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KvBLL instantons

I Classical self-dual solutions of Yang-Mills eq. at finite
temperature

I Generalizations of instantons with an additional parameter –
holonomy exp(i

∫
A0dτ)

I When holonomy is “non-trivial”, they disassociate into static
objects called dyons

A0(r →∞) = v τ ·ω̂2 – Acts like a an adjoint higgs field
F 2
µν = (DiA0)2 + F 2

ij (Assuming time independent fields)
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The dyon

In the usual radial ansatz it looks
as

Aa
0 = H(r)r̂a (1)

Aa
i = A(r)εaij r̂

j (2)

Imposing selfduality

Fµν =
1

2
εµνρσFρσ

with boundary condition

A(r →∞) = 0 ,

H(r →∞) = v

One can see that functions

H = −1− vr coth(vr)

r
(3)

A =
1

r
− v

sinh(vr)
(4)

satisfy the self duality equations,
such that∫

d3x F 2 = 4πv

which gives a fractional
topological charge Q = vβ

2π .
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The dyon

The fields look like

Ei =
r̂ i

r2

r̂ · τ
2

+ o(e−rv ) , (5)

Bi = Ei (6)

Changing the gauge so that
τ · r̂ → τ3 (which is not unique)
reveals the abelian nature of the
solutions, for example

Ar = 0 , Aθ = o(e−vr )

A0 = (v − 1

r
)
τ3

2
+ o(e−vr )

Aϕ =
tan θ

2

r

τ3

2
+ o(e−vr )

In this form the Dirac monopole
field is evident, with the Dirac
string along θ = π direction.
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The second dyon

Take v → 2πT − v and using the time dependent gauge transform

U(t) = e−itπτ3/β

we get a new solution with same asymptotics

A0 ∼ (v + 1/r)
τ3

2

but opposite charge of magnetic and electric fields, i.e.

Ei = − r̂ i

r2

τ3

2
, Bi = Ei .

This configuration, however, has and action
∫
F 2 = 4π(2π − vβ)

topological charge Q̄ = 1− vβ/(2π), so that

Q + Q̄ = 1
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The approximate higgs potential

H(r1,r2)
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What can we conclude?

I There are two solutions which have A0 → vτ3.

I Their individual topological charges are Q = vβ/(2π) and
Q̄ = 1− vβ/(2π), where v ∈ [0, πT ] is an angular variable.

I The total topological charge of two objects is unity
Q + Q̄ = 1.

I These are, in fact, two parts of the same object!

I At v = 0 the “heavy”’ dyon, with topological charge Q̄
reduces to Harrington-Shepard caloron of infinite size (know
to be a monopole)

I Instanton has constituents! And their “masses” (action)
depend on the holonomy parameter v .

I Indeed Kraan and van Baal found this solution!
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The exact KvBLL Caloron
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The fermionic zero modes
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Fermionic zero modes
Now we look for the solution of Dirac equation in the background
of a single dyon. The result is well known from the 70s for 3D
theory. Writing the equation for a chiral fermion

ψαA(r) = [(α1(r)1 + α2(r )̂r · τ ) ε]Aα e
−iϕt/β ,

we obtain for the Dirac equation

dα1(r)

dr
+
H+ 2A

2
α1 + ϕTα2 = 0 , (7)

dα2(r)

dr
+

(
H− 2A

2
+

2

r

)
α2 + ϕTα1 = 0 . (8)

with φ = 0 (periodic fermions for now) we can get that /Dψ = 0
results in

α1(r) = const
tanh(vr/2)√
vr sinh(vr)

∼ e−vr/2 , α2(r) = 0 .

But we can do better! In fact one can solve the Dirac equation
with general φ.
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The solution turns out to be (Shuryak, Sulejmanpasic - Phys. Rev.
D86 036001)

α1,2(r , ϕ) = c
χ1,2(vr)√
vr sinh(vr)

(9a)

χ1(rv) =
[
2
ϕ

v
sinh(rϕ/β)− tanh(vr/2) cosh(rϕ/β)

]
, (9b)

χ2(rv) =
[
− 2

ϕ

v
cosh(rϕ/β) + coth(vr/2) sinh(rϕ/β)

]
, (9c)
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to ϕ = 0.55v/β

When ϕ ≥ vβ/2 the solution
diverges. But since v ∈ [0, πT ],
what happens to antieriodic
fermions?

The answer lies in the second
dyon! Recall that the second
dyon differs from the first by a
time dependent gauge transform
(in stringy gauge)

exp(iπtT τ3)

Therefore the solution has to be
multiplied by an anti periodic
gauge transformation! This
means that the solution for anti
periodic fermions has the same
profiles, but with v → v̄
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The adjoint zero modes

The Dirac equation:

α′1 +
2

r
α1 − 2

v

sinh(vr)
β1 =

ϕ

β
α2 ,

α′2 + 2
v

sinh(vr)
β2 =

ϕ

β
α1 ,

β′1 −
v

sinh(vr)
α1 + v coth(vr)β1 =

ϕ

β
β2 ,

β2 +
v

sinh(vr)
α2 + v coth(vr)β2 =

ϕ

β
β1 .

