Topologically protected states in 2D
and 3D: spin-momentum and valley-
momentum locking mechanism

Maksim Ulybyshev, University of Regensburg



The General Scheme

The Berry phase and the Berry Connection

The Chern Number

Chern topological insulators (Haldane’s model)

Z, topological insulators (Kane-Mele model)

3D topological topological insulators, different
locking mechanisms, etc.



The Berry phase

The phase factor collected after the walk through the closed path in parameter space:
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Adiabatic change of parameter:
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The Berry connection

“Gauge invariance” due to phase factors in basis functions :
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The Berry curvature (gauge invariant quantity):
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Example: spin in magnetic field

Example calculation of the Berry curvature for spin-1/2 in external magnetic field.
Parameters = magnetic field components.
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Berry curvature computed for the filled (spin-down) band:
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The Chern number

&a’ Two variants of calculation should coincide
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The Chern number, C=0,+-1, +-2....
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The Chern number in momentum space

Momentum components as parameters:
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Chern topological insulator (2D Haldane’s model)

The model is written on hexagonal lattice:
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Hamiltonian for spinless fermions:
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Finally in momentum space: H(k) = hu(k)o-“
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Chern topological insulator (2D Haldane’s model)

Phase diagram: Metal on the border between two
M/tg distinct insulating phases




Edge states in the Chern topological insulator

Connection between mass gap and the Chern number
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Calculation through the intersection number
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We choose z-direction: hx(k) — hy(k) =0 k at K-points
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Edge states in the Chern topological insulator

Linearized Hamiltonian near the K-point (mass should change the sign at the border):

m(y) —id, — 3y)

H =—-iV -0y +m(y)o, = (_iax +d, -—m(y)

Single edge mode with linear dispersion:
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Time-reversal invariance is broken



Z, Topological insulator

Appears in time-reversal invariant system with spin-orbital coupling
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Chern Number always vanishes: F,(k) = —F,(—k)
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Z, Topological insulator

Reduction to 1D integrals: 217 = —jj”jj”dkxdky(axAy -9,4,)
= jf dkyay(j;z d A, (k,,k,))
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guarantees the intersection at TRIM

Z, insulator:
New topological invariant:

|Z] mod 2

Can be computed from the eigenstates at TRIM




The Kane-Mele model

Hexagonal lattice:

Spin-Orbital coupling
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Edge states in Kane-Mele model:
spin-momentum locking

Topological insulator, Trivial insulator,

where only d; (A,) is negative | I where all d. are positive
- Spinup Spin down -
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3D topological insulators

Weak topological insulators: v,,v,, v, — separate Z, topological invariants;
each of them can be computed as corresponding 2D Z, invariant in k=, k =, k=1t
planes correspondingly.

Strong topological insulators: new Z, invariant v,=0,1.
Here two planes should be taken into account: k=0, 1t or ky=0, ror k,=0, m. If usual
Z, invariants are different in those planes, v,=1 otherwise v,=0.



3D topological insulators

Cubic lattice: Bi,Se;
Can be described by lattice Wilson fermions (with slightly unconventional parameters)

Ho(k) = Zj sink; - a; +m(k)p

m(k) = m0+rzj_(1 — COHSkj)
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The system is topologically non-trivial (strong Z, Tl) if:

0>mg > —2r
—4r > mg > —0r

Topological properties are defined by the sign of m(k) at TRIM

Can be modeled with lattice QCD algorithms without sign problem!



3D topological insulators

Diamond lattice:

Spin-orbital coupling

43\ 1
HO = Z(t + (5?57;3')6;[00]'0 + ? C;-LUS . (d’b] X dgj)ng/
(i,5),0 x ((i.)),00"

Nearest-neighbor hoppings are modified in one direction



Engineering the topological state

H=H,+H,+H,
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H.=— Z (l‘|m|C,];1dm + H.c.),
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In the first approximation can be modeled
through local Kane-Mele SOC terms

Induces spin-orbit
coupling

PRX, 1, 021001



Engineering the topological state:

clusterization of adatoms

Clusterization of adatoms destroy the
topological state in a sense that the
currents are concentrated not at the
edges of the sample, but at the edge of
the “islands” [PRL 113, 246603].
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FIG. 3 (color online). Spin-resolved spectral current distribu-
tion for r = 0.5 nm and E = —33.5 meV (a),(b); » = 1.5 nm
and £ = 21.5 meV (¢),(d); and »r =2 nm and £ = —33.5 meV
(e),(f). The corresponding energies and conductance are indicated
by black dots in Fig. 2. The insets in panels (c)—(f) illustrate
the local average current distribution in the regions indicated by
the squares.



Valley-momentum locking (1)

Hopping distribution
Hamiltonian:

H=-%,>)_trealb, . +He.

tro/to = 1+ 2Re [Ae/PK+HaK-)setiGr]

G=K,—-K_=32rV3(1,0)

Low energy effective theory in the vicinity of superlattice K-points:

H=v,(p-0)R70+vr00R (p-T)
T acts in valley space and plays the role of spin.

arXiv:1708.08348



Valley-momentum locking (2)

Scientific Reports, 6, 24347

Hoppings distribution

B _y2) . . . . .
"”‘) v Effective Wannier functions within
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Different valleys correspond now to different orbital
momentum within the supercell

pseudospin down



Stability of Tls with respect to interaction effects

Kane-Mele-Hubbard model:

hkm = —t Z Cq]jLona + 1A Z Z VijCzTaUZBCjB
(ij)o <Lij> af

H[ = UZnian

Competition between
AFM and topological
mass terms.
arXiv:1206.3103
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Antiferromagnetic mass term: the same sign at different K points.
Topological mass term: different signs at K-points



Stability of Tls with respect to disorder

Spin down

Magnetic impurities can cause spin-flip
process and introduce the possibility for
backscattering.

Spin up

However, in the presence of interaction, spontaneous magnetization appears in the
vicinity of resonant scatterers:

FIG. 2: Distibution of average spin. Color scale
corresponds to (S.) at the site in the zero bare mass

Example calculation for graphene [PRL 114, 246801] limit.



Stability of Tls with respect to disorder
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The same effect also exists for Tis [arXiv:0910.4604]



