Probing $\mathcal{N} = 4$ SYM rotating quark-gluon plasma using holography

Based on arXiv:2210:XXXXX

<u>Tsegelnik Nikita</u>, Golubtsova Anastasia November 9, 2022

Joint Institute for Nuclear Research tsegelnik@theor.jinr.ru

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	000000000000	000

Outline

- 1. Introduction
- 2. The setup
- 3. Heavy quark-qntiquark potential
- 4. Jet-quenching parameter
- 5. Summary

Introduction

oduction	The setup	Heavy quark-qntiquark potential
000		

Motivation

- QGP is the strongly interacting deconfined QCD matter
- The critical temperature in the non-rotating case at $\mu=0$ is $T_{\rm c}=150-170~{\rm MeV}$
- QCD at high T has a quasi-conformal behaviour $T_{\mu}^{\mu}\approx 0$ (Bazavov'14)
- The large initial orbital angular momentum of the ions is partially transferred to the medium, that leads to a non-vanishing averaged *vorticity* → *rotating* QGP
- A probe of the medium rotation is the *polarization of* Λ-*hyperons* (Abelev'07; Adamczyk'17; Becattini'13)

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	000000000000	000

The AdS/CFT conjecture

The conjecture

 $4d \ \mathcal{N} = 4$ SYM with SU(N) is dynamically equivalent to type IIB superstring theory(contains strings and D-branes) on $AdS_5 \times \mathbb{S}^5$ with a string length $\ell_s = \sqrt{\alpha'}$ and coupling constant g_s with the radius L and N units of $F_{(5)}$ flux on \mathbb{S}^5 .

$$g_{YM}^2 = 2\pi g_s, \quad 2g_{YM}^2 N = \frac{L^4}{{\alpha'}^2}, \quad \lambda = g_{YM}^2 N$$

Forms of the AdS_5/CFT_4 correspondence

	$\mathcal{N}=4$ SYM	IIB theory on $AdS_5 imes \mathbb{S}^5$
Strongest form	any N and λ	Quantum string theory, $g_s eq 0$, $lpha'/L^2 eq 0$
Strong form	$N ightarrow\infty$, λ fixed but arbitrary	Classical string theory, $g_s ightarrow 0$, $lpha'/L^2 eq 0$
Weak form	$N ightarrow \infty$, λ large	Classical supergravity, $g_s ightarrow 0$, $lpha'/L^2 ightarrow 0$

 $\frac{\text{Classical (super)strings in asymptotically }AdS_5 \text{ can predict results}}{\text{for strongly coupled 4d }\mathcal{N}=4 \text{ SYM with }SU(N), N \to \infty}$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
000●0	00000000	00000000000	000000000000	000

Holography at finite temperature

- Pure $AdS_5 \Leftrightarrow T = 0$ 4d $\mathcal{N} = 4$ SYM at strong coupling with SU(N) (Maldacena'97)
 - the isometry group SO(2,4) of AdS_5 is a symmetry group of the dual CFT
 - the field theory "lives" on the boundary of the gravity background
 - flat boundary \Leftrightarrow CFT on \mathbb{R}^4 ; spherical boundary \Leftrightarrow CFT on cylinder $\mathbb{R} \times \mathbb{S}^3$
- $AdS_5 \text{ BH} \Leftrightarrow thermal ensemble of \mathcal{N} = 4 \text{ SYM } SU(N) \text{ at strong coupling (Witten'98)}$
 - T of the <u>thermal ensemble</u> of CFT is identified with the Hawking temperature $T_{\rm H}$ of BH
 - The Hawking-Page phase transition in the BH = the first order phase transition in the dual theory
- $\mathcal{N} = 4$ SYM has 1 vector field + 4 spinor fields + 6 scalar fields

Sundborg'00: free $\mathcal{N} = 4$ SYM on $\mathbb{R} \times \mathbb{S}^3$ at $T \neq 0$ has a phase transition at the Hagedorn temperature (free energy on \mathbb{S}^3 at $N \to \infty, \lambda \to \infty$)

Harmark et al.'18'20: the Hagedorn temperature at any value of the 't Hooft coupling

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
0000●	00000000	00000000000	000000000000	000

Some results within AdS/CFT

- Shear viscosity bound for plasma $\frac{\eta}{s} = \frac{1}{4\pi}$ (Policastro/Kovtun, Son, Starinets'01/05)
- Second order transport coefficients (Son, Starinets'06; Herzog et.al.'07; Cherman'09; see review Aref'eva'14)
- Quark-antiquark potential (Maldacena'98; Sonnenschein et al.'98; Theisen'98; Kol, Sonnenschein'11; Chen, Hou'22)
- Parton energy losses in plasma (Sin, Zahed'05; Liu, Rajagopal, Wiedemann'06'07; Herzog'07; Ficnar, Gubser, Gyulassy'14; Rajagopal, Sadofyev'15; Golubtsova, Gourgoulhon, Usova'21)
- High-energy fixed-angle scattering of glueballs (Polchinski, Strassler'02)
- Chiral symmetry breaking and form factors (Gherghetta, Kapusta, Kelley'09)
- Meson mass spectra (Li, Huang, Yan'12)
- Heavy-ion collisions as shock waves (Grumiller, Romatschke'08)
- Initial conditions before hydro (Schee, Romatschke, Pratt'13)
- Holographic models of QCD (Erlich/Karch, Katz, Son, Stephanov'05/06; Aref'eva et al.'18'20)

The setup

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	O●000000	00000000000	000000000000	000

The gravity action:

 $\mathbb{R}^1 \times \mathbb{S}^3$ black holes

$$\mathcal{S} = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left(R_5 - 2\Lambda \right)$$

