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Graphene: spatial structure
Graphene is a 2-dimensional 
honeycomb lattice of carbon atoms:

Each carbon atom has 3 valent 
electrons. 3 of them form 
chemical bonds between atoms 
(σ-orbitals), another one forms π-
orbital (sp3 - hybridization)



  

Graphene: electronic properties
There can only be a maximum of two electrons on the  π-orbital. 
Graphen at «half-filling» (zero chemical potential): the number of 
electrons on π-orbitals is equal to the number of atoms. 

Therefore, electrons on π-orbitals can easily move from one atom to the 
neighbouring one thus determine the electronic properties of graphene.

Dispersion relation:

Dirac cones appear at the 2 non-
equivalent points within the Brillouine 
zone. So, low-energy excitations can 
be described as 2 flavours of 4-
component massless Dirac fermions.

Graphene is a semi-metal: Fermi 
surface is reduced to the «Fermi-
points»



Dirac fermions
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Near the К-points:



Dirac fermions



  

Low-energy effective field model

Fermi velocity νF =1/300c  plays the role of the speed of light for the 
fermionic fields .  
The Fine Structure Constant for graphene in vacuum:  α = 300/127 ~ 2. 

Low energy effective field model is a quantum field theory with very 
strong interaction.

Another consequence of the small νF/c ratio: we can neglect the 
retardation and take into account only electrical field. After it the action 
takes the form:

The action:
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Coulomb interaction in graphene

The strength of the Coulomb interaction in graphene can be controlled 
by the surrounding media or a substrate under the graphene sheet. In 
case of a substrate with dielectric permittivity ε the value of the effective 
Fine Structure constant is

αε =2α/(ε+1)

Therefore, it is possible to study the effective field theory experimentally 
both in strong-coupling and in small-coupling regime. The smaller the 
dielectric permittivity of the substrate, the larger is the effective coupling 
constant. The strongest interaction can be observed in the free 
graphene in vacuum.



Chiral symmetry breaking in graphene

Symmetry group of the low-energy theory is U(4). Various channels of 
the symmetry breaking are possible. Two of them are studied at the 
moment. They correspond to 2 different nonzero condensates:

                    -  antifferromagnetic condensate
                    
                    -  excitonic condensate

From microscopic point of view, these situations correspond to 
different spatial ordering of the electrons in graphene.

Antiferromagnetic condensate 
corresponds to opposite spin of 
electrons on different sublattices
Excitonic condensate indicates 
opposite charges on sublattices



Chiral symmetry breaking in 
graphene: analytical study

1) E. V. Gorbar et. al., Phys. Rev. B 66 (2002), 045108. 
αс = 1,47 

2) O. V. Gamayun et. al., Phys. Rev. B  81 (2010), 075429.
αс = 0,92 

3), 4)..... reported results in the region αс = 0,7...3,0

D. T. Son, Phys. Rev. B 75 (2007) 235423: large-N analysis:



Lattice formulation of the effective 
field model: gauge field
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Noncompact lattice 
electrodynamics:



Lattice formulation of the effective 
field model: fermionic field

«Naive» lattice fermionic action (preserves chiral symmetry):
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The main problem: «Doublers» - this action describes in 
fact 16 fermionic fields in 3+1 space-time and 8 fermionic 
fields in 2+1 space-time

It is a well-known contradiction between preservation of the 
chiral symmetry and elimination of doublers (Nielsen-
Ninomiya theorem)



Lattice formulation of the effective 
field model: fermionic field

Common solution in graphene simulations is so-called 
staggered fermions:
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These action has only 2 doublers (which correspond to 2 
flavours of the original continuous theory).
But:  in the limit m→0  we have only U(1)*U(1) symmetry 
instead of the U(4).
Therefore, it's possible to study only excitonic condensate 
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Lattice calculations

Functional integrals

Lattice formulation

Monte-Carlo calculation of the multiple integrals
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p(x) – probability 
distribution for the 
vector x.



Lattice calculations: fermionic 
determinant

Parition function:

Fermionic determinant in case of staggered fermions:



Excitonic condensate

P. V. Buividovich et. al., Phys. Rev. B 86 (2012), 045107.

Joaquín E. Drut, Timo A. Lähde, Phys. Rev. B 79, 165425 (2009)

All calculations were performed on the lattice with 204  sites



Excitonic condensate: finite volume 
effects

In the infinite volume limit the phase transition is shifted to ε ~ 2.
Finite-volume effects need more careful study!



Calculation on the conductivity
Current-current correlator:

Spectral function:

Linear response theory:



Conductivity

P. V. Buividovich et. al., Phys. Rev. B 86 (2012), 045107.



Conclusions
Electronic excitations in graphene in low-energy limit can be 

described as 2 flavours of massless Dirac fermions strongly interacting 
with each other by the Coulomb interaction. We can neglect retardation 
of the electromagnetic field

There are some predictions of the chiral phase transition in 
graphene with generation of the excitonic condensate. From 
microscopic point of view this condensate corresponds to the charge 
separation between sublattices. All theoretical predictions have been 
done within the effective low-energy theory. 

Analtycal predictions give conflicting results. Lattice calculations 
need more careful study of the finite-volume effects. In the infinite-
volume limit phase transirion seems to be around dielectric permittivity 
of a substrate ~2.



Graphene in magnetic field

External magnetic field causes increase of density of states  near the fermi-
point. It can potentially decrease the critical coupling constant.

