trivial insulator, where all d_{i} are positive

$$
y=0
$$

Hamiltonian at the border: $\quad H_{1}(q)=q_{x} \Gamma_{5}-q_{y} \Gamma_{2}+m(y) \Gamma_{1}$

$$
H_{l}=\left(\begin{array}{cc}
H_{\uparrow} & 0 \\
0 & H_{\downarrow}
\end{array}\right) \quad H_{\uparrow}=\left(\begin{array}{cc}
-\mathrm{i} \partial_{x} & m(y)+\partial_{y} \\
m(y)-\partial_{y} & \mathrm{i} \partial_{x}
\end{array}\right) \quad H_{\downarrow}=\left(\begin{array}{cc}
+\mathrm{i} \partial_{x} & m(y)+\partial_{y} \\
m(y)-\partial_{y} & \mathrm{i} \partial_{x}
\end{array}\right)
$$

$\psi_{q_{x}, \mathrm{l}}(x, y) \propto \mathrm{e}^{-\mathrm{i} \mathrm{i}_{x} x} \exp \left[-\int_{0}^{y} m\left(y^{\prime}\right) \mathrm{d} y^{\prime}\right]\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) \quad \psi_{q_{x}, t}(x, y) \propto \mathrm{e}^{+\mathrm{i} q_{x} x} \exp \left[-\int_{0}^{y} m\left(y^{\prime}\right) \mathrm{d} y^{\prime}\right]\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$

3D topological insulators

Weak topological insulators: $v_{x}, v_{y}, v_{z}-$ separate Z_{2} topological invariants; each of them can be computed as corresponding $2 \mathrm{D} \mathrm{Z}_{2}$ invariant in $\mathrm{k}_{\mathrm{x}}=\pi, \mathrm{k}_{\mathrm{y}}=\pi, \mathrm{k}_{\mathrm{z}}=\pi$ planes correspondingly.

Strong topological insulators: new Z_{2} invariant $v_{0}=0,1$.
Here two planes should be taken into account: $\mathrm{k}_{\mathrm{x}}=0, \pi$ or $\mathrm{k}_{\mathrm{y}}=0, \pi$ or $\mathrm{k}_{\mathrm{z}}=0$, π. If usual Z_{2} invariants are different in those planes, $v_{0}=1$ otherwise $v_{0}=0$.

3D topological insulators

Cubic lattice: $\mathrm{Bi}_{2} \mathrm{Se}_{3}$.
Can be described by lattice Wilson fermions (with slightly unconventional parameters)

$$
\begin{gathered}
\mathcal{H}_{0}(\boldsymbol{k})=\sum_{j} \sin k_{j} \cdot \alpha_{j}+m(\boldsymbol{k}) \beta \\
m(\boldsymbol{k})=m_{0}+r \sum_{j}\left(1-\cos k_{j}\right) \\
\alpha_{j}=\left[\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right], \quad \beta=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{gathered}
$$

The system is topologically non-trivial (strong $Z_{2} \mathrm{TI}$) if:

$$
\begin{aligned}
& 0>m_{0}>-2 r \\
& -4 r>m_{0}>-6 r
\end{aligned}
$$

Topological properties are defined by the sign of $m(k)$ at TRIM

Can be modeled with lattice QCD algorithms without sign problem!

3D topological insulators

Diamond lattice:

Spin-orbital coupling

$$
H_{0}=\sum_{\langle i, j\rangle, \sigma}\left(t+\delta t_{i j}\right) c_{i \sigma}^{\dagger} c_{j \sigma}+\frac{4 i \lambda}{a_{\langle\langle i, j\rangle\rangle, \sigma \sigma^{\prime}}^{2}} \sum_{i \sigma^{\prime}}^{\dagger} \mathbf{s} \cdot\left(\mathbf{d}_{i j}^{1} \times \mathbf{d}_{i j}^{2}\right) c_{j \sigma^{\prime}}
$$