Solutions to Einstein equations with $\mathbb{S}^3\text{-symmetry:}$

- Schwarzschild-Anti-de Sitter black hole $(SAdS_5)$ with mass $M \Leftrightarrow$ non-rotating plasma
- Kerr-Anti-de Sitter black hole (Kerr-AdS₅) with mass M and angular momenta J_a , J_b \Leftrightarrow rotating plasma

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00●00000	00000000000	000000000000	000

Non-rotating black hole

Schwarzschild-AdS₅ (SAdS₅)

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{3}^{2}, \qquad d\Omega_{3}^{2} = d\theta^{2} + \sin^{2}\theta d\phi^{2} + \cos^{2}\theta d\psi^{2},$$
$$0 \le \theta \le \pi/2, \qquad 0 \le \phi, \psi \le 2\pi,$$
$$f(r) = 1 + \frac{r^{2}}{\ell^{2}} - \frac{2M}{r^{2}}, \qquad \Lambda = -\frac{6}{\ell^{2}}$$

The horizon r_h and Hawking temperature T_H are defined by the following expressions:

$$T_{\rm H} = \frac{f'(r)}{4\pi} \Big|_{r=r_h} = \frac{2r_h^2 + \ell^2}{2\pi r_h \ell^2}, \qquad \Rightarrow \qquad r_h = \frac{\ell^2}{2} \left(\pi T_{\rm H} \pm \sqrt{\pi^2 T_{\rm H}^2 - 2\ell^{-2}}\right),$$
$$f(r_h) = 1 + \frac{r_h^2}{\ell^2} - \frac{2M}{r_h^2} = 0 \qquad \Rightarrow \qquad M = \frac{r_h^2}{2} \left(1 + \frac{r_h^2}{\ell^2}\right)$$

	Introduction The set	etup Heavy quark-qntiquark	k potential Jet-quenching p 00000000	arameter Summary
--	----------------------	----------------------------	---	------------------

Rotating black hole

Asymptotic Kerr-AdS $_5$ metric in non-rotating at infinity frame¹

$$ds^{2} \simeq -(1+y^{2}\ell^{-2}) dT^{2} + \frac{2M}{\Delta^{3}y^{2}} \left(dT - a\sin^{2}\Theta d\Phi - b\cos^{2}\Theta d\Psi \right)^{2} + \frac{dy^{2}}{1+y^{2}\ell^{-2} - \frac{2M}{\Delta^{2}y^{2}}} + y^{2} \left(d\Theta^{2} + \sin^{2}\Theta d\Phi^{2} + \cos^{2}\Theta d\Psi^{2} \right),$$

$$\Delta = 1 - a^{2}\ell^{-2}\sin^{2}\Theta - b^{2}\ell^{-2}\cos^{2}\Theta \qquad \text{at } a=b=0 \text{ the same as SAdS}_{5}!$$

The horizon y_+ and Hawking temperature T_H of a stable *big BH*:

$$T_{\rm H} = \frac{1}{2\pi} \left(y_+ (1 + y_+^2 \ell^{-2}) \left(\frac{1}{y_+^2 + a^2} + \frac{1}{y_+^2 + b^2} \right) - \frac{1}{y_+} \right) \quad \Rightarrow \quad y_+ = y_+ (T_{\rm H}),$$

$$1 + \frac{y_+^2}{\ell^2} - \frac{2M}{\Delta^3 y_+^2} = 0 \qquad \Rightarrow \qquad M = \frac{\Delta^3 y_+^2}{2} \left(1 + \frac{y_+^2}{\ell^2} \right)$$

¹G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22, 1503 (2005)

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	0000●000	00000000000	000000000000	000

Conformal limit

• The physical temperature at the boundary is red-shifted via the Ehrenfest-Tolman effect:

$$T(y_0) = \frac{T_{\rm H}}{\sqrt{-G_{tt}(y_0)}} = \frac{T_{\rm H}}{\sqrt{1 + \frac{y_0^2}{\ell^2} - \frac{2M}{\Delta^3 y_0^2}}} = \frac{T_{\rm H}\ell}{\sqrt{y_0^2 - y_+^2}},$$

so rotation affect on the Hawking temperature $T_{\rm H}$ and horizon y_+ , but there is no dependence on spatial coordinates, in opposite to the approach², where rotation warms up the periphery. For a rotating at infinity frame, this is also true, since $G_{tt}^{\rm BL} \approx G_{tt}$ at $y \gg y_+$.

• At $y_0 \rightarrow \infty$ the Kerr-AdS₅ approaches the same limit as SAdS₅:

$$ds^2 \to \frac{y_0^2}{\ell^2} (-dt^2 + \ell^2 d\Omega_3),$$

so $T \to 0$ at the conformal boundary $y \to \infty$ (in both rotating and non-rotating frames).