A. H. Castro Neto,  Rev. Mod. Phys. 81, 109–162 (2009)



Graphene in magnetic field: 
analytical predictions

1) E. V. Gorbar et. al., Phys. Rev. B 66 (2002), 045108.
2) V. P. Gusynin, Phys. Rev. B 74, 195429 (2006)



«Artificial» magnetic field
N. Levy et. al., Science 329 (2010), 544



Graphene in magnetic field: 
lattice calculations

Excitonic condensate dependence on the coupling constant:

D. L. Boyda et. al., arXiv:1308.2814



Phase diagram of graphene in external magnetic 
field: comparison of lattice simulations and analytical 

results

Lattice calculations: Analytical theory:

D. L. Boyda et. al., arXiv:1308.2814 V. P. Gusynin, Phys. Rev. B 74, 
195429 (2006)

Possible effect of retardation in 
polarization operator



Possible way to agreement between lattice and 
analytical calculations

Schwinger-Dyson equation for the fermionic propagator:

«Coulomb» propagator with loop corrections:

One-loop approximation:

Subtraction of the ω dependence:



Conclusions
Magnetic field shifts the phase transition to the lower values of critical 
coupling constant. But the required magentic field is too strong for the 
experiment. Nevertheless, it is still possible to observe this shift in the 
curved graphene sheets where artificial magnetic field appears.
Agreement between analytical predictions and lattice calculations is 
still insufficient. Possible ways to bring them together are twofold:

1) More accurate calculation of the polarization operator in the 
Schwinger-Dyson equation (namely, taking into account retardation 
effects in loop corrections).
2) Modification of lattice algorithms (better description of the chiral 
symmetry on the lattice, finite-size effects)



  

Graphene conductivity: theory and 
experiment

Experiment: D. C. Elias et. al., 
Nature Phys, 7, (2011), 701;

No evidence of the phase 
transition

Lattice calculations: phase 
transition at ε=4 



  

Tight-binding model on the 
honeycomb lattice

We start from the tight-binding hamiltonian on the original 
graphene honeycomb lattice:

where

 - creation operator for the electron at the site 
x with the spin s 



  

Interaction
Electric charge at site x:

Introduction of «electrons» and «holes»:

Interaction hamiltonian:

where

Full hamiltonian:
Tight-binding hamiltonian in terms of 

«electrons» and «holes»:



  

Converting to a form convenient for 
Monte-Carlo calclulations

Partition function:

Introduction of fermionic coherent states:

Using the following relations:



  

We arrive at  the following representation for 
partition function:

Where action for Hubbard field is simply the 
quadratic form:

and fermionic action:

and Hubbard-Stratonovich transformation:



  

Fermionic action and sign problem 
Lattice fermionic action:

Partition function:



  

Antiferromagnetic phase transition
Due to the sign problem, it's impossible to simulate appearance of 
the excitonic condensate on the honeycomb lattice. Only 
antiferromagnetic condensate is studied at the moment.

P. V. Buividovich, M. I. Polikarpov, Phys. Rev. B 86 (2012) 245117

Phase transition appears around ε ~ 2  in case of low temperatures. Free graphene is still in 
insulator phase.



  

Coulomb interaction at small 
distances

Electron-electron interaction potentials are in fact free 
phenomenological parameters of the theory, because they 
are under strong influence of additional factors (sigma-
orbitals, edges, etc.)  
We are interested especially in short-range interactions, 
because corrections at distances comparable to the lattice 
step seems to be the largest ones.

We tried to use the potentials calculated in the paper T. O. 
Wehling et al., Phys. Rev. Lett. 106, 236805 (2011), where   
σ-orbitals were taken into account.



  
«Screening» of Coulomb interaction at small distances

Comparison of the potentials



  

Supression of the condensate. Free graphene is 
still a conductor

M. V. Ulybyshev et. al., Phys. Rev. Lett. 111, 056801 (2013)



  

Comparison with the calculations on the honeycomb 
lattice with non-screened Coulomb interaction

P. V. Buividovich, M. I. Polikarpov, Phys. Rev. B 86 (2012) 245117



  

Phase transition appears only in the region of unphysical 
values of coupling constant (ε<1) 

M. V. Ulybyshev et. al., Phys. Rev. Lett. 111, 056801 (2013)

Very important point: recent calculations showed that 
antiferromagnetic phase transition is insensitive to the 
long-range interaction. It is caused only by short-range 
interactions.



  

Preliminary study of the excitonic phase 
transition on the honeycomb lattice

We can subtract hopping part of the hamiltonian and 
simulate simple statistical model:

We avoid sign problem because of the absence of the 
fermionic determinant in the action. In this simple model 
we can simulate spatial ordering of charge in graphene. 

O. V. Pavlovsky et. al. arXiv:1311.2420, talk presented at Lattice 2013



  

An example of the configuration of charges in the phase 
with broken sublattice (chiral) symmetry and nonzero 
excitonic condensate.



  

Phase diagram

We vary on-site interaction and temperature. All other potentials 
are constant and correspond to free graphene in vacuum
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Summary: phase transitions in graphene, 
current situation from lattice simulations

1) We are able to simulate excitonic phase transition in low-energy 
effective theory and antiferromagnetic phase transition on the 
original honeycomb lattice. 
2) Early simulations showed that both phase transitions appear 
around ε ~ 4. Now we understand that it's wrong! 
Antiferromagnetic phase transition is sensitive only to short-range 
interactions. Excitonic phase transition is sensitive both to short-
range and long-range interactions.
3) Antiferromagnetic phase transition appears only when short-
range interactions are ~1.5 times larger than in free graphene in 
vacuum.
4) Excitonic phase transition is still an open question. Simulations 
in effective field theory still show its existence at ε ~ 2. On-site 
interaction possibly suppress it to the unphysical region  ε < 1, but 
this fact needs more careful study using simulations on the 
honeycomb lattice


	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46