Nearest-neighbor hoppings are modified in one direction

Engineering the topological state

$$
\begin{gathered}
H=H_{g}+H_{a}+H_{c}, \\
H_{g}=H_{t}-\delta \mu \sum_{j=1}^{6} c_{\mathbf{r}_{j}}^{\dagger} c_{\mathbf{r}_{j}}, \\
H_{a}=\sum_{m=0, \pm 1} \epsilon_{|m|} d_{m}^{\dagger} d_{m}+\Lambda_{\mathrm{so}}\left(d_{1}^{\dagger} s^{z} d_{1}-d_{-1}^{\dagger} s^{z} d_{-1}\right) \\
+\sqrt{2} \Lambda_{\mathrm{so}}^{\prime}\left(d_{0}^{\dagger} s^{-} d_{-1}+d_{0}^{\dagger} s^{+} d_{1}+\text { H.c. }\right) \\
H_{c}=-\sum_{m=0, \pm 1}\left(t_{|m|} C_{m}^{\dagger} d_{m}+\text { H.c. }\right)
\end{gathered}
$$

a)

In the first approximation can be modeled through local Kane-Mele SOC terms

Induces spin-orbit coupling

Engineering the topological state:

 clusterization of adatomsClusterization of adatoms destroy the topological state in a sense that the currents are concentrated not at the edges of the sample, but at the edge of the "islands" [PRL 113, 246603].

FIG. 3 (color online). Spin-resolved spectral current distribution for $r=0.5 \mathrm{~nm}$ and $E=-33.5 \mathrm{meV}$ (a),(b); $r=1.5 \mathrm{~nm}$ and $E=21.5 \mathrm{meV}$ (c),(d); and $r=2 \mathrm{~nm}$ and $E=-33.5 \mathrm{meV}$ (e),(f). The corresponding energies and conductance are indicated by black dots in Fig. 2. The insets in panels (c)-(f) illustrate the local average current distribution in the regions indicated by the squares.

Valley-momentum locking (1)

Hopping distribution
Hamiltonian:

$$
\begin{gathered}
H=-\sum_{\boldsymbol{r}} \sum_{\ell=1}^{3} t_{\boldsymbol{r}, \ell} a_{\boldsymbol{r}}^{\dagger} b_{\boldsymbol{r}+\boldsymbol{s}_{\ell}}+\text { H.c. } \\
t_{\boldsymbol{r}, \ell} / t_{0}=1+2 \operatorname{Re}\left[\Delta e^{i\left(p \boldsymbol{K}_{+}+q \boldsymbol{K}_{-}\right) \cdot \boldsymbol{s}_{\ell}+i \boldsymbol{G} \cdot \boldsymbol{r}}\right] \\
\boldsymbol{G} \equiv \boldsymbol{K}_{+}-\boldsymbol{K}_{-}=\frac{4}{9} \pi \sqrt{3}(1,0)
\end{gathered}
$$

Low energy effective theory in the vicinity of superlattice K-points:

$$
\mathcal{H}=v_{\sigma}(\boldsymbol{p} \cdot \boldsymbol{\sigma}) \otimes \tau_{0}+v_{\tau} \sigma_{0} \otimes(\boldsymbol{p} \cdot \boldsymbol{\tau})
$$

τ acts in valley space and plays the role of spin.

Valley-momentum locking (2)

Scientific Reports, 6, 24347

Hoppings distribution

Effective Wannier functions within the supercell

Different valleys correspond now to different orbital momentum within the supercell

Stability of TIs with respect to interaction effects

Kane-Mele-Hubbard model:

$$
\begin{gathered}
h_{\mathrm{KM}}=-t \sum_{\langle i j\rangle \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+i \lambda \sum_{\ll i j \gg} \sum_{\alpha \beta} \nu_{i j} c_{i \alpha}^{\dagger} \sigma_{\alpha \beta}^{z} c_{j \beta} \\
H_{I}=U \sum_{i} n_{i \uparrow} n_{i \downarrow}
\end{gathered}
$$

Competition between AFM and topological mass terms.
arXiv:1206.3103

Antiferromagnetic mass term: the same sign at different K points. Topological mass term: different signs at K-points

Stability of TIs with respect to disorder

However, in the presence of interaction, spontaneous magnetization appears in the vicinity of resonant scatterers:

Example calculation for graphene [PRL 114, 246801]

FIG. 2: Distibution of average spin. Color scale corresponds to $\left\langle S_{z}\right\rangle$ at the site in the zero bare mass limit.

Stability of TIs with respect to disorder

The same effect also exists for Tis [arXiv:0910.4604]