² V.V. Braguta, A.Y. Kotov, D.D. Kuznedelev and A.A. Roenko, Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics, Phys. Rev. D **103** (2021) 094515

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000€00	00000000000	000000000000	000

Thermodynamics

• Angular momenta of a Kerr-AdS $_5$ BH in non-rotating frame³:

$$J_a = \frac{\pi M a}{2(1 - a^2 \ell^{-2})^2 (1 - b^2 \ell^{-2})}, \qquad J_b = \frac{\pi M b}{2(1 - b^2 \ell^{-2})^2 (1 - a^2 \ell^{-2})},$$

and corresponding angular velocities⁴:

$$\Omega_a = a \frac{1 + \ell^{-2} y_+^2}{y_+^2 + a^2}, \qquad \Omega_b = b \frac{1 + \ell^{-2} y_+^2}{y_+^2 + b^2}$$

• These definitions obey to the First law of thermodynamics:

$$dE = TdS + \Omega_a dJ_a + \Omega_b dJ_b$$

³G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22, 1503 (2005)

⁴The rotation parameters are limited by the condition $a, b \leq \ell$ and the case of $a = \ell$ ($b = \ell$) corresponds to the critical rotation, when the entropy diverges

Phase transition without rotation $(SAdS_5)$

Figure 1: The minimum temperature T_{min} at which the Schwarzschild-AdS₅ black hole solution exists, depending on the AdS radius ℓ . We can "tune" the temperature of the first-order phase transition via selection of ℓ .

$$\Lambda = -6/\ell^2$$

Figure 2: The Hawking temperature *T* dependence on the black hole horizon r_h . Below T_{\min} a BH solution doesn't exist, and we need to consider the thermal AdS₅ spacetime. The first-order phase transition occurs at $r_h > \ell$ and $T > T_c = 3/(2\pi\ell)$, when $\Delta F < 0$. A small BH (left branch) is not allowed as a stable equilibrium, due to $\Delta F > 0$. A big BH (right branch) is not globally stable, so decays to the thermal AdS₅.

11

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	0000000●	00000000000	000000000000	000

Phase transition in Kerr-AdS₅

Figure 3: Temperature dependence on the horizon, free energy vs. temperature and critical temperature vs. a at different values of b. The parameter $\ell = 1$, while the temperature is scaled by the factor 2.9 to restore units. The minimal critical temperature $T_{\text{CEP}} \approx 0.134 \text{ GeV}^5$.

⁵I.Ya. Aref'eva, A.A. Golubtsova, E. Gourgoulhon, Holographic drag force in 5d Kerr-AdS black hole, JHEP 04 (2021)

Heavy quark-qntiquark potential

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	0●000000000	00000000000	000

Holographic Wilson loop

•
$$d = 4 \mathcal{N} = 4$$
 SYM with $SU(N)$:

$$W(\mathcal{C}) = \frac{1}{N} \operatorname{Tr} \mathcal{P} \exp\left(\oint ds A_{\mu} \dot{x}^{\mu} + |\dot{x}^{i}| \Phi_{i} \theta^{i}\right)$$

• The AdS/CFT duality (*Maldacena*'98):

$$\langle W(\mathcal{C}) \rangle = e^{-S_{\mathrm{NG,min}} - S_0}$$

where the Nambu-Goto action of an open string in asymptotically AdS_5 is

$$S_{\rm NG} = \frac{1}{2\pi\alpha'} \int \mathrm{d}\sigma \mathrm{d}\tau \sqrt{-\det(g_{\alpha\beta})},$$

with the induced metric on the string worldsheet

$$g_{\alpha\beta} = G_{MN} \partial_{\alpha} X^M \partial_{\beta} X^N,$$

13

 G_{MN} - spacetime metric, X^M - embedding coordinates, α, β - indices on worldsheet Zarembo et al.'98; Gross et.al.'98: $\langle W \rangle |_{\lambda \to \infty} \sim e^{\sqrt{\lambda}}$ Sonnenschein et al.'98; Theisen'98: finite T holographic WL for "planar" AdS BH

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00●00000000	00000000000	000

Heavy quark-antiquark potential

• The interquark potential is related to the expectation value of the temporal Wilson loop:

$$\langle W(\mathcal{C}) \rangle \sim e^{-\mathcal{T}V(L)},$$

with the distance between quarks L and the temporal extent of the Wilson loop $\mathcal{T} \to \infty.$

• The quark-antiquark potential can be found in the following way:

$$V_{q\bar{q}} = \frac{S_{\rm NG}}{\mathcal{T}}|_{\mathcal{T}\to\infty}$$

• The Cornell potential is

$$V_{q\bar{q}} = \sigma L - \frac{\kappa}{L},$$

with σ and κ are the *string tension* and *Coulomb strength* parameters.

• In the confined phase the expectation value of the Wilson loop reproduces an area law

$$\langle W(\mathcal{C}) \rangle \sim e^{-\sigma LT} = e^{-\sigma \operatorname{Area}(\mathcal{C})}.$$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000		000000000000	000

Wilson loop configuration

 $\mbox{Kerr-AdS}_5$ in non-rotating at infinity frame

$$ds^{2} \simeq -(1+y^{2}\ell^{-2}) dT^{2} + \frac{2M}{\Delta^{3}y^{2}} \left(dT - a\sin^{2}\Theta d\Phi - b\cos^{2}\Theta d\Psi \right)^{2} + \frac{dy^{2}}{1+y^{2}\ell^{-2} - \frac{2M}{\Delta^{2}y^{2}}} + y^{2} \left(d\Theta^{2} + \sin^{2}\Theta d\Phi^{2} + \cos^{2}\Theta d\Psi^{2} \right), \qquad \Delta = 1 - a^{2}\ell^{-2}\sin^{2}\Theta - b^{2}\ell^{-2}\cos^{2}\Theta$$

The worldsheet parametrization:

$$\begin{aligned} \tau &= T, \qquad \sigma = \Phi, \\ y &= y(\Phi), \qquad \Phi \in [0, 2\pi L_{\Phi}] \end{aligned}$$

The boundary conditions:

$$y\left(-\frac{L_{\Phi}}{2}\right) = y\left(\frac{L_{\Phi}}{2}\right) = 0$$

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

At a = b = 0 the same as SAdS₅!

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	0000●000000	00000000000	000

Wilson loop calculation

• The Nambu-Goto action is

$$S_{\rm NG} = \frac{T}{2\pi\alpha'} \int_{-\frac{L_{\Phi}}{2}}^{\frac{L_{\Phi}}{2}} d\Phi \sqrt{y'^2 \frac{f_{\Delta^3}(y)}{f_{\Delta^2}(y)} + y^2 F_{\Delta^3}(y) \sin^2 \Theta},$$

where we define

$$f_{\Delta^2}(y) \equiv 1 + y^2 \ell^{-2} - \frac{2M}{\Delta^2 y^2}, \qquad f_{\Delta^3}(y) \equiv 1 + y^2 \ell^{-2} - \frac{2M}{\Delta^3 y^2},$$

$$F_{\Delta^3}(y) = f_{\Delta^3}(y) + \frac{2Ma^2 \sin^2 \Theta}{y^4 \Delta^3} \left(1 + y^2 \ell^{-2}\right).$$

• The integral of motion:

$$\mathcal{H} = -\frac{y^2 F_{\Delta^3}(y) \sin^2 \Theta}{\sqrt{y'^2 \frac{f_{\Delta^3}(y)}{f_{\Delta^2}(y)} + y^2 F_{\Delta^3}(y) \sin^2 \Theta}} = -\frac{\ell}{C}.$$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000●00000	00000000000	000

Wilson loop calculation

• The turning point is defined by $y'\big|_{\Phi=\Phi_{\rm m}}=\frac{dy}{d\Phi}\big|_{\Phi=\Phi_{\rm m}}=0$, so we have

$$-y\sin\Theta\sqrt{F_{\Delta^3}(y)}\Big|_{y=y_{\mathrm{m}}} = -\frac{\ell}{C}, \text{ with } y_{\mathrm{m}} = y(\Phi_{\mathrm{m}}).$$

• The equation of motion is

$$y'^{2} = y^{2} F_{\Delta^{3}}(y) \frac{f_{\Delta^{2}}(y)}{f_{\Delta^{3}}(y)} \sin^{2} \Theta \left[\frac{C^{2}}{\ell^{2}} \sin^{2} \Theta y^{2} F_{\Delta^{3}}(y) - 1 \right].$$

• The distance between quarks L_{Φ} :

$$\frac{L_{\Phi}}{2} = \int_0^{\Phi(\frac{L_{\Phi}}{2})} d\Phi = \int_{y_{\rm m}}^{\infty} dy \frac{\ell}{\sin\Theta y \sqrt{F_{\Delta^3}(y)} \sqrt{C^2 \sin^2\Theta y^2 F_{\Delta^3}(y) - \ell^2}} \sqrt{\frac{f_{\Delta^3}(y)}{f_{\Delta^2}(y)}}.$$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	000000●0000	000000000000	000

The holographic renormalization

 \bullet Coming to the integration in terms of y we obtain

$$S_{\rm NG} = \frac{T}{\pi \alpha'} \int_{y_{\rm m}}^{\infty} dy \, \frac{C \sin \Theta y \sqrt{F_{\Delta^3}(y)}}{\sqrt{C^2 \sin^2 \Theta y^2 F_{\Delta^3}(y) - \ell^2}} \sqrt{\frac{f_{\Delta^3}(y)}{f_{\Delta^2}(y)}}.$$

• The holographic renormalization

$$S_{\rm NG}^{\rm ren} = S_{\rm NG} - S_0$$

is a subtraction of the self-energy of two free quarks (straight strings from $y = \infty$ up to y_+)

$$S_0 = \frac{T}{\pi \alpha'} \int_{y_+}^{\infty} dy \sqrt{-G_{TT}G_{yy}} = \frac{T}{\pi \alpha'} \left(\int_{y_{\rm m}}^{\infty} + \int_{y_+}^{y_{\rm m}} \right) \sqrt{\frac{f_{\Delta^3}(y)}{f_{\Delta^2}(y)}} dy.$$

• The quark-antiquark potential $(\lambda = \frac{\ell^4}{\alpha'^2})$:

$$V_{q\bar{q}} = \frac{S_{\rm NG}^{\rm ren}}{T} = \frac{\sqrt{\lambda}}{\pi\ell^2} \left[\int_{y_{\rm m}}^{\infty} dy \sqrt{\frac{f_{\Delta^3}(y)}{f_{\Delta^2}(y)}} \left(\frac{C\sin\Theta y \sqrt{F_{\Delta^3}(y)}}{\sqrt{C^2\sin^2\Theta y^2 F_{\Delta^3}(y) - \ell^2}} - 1 \right) - \int_{y_+}^{y_{\rm m}} dy \sqrt{\frac{f_{\Delta^3}(y)}{f_{\Delta^2}(y)}} \right]$$

18

····· Τ_H=0.20GeV, θ=π/6

– – Τ_μ=0.30GeV, θ=π/12

- T_μ=0.20GeV. θ=π/12

T_μ=0.30GeV. *θ*=π/9

V_{qq} [GeV]

-2

ňΟ

 $1 - r_{\rm h}^4 / r_{\rm m}^4$

0.6

0.6

0.4

0.2

0.0 0.0

0.2

0.4

L [fm]

04

L [fm]

0.2

• With increasing of T or θ we receive smaller L and larger $V_{a\bar{a}}$!

1.0

• Upper branch is unphysical (quarks become free)

0.8

19

0.8

Schwarz-AdS₅

T^{min}=0.16GeV

Tc=0.17GeV

 $\lambda = 6\pi$

0.6

duction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter
DOO	00000000	00000000●00	000000000000

 $J \neq 0$

Figure 6: The distance L vs. turning point y_m

Figure 7: The potential $V_{q\bar{q}}$ vs. distance L

- Rotation leads to decreasing of L and increasing of $V_{q\bar{q}}$!
- The influence of the parameter b is stronger! due to string configuration on Φ

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	000000000●0	00000000000	000

The relation between $S_{\mathrm{NG}}^{\mathrm{ren}}$ and L_{Φ}

The relation between the string action and the quark-antiquark distance

$$S_{\rm NG}^{\rm ren} = \frac{T}{\pi \alpha'} I_1(y_{\rm m}, C), \quad \frac{L_{\Phi}}{2} = I_2(y_{\rm m}, C).$$

We have the following relation:

$$\frac{\partial I_2(y_{\rm m}, C)}{\partial C} = \frac{C}{\ell} \frac{\partial I_1(y_{\rm m}, C)}{\partial C}$$

We find for the quark-antiquark potential

$$V_{q\bar{q}} = \frac{\sqrt{\lambda}}{\pi\ell^2} y_{\rm m} \sin \Theta \sqrt{F_{\Delta^3}(y_{\rm m})} \left(\frac{L_{\Phi}}{2} + I_3\right),$$

where

$$I_{3} = \int_{y_{\rm m}}^{\infty} dy \sqrt{\frac{f_{\Delta^{3}}(y)}{f_{\Delta^{2}}(y)}} \left(\frac{\sqrt{C^{2} \sin^{2} \Theta y^{2} F_{\Delta^{3}}(y) - \ell^{2}}}{y \sin \Theta \sqrt{F_{\Delta^{3}}(y)}} - C \right) - \frac{C}{\ell} \int_{y_{+}}^{y_{\rm m}} dy \sqrt{\frac{f_{\Delta^{3}}(y)}{f_{\Delta^{2}}(y)}}$$

Heavy quark-qntiquark potential

The setup

$$V_{q\bar{q}}(L) = \sigma L - \frac{\kappa}{L} + \frac{\chi}{\sqrt{L}}$$

a/ℓ	b/ℓ	σ , GeV/fm	κ , GeV·fm	χ , GeV·fm $^{1/2}$
0	0	2.21704	1.28893	1.55392
0.15	0.05	2.76058	1.30234	1.71247
0.1	0.1	2.91683	1.31574	1.80647
0.05	0.15	3.13669	1.33658	1.95819

Table 1: Fitting coefficients at $T_{\rm H} = 0.17 \, {\rm GeV}$ and $\theta = \pi/9$

- We recognize linear and Coulomb terms
- With an increase in rotation, the string tension, the Coulomb strength, as well as the parameter χ increase
- The most simple additional term to fitting is $\frac{\chi}{\sqrt{L}}$. With $1/L^2$ gives large σ , small κ and worse precision. With const gives negative σ

Jet-quenching parameter

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	O●OOOOOOOOOO	000

Jet-quenching parameter

• The jet-quenching parameter \hat{q} gives the squared average transverse momentum exchange between the medium and the high-energy parton per unit path length:

$$\hat{q} = \frac{\langle p_{\perp}^2 \rangle}{L}.$$

Gyulassy, Plümer'90; Baier, Schiff, Zakharov'00: jet-quenching classical works

• The suppression of elliptic flows v_2 and hadrons yields with high transverse momentum $p_{\rm T}$, as well as observed increase in the nuclear modification factor $R_{\rm AA}$ are related to the jet-quenching phenomenon (BRAHMS'05; PHENIX'05; STAR'05)

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	00●000000000	000

Light-like Wilson loop and jet-quenching parameter

• The expectation value of the the light-like WL on the contour C in the adjoint representation and the jet-quenching parameter \hat{q} are related as follows (Rajagopal et. al.'06):

$$\langle W^A(\mathcal{C}) \rangle \approx \exp\left[-\frac{1}{4\sqrt{2}}\hat{q}L^-L^2\right],$$

where L^- is a large side of the rectangular contour ${\mathcal C}$ and L is a short side.

- The WL operator in the adjoint representation is related to the WL operator in the fundamental representation: $\langle W^A(\mathcal{C}) \rangle \approx \langle W^F(\mathcal{C}) \rangle^2$.
- Following the holographic dictionary, we have $\langle W^F(\mathcal{C}) \rangle = e^{-S_{\mathrm{NG}}}.$

$$\Rightarrow \qquad \left\langle W^A(\mathcal{C}) \right\rangle \approx \exp\left[-\frac{1}{4\sqrt{2}}\hat{q}L^-L^2\right] \approx e^{-2S_{\rm NG}}$$

• Planar case (AdS on \mathbb{R}^3):

$$\hat{q}_{\rm SYM} = \frac{\pi^{3/2} \Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} \sqrt{\lambda} T^3$$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	0000000000	000000000000	000

Light-like Wilson loop in Schwarzschild-AdS₅

- "Light-cone" coordinates: $dx^+ = \ell^2(dt \ell d\phi), \quad dx^- = \ell^2(dt + \ell d\phi).$
- The string parametrization

 $\tau = x^{-}, \quad \sigma = \psi, \quad x^{\mu} = x^{\mu}(\sigma), \quad \theta(\sigma) = const, \quad x^{+}(\sigma) = const.$

• The Nambu-Goto action is

$$S = \frac{L^{-}}{2\pi\alpha'} \int_{-L/2}^{L/2} d\psi \, \frac{r}{2\ell^2} \sqrt{\left(\frac{f(r)}{r^2} - \ell^{-2}r^2\sin^2\theta\right) \left(\cos^2\theta + \frac{r'^2}{f(r)}\right)}, \quad r' \equiv \partial r/\partial\psi$$

• The first integral is given by $\mathcal{H} = -\frac{\cos^2\theta\sqrt{f(r) - r^4\ell^{-2}\sin^2\theta}}{2\ell^2\sqrt{\cos^2\theta + \frac{r'^2}{f(r)}}} = -C.$

• The equation of motion for $r(\sigma)$:

$$r'^{2} = \frac{f(r)\cos^{2}\theta}{4C^{2}\ell^{6}} [\cos^{2}\theta(f(r)\ell^{2} - r^{4}\sin^{2}\theta) - 4C^{2}\ell^{6}].$$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	0000●0000000	000

Jet-quenching parameter calculation

• Regularized action:

$$S_{\rm NG}^{\rm reg} = \frac{L^-}{\pi \alpha'} \int_{r_H + \epsilon}^{\infty} dr \, \frac{\sqrt{f(r)\ell^2 - r^4 \sin^2 \theta}}{2\ell^3 \sqrt{f(r)}} \left(\frac{\cos \theta \sqrt{f(r)\ell^2 - r^4 \sin^2 \theta}}{\sqrt{\cos^2 \theta (f(r)\ell^2 - r^4 \sin^2 \theta) - 4C^2 \ell^6}} - 1 \right).$$

• Expanding for small C (low energy limit)

$$S_{\rm NG}^{\rm reg} = \frac{L^-}{\pi \alpha'} \frac{\ell^2 C^2}{\cos^2 \theta} \mathcal{I}, \quad \mathcal{I} = \int_{r_m}^{\infty} \frac{dr}{\sqrt{f(r)}\sqrt{f(r)} - r^4 \ell^{-2} \sin^2 \theta} \mathcal{I},$$

and r_m is defined as a positive real solution to the equation

$$r^2 + r^4 \ell^{-2} \cos^2 \theta - 2M = 0.$$

• To find the relation between L and C we remember that $r(\pm L/2)=\infty$:

$$\frac{L}{2} = \int_{r_H}^{\infty} \frac{dr}{r'} = \frac{2C\ell^3}{\cos\theta} \int_{r_H}^{\infty} \frac{dr}{\sqrt{f(r)}\sqrt{\cos^2\theta(f(r)\ell^2 - r^4\sin^2\theta) - 4C^2\ell^6}}.$$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	000000000000	000

Jet-quenching parameter calculation

 \bullet For small C we have

$$\frac{L}{2} = \frac{2\ell^2 C}{\cos^2\theta} \mathcal{I}$$

and we come to

$$S_{\rm NG}^{\rm reg} = \frac{L^-}{\pi \alpha'} \frac{L^2 \cos^2 \theta}{16\ell^2 \int_{r_m}^{\infty} \frac{dr}{\sqrt{f(r)}\sqrt{f(r)-r^4\ell^{-2}\sin^2 \theta}}}.$$

• Wilson loop and jet-quenching parameter relation (Rajagopal'06):

$$\langle W^A(\mathcal{C}) \rangle \approx \exp\left[-\frac{1}{4\sqrt{2}}\hat{q}L^-L^2\right] \approx e^{-2S_{\rm NG}}.$$

Then the jet-quenching parameter is $(\lambda = \frac{\ell^4}{lpha'^2})$

$$\hat{q} = \frac{\sqrt{\lambda}}{\sqrt{2}\pi} \frac{\cos^2 \theta}{\ell^4 \int_{r_m}^{\infty} \frac{dr}{\sqrt{f(r)}\sqrt{f(r) - r^4 \ell^{-2} \sin^2 \theta}}}$$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	000000●00000	000

The temperature dependence of JQ for the SAdS₅

- Near critical temperature T_c we have $\hat{q} < \hat{q}_{SYM}$ (at some values of θ always $\hat{q} < \hat{q}_{SYM}$!)
- We have $\hat{q} \sim T_{\rm H}^3$ at high temperatures $T_{\rm H}$ and $\hat{q} \approx \hat{q}_{\rm SYM}$ at $\theta \approx \pi/9$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	0000000●0000	000

Light-like Wilson loop in Kerr-AdS₅

• "Light-cone" coordinates (Cvetic, Gao, Simon'05):

d

$$x^+ = dT - ad\Phi, \qquad dx^- = dT + ad\Phi.$$

• The string parametrization

$$\tau = x^{-}, \quad \sigma = \Psi, \quad x^{\mu} = x^{\mu}(\sigma), \quad \Theta(\sigma) = const, \quad x^{+}(\sigma) = const.$$

• We introduce the following notation:

$$\eta(y) = (1+y^2) - \frac{y^2}{a^2} \sin^2 \Theta, \quad \zeta(y) = \eta(y) - \frac{2M}{\Delta^3 y^2} \cos^4 \Theta,$$
$$\beta(y) = \cos^2 \Theta \left(\eta(y) \frac{2M}{\Delta^3 y^2} b^2 \cos^2 \Theta + \zeta(y) y^2 \right)$$

• The first integral and equation of motion $(y' = \frac{dy}{d\Psi})$ are given by

$$\mathcal{H} = \frac{\beta(y)}{2\sqrt{\beta(y) + \frac{y'^2\zeta(y)}{f_{\Delta^2}(y)}}} = -C, \qquad y'^2 = \frac{f_{\Delta^2}(y)\beta(y)}{\zeta(y)} \left(\frac{\beta(y)}{4C^2} - 1\right).$$

for simplicity $\ell = 1$

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summar
00000	00000000	00000000000		000

Light-like Wilson loop in Kerr-AdS $_5$

• The regularized action and distance between quarks:

$$S_{\mathrm{NG}}^{\mathrm{reg}} = \frac{L^{-}}{\pi \alpha'} \int_{y_{+}}^{\infty} dy \, \frac{\sqrt{\zeta(y)}}{2\sqrt{f_{\Delta^{2}}(y)}} \left(\frac{\sqrt{\beta(y)}}{\sqrt{\beta(y) - 4C^{2}}} - 1\right),$$
$$\frac{L}{2} = \int_{y_{+}}^{\infty} \frac{dy}{y'} = \int_{y_{+}}^{\infty} dy \, \frac{2C\sqrt{\zeta(y)}}{\sqrt{f_{\Delta^{2}}(y)\beta(y)}\sqrt{\beta(y) - 4C^{2}}}.$$

• In the low energy limit (small C):

$$S_{\rm NG}^{\rm reg} = \frac{L^-}{\pi \alpha'} C^2 \mathcal{I} + \mathcal{O}(C^4), \qquad \qquad \frac{L}{2} = 2C\mathcal{I} + \mathcal{O}(C^3), \qquad \qquad \mathcal{I} = \int_{y_+}^{\infty} dy \, \frac{\sqrt{\zeta(y)}}{\beta(y)\sqrt{f_{\Delta^2}(y)}}.$$

• The final expression for the jet-quenching parameter (*with restored units*):

$$\hat{q} = \frac{\sqrt{\lambda}}{\sqrt{2}\pi\ell^4\mathcal{I}}$$

ntroduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	000000000●00	000

The temperature dependence of JQ for the Kerr-AdS₅

- The rotating plasma is more strongly coupled!
- The phase transition temperature decreases with rotation!
- The behaviour $\sim T_{\rm H}^3$ at high $T_{\rm H}$ is saved in the rotating plasma.
- The singularity at $a \rightarrow 0$ is due to the metric transformation (string configuration).

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	00000000000000	000

The rotational parameters dependence for the Kerr-AdS₅

- The singularity at $a \rightarrow 0$ is due to the metric transformation (string configuration).
- At some value of a near $a_{\rm max}$ we have $\hat{q}\approx\hat{q}_{\rm SYM}$ and weaker dependence on b
- The JQ parameter increases with b and sharply drops to zero at $b_{\rm max}$
- b_{\max} decreases with increasing of a

The D-instanton background (Chen, Hou'22):

0.6

0.8

0.0

0.2

0.4

0.6

 ω . b/ ℓ

0.0

0.2

0.4

T_H [GeV]

$$ds^{2} = e^{\frac{\Phi}{2}} \frac{r^{2}}{R^{2}} \left[\frac{\omega^{2} - f(r)}{1 - \omega^{2}} dt^{2} + \frac{1 - \omega^{2} f(r)}{1 - \omega^{2}} d\varphi^{2} + \frac{2\omega(1 - f(r))}{1 - \omega^{2}} dt d\varphi + \frac{1}{f(r)} \frac{R^{4}}{r^{4}} dr^{2} + dx_{1}^{2} + dx_{2}^{2} \right],$$

$$e^{\Phi} = 1 + \frac{q}{r_{t}^{4}} \log \frac{1}{f(r)}, \quad f(r) = 1 - \frac{r_{t}^{4}}{r^{4}}, \qquad \text{radius to the rotating axis: } l = 1 \text{GeV}^{-1}; \quad \text{AdS radius } R = \ell$$

0.8

1.0

In the dual picture the D-instanton density represents the vacuum expectation value of gluon condensation

Summary

Introduction	The setup	Heavy quark-qntiquark potential	Jet-quenching parameter	Summary
00000	00000000	00000000000	000000000000	O●O
Summary				

We have computed the temporal (*heavy quark-antiquark potential*) and light-like (*jet-quenching parameter*) Wilson Loops in the SAdS₅ (*non-rotating plasma*) and Kerr-AdS₅ (*rotating plasma*) geometries:

- The analytical expression for the potential contains the linear and modified Coulomb parts.
- With increasing of T or θ we receive smaller L and larger $V_{q\bar{q}}!$
- Rotation leads to decreasing of L and increasing of $V_{q\bar{q}}$!
- With an increase in rotation, the string tension and Coulomb strength parameters increase
- Near critical temperature T_c we have $\hat{q} < \hat{q}_{SYM}$ (at some values of θ always $\hat{q} < \hat{q}_{SYM}$!)
- We have $\hat{q}\sim T_{
 m H}^3$ at high $T_{
 m H}$ and $\hat{q}pprox \hat{q}_{
 m SYM}$ at $hetapprox \pi/9$
- The rotating plasma is more strongly coupled!
- The phase transition temperature $T_{\rm c}$ decreases with rotation!

Probing $\mathcal{N} = 4$ SYM rotating quark-gluon plasma using holography

Based on arXiv:2210:XXXXX

Tsegelnik Nikita, Golubtsova Anastasia

November 9, 2022

Joint Institute for Nuclear Research tsegelnik@theor.jinr.ru

Induced metric

The Nambu-Goto action:

$$S_{\rm NG} = \frac{1}{2\pi\alpha'} \int \mathrm{d}\sigma \mathrm{d}\tau \sqrt{-\det(g_{\alpha\beta})}$$

The string configuration:

$$\tau = T, \qquad \sigma = \Phi, \qquad y = y(\Phi), \qquad \Phi \in [0, 2\pi L_{\Phi}].$$
 (1)

The induced metric:

$$g_{\tau\tau} = G_{TT} = -\left(1 + y^2 \ell^{-2} - \frac{2M}{\Delta^3 y^2}\right), \quad g_{\tau\sigma} = G_{T\Phi} = -\frac{2Ma\sin^2\Theta}{\Delta^3 y^2},$$
$$g_{\sigma\sigma} = G_{\Phi\Phi} + y'^2 G_{yy} = \sin^2\Theta \left(y^2 + \frac{2Ma^2\sin^2\Theta}{\Delta^3 y^2}\right) + \frac{y'^2}{1 + y^2 \ell^{-2} - \frac{2M}{\Delta^2 y^2}},$$
(2)

Angular velocity in Kerr- AdS_5

Temperature in Kerr- AdS_5

Hopf coordinates

$$d\Omega_3^2 = d\theta^2 + \sin^2 \theta d\phi^2 + \cos^2 \theta d\psi^2,$$

$$0 \le \theta \le \pi/2, \qquad 0 \le \phi, \psi \le 2\pi$$

For any fixed value of θ the coordinates (ϕ, ψ) parametrize a 2-dimensional torus. Rings of constant ϕ and ψ form simple orthogonal grids on the torus. In the degenerate cases $\theta = 0$ and $\theta = \pi/2$ coordinates (ϕ, ψ) represent a circle

Confinement in AdS/CFT

- Any CFT on \mathbb{R}^n is scale invariant, so there is no confining phase
- If we deform the AdS spacetime, the gauge theory will also be deformed in some way
- Some deformations or geometries of the $\mathcal{N}=4$ SYM bring the theory "closer to QCD" and lead to the confinement

Toy confinement model at T = 0

The holographic coordinate r refers to the gauge theory energy scale, so if we *cutoff* ⁶ AdS spacetime at $r = r_{\min} \sim \Lambda \ell^2$ (Λ is the mass of the lightest glueball state and ℓ is the AdS radius), we receive the *confinement* behaviour near r_{\min} and Coulomb-like potential at $r \gg r_{\min}$

⁶ J. Polchinski, M.J. Strassler, Hard scattering and gauge/string duality. Phys. Rev. Lett. **88**, 031601 (2002)

Confinement-deconfinement phase transition

Phase transitions⁷ in AdS_5/CFT_4 :

- D-branes (flat horizon) + background (dilaton, bulk scalar field): hard-wall⁸ and soft-wall⁹ AdS/QCD (or KKSS model)
- Black holes (compact spaces¹⁰ and thermal ensembles): $\mathbb{R}^1 \times \mathbb{S}^3$ or $\mathbb{R}^3 \times \mathbb{S}^1$

$\mathbb{R}^3 \times \mathbb{S}^1$	$\mathbb{R}^1 imes \mathbb{S}^3$ "precise" 11 correspondence
• AdS soliton \longleftrightarrow confining phase	• thermal $AdS^{12} \longleftrightarrow$ confining phase
• AdS $\mathbb{R}^3 imes \mathbb{S}^1$ black hole \longleftrightarrow plasma	• AdS $\mathbb{R}^1 imes \mathbb{S}^3$ black hole \longleftrightarrow plasma

⁷ The phase transition in AdS black holes is called Hawking-Page phase transition. S.W. Hawking, D.N. Page, Commun. Math. Phys., 87, 577 (1983)

⁸ J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)

⁹ A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74 015005 (2006)

 $¹⁰_{\text{In}}$ gauge theory on the sphere we get "kinematic confinement", which comes from the Gauss law. Therefore, the physical states on a sphere cannot have any net color. So our "confinement" is not the same as QCD one, which comes from dynamics in a complicated way

⁶ E. Witten, series of works in 1998

¹²The AdS spacetime with Euclidean time periodicity β

The Kerr-AdS₅ solution in the rotating at infinity frame

The Kerr-AdS₅ metric the in rotating at infinity frame¹³

$$\begin{split} ds^{2} &= -\frac{\Delta_{r}}{\rho^{2}} \left(dt - \frac{a \sin^{2} \theta}{\Xi_{a}} d\phi - \frac{b \cos^{2} \theta}{\Xi_{b}} d\psi \right)^{2} + \frac{\Delta_{\theta} \sin^{2} \theta}{\rho^{2}} \left(a dt - \frac{(r^{2} + a^{2})}{\Xi_{a}} d\phi \right)^{2} \\ &+ \frac{\Delta_{\theta} \cos^{2} \theta}{\rho^{2}} \left(b dt - \frac{(r^{2} + b^{2})}{\Xi_{b}} d\psi \right)^{2} + \frac{\rho^{2}}{\Delta_{r}} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} \\ &+ \frac{(1 + r^{2} \ell^{-2})}{r^{2} \rho^{2}} \left(a b dt - \frac{b \left(r^{2} + a^{2}\right) \sin^{2} \theta}{\Xi_{a}} d\phi - \frac{a \left(r^{2} + b^{2}\right) \cos^{2} \theta}{\Xi_{b}} d\psi \right)^{2}, \\ \Delta_{r} &= \frac{1}{r^{2}} \left(r^{2} + a^{2}\right) \left(r^{2} + b^{2}\right) \left(1 + r^{2} \ell^{-2}\right) - 2M, \qquad \Xi_{a} = \left(1 - a^{2} \ell^{-2}\right), \qquad \Xi_{b} = \left(1 - b^{2} \ell^{-2}\right) \\ \Delta_{\theta} &= \left(1 - a^{2} \ell^{-2} \cos^{2} \theta - b^{2} \ell^{-2} \sin^{2} \theta\right), \qquad \rho^{2} = \left(r^{2} + a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta\right) \end{split}$$

¹³ S.W. Hawking, C.J. Hunter and M. Taylor-Robinson, Rotation and the AdS/CFT correspondence, Phys.Rev. D 59 (1999) 064005;

Modified potential