0 2 4 6 8 10 12 14
-0.5

0.0
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ϕ = (0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95)vβ

ψm = r̂mα2(r)− i(r̂×~σ)mβ2(r)+α1(r)r̂m(~σ · r̂)+((r̂×~σ)× r̂)β1(r)

and
Ψa = ψaεe

iϕt/β ε - arbitrary 2-spinor
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The adjoint zero modes

The leading order
ΨM ∼ e−(v−ϕ/β)r

Similarly we can construct a zero mode on top of the “heavy” dyon

ΨL ∼ e−(v̄−ϕ/β)r . v̄ = 2π − v

However there are also solutions with ϕ→ ϕ− 2π

Ψ̃M ∼ e−(ϕ/β−v̄)r Ψ̃L ∼ e−(ϕ/β−v)r .
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The adjoint hopping

v

v
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The adjoint hopping

v

v Each dyon has
a zeromode
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The adjoint hopping

v

v L (heavy) dyon 
has a zeromode
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The adjoint hopping

v

v
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Zeromodes at finite µ (with Bruckmann and Rödl)

One needs to solve

( /D + µγ0)ψ = 0

This is the same as solving the
Dirac equation with Ψ = ψeµt ,
so µ = iϕ/β. However, since the
operator does not have any
Hermiticity property, it turns out
that one needs to redefine the
bra vector and use ψ†(−µ)
instead of ψ†(µ).

1 2 3 4
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0.8

rv

Ψ
0

H-
Μ

LΨ
0

HΜ
L�H

T
v3

L

The full solution for the caloron
is complicated, but will be
published soon!
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Interactions of dyons
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Classical interactions

Partition function is schematically

Z ∼ e−
∑

Si−
∑

i 6=j Sij

where

I Si is the action of individual dyons or antidyons

I Sij is the interaction between pairs of dyons

The self dual dyons are in fact BPS states, i.e. they do not
interact classically. However dyons interact with antidyons (clearly
they will annihilate to zero action if they come together)
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Classical interactions

Recall that self dual dyons in SU(2) have electric and magnetic
charge (++) or (−−), and that their fields are abelian outside
their cores r > 1/v and r > 1/v̄ . It is then strange how these
objects do not have any classical interaction, as naively one would
think that they attract Coulombicaly.

Consider an action of two constituent dyons with actions
SM = 4πv and SL = 4πv̄ where v + v=̄2π. Naively we would say
that

Stot = SM + SL + Sint(rM , rS ) ,

where Sint = 1
2

∫
d4x

(
EM

abel · EL
abel + BM

abel · BL
abel

)
= − 8πβ

|~rM−~rS |
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Classical interactions

Remember that the asymptotic “higgs” of L dyon

A0 ∼ v + 1/rL

so close to M dyon we must replace v → v + 1/d where d is the
distance between the two dyons, which replaces the action

SM(v)→ SM(v + 1/d)

Going to the stationary gauge of the L, we get that close to L dyon
A0 ∼ v + 1/d , so the total action is

Stot = 4π(v + 1/d)β + 4π(v̄ + 1/d)β − 8πβ

d
= 8π2

exactly the instanton action! (up to 1/g2 which is not written
here)
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Classical interactions

The same reasoning can be applied to any combination of dyons.
The self dual dyon are BPS states and they don’t interact
classically. For example two (++) don’t interact because their
“higgs” fields are attractive, but their abelian fields are repulsive.

However for dyon-antidyon pair the situation is a bit different. In
fact dyons of opposite magnetic charge and same electric attract
coulombically with twice the strength, but of same magnetic charge
repel with twice the strength due to the repulsive “higgs” field.

21 / 45



Classical interactions

So naively
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Perturbative quantum effects
Perurbatively one has that (D.J. Gross, R.D. Pisarski and L.G.
Yaffe, Rev. Mod. Phys. 53, 43 (1981).)

F (v) = − lnZ (v) ∼ V3
v2v̄2

3T (2π)2

This free energy has a minimum at v = 0 or at v̄ = 0. If one
(perturbativellt) calculates the free energy in the presence of a
KvBLL instanton, one gets (Diakonov, Petrov Phys.Rev. D70
(2004) 036003 )

FKvBLL(v) = VF (v) + 2πdF ′′(v) + . . .

where d is the distance between constituents. At trivial holonomy
this is just the Pisarski-Yaffe term

δSPY =
4

3
π2ρ2T 2 , d = πρ2T

which, in turn, is related to Debye screening of the electric charge
at finite temperature.
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Screening

screening

24 / 45



Zeromode facilitated interactions

The fermionic determinant for a dyon-antidyon pair

det /D = |TDD̄ |
2Nf

We take it in zero mode basis

TDD̄ =

∫
d4xψ†

D̄
/DψD ∼ e−v̄d/2

because ψD ∼ e−v̄ r/2. So

Veff (d) = −d Nf v̄

2
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The dyonic molecule

We assemble all the pieces which we know for a partition function

dZmol = dZLMdZL̄M̄

[
m2 + |TDD̄ |2

Λ2

]Nf

C (Nf )

(
π2rLM rL̄M̄Λ4

T 2

)Nf /6

e−Vscr−VLL̄ (10)
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The dyonic molecule

stars – rLM dyon distances
boxes – rLL̄ dyon distances
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The dyonic molecule
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Chiral symmetry breaking via
dyons
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Some lattice observations

I Chiral symmetry differs for fundamental and adjoint fermions
I For fundamental the transition is a crossover, and the chiral

symmetry seems to go hand in hand with confinement
I For adjoint fermions the confinement phase transition is at

much lower temperatures then chiral symmetry breaking
Tχ ≈ 8Tc .

I The dependence of the critical coupling βc = 6/g2
c as a

function of flavours Nf is inversely varying (larger Nf needs
larger βc)

I Varying periodicity conditions of fermions reveals interesting
properties in the chiral condensate (Ilgenfritz, Bruckmann,
Gattringer, etc.)
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The ensemble of (heavy) dyons
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The ensemble of (heavy) dyons
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Dirac operator in zero mode basis

[ /D] =



0 · · · · · · 0 T11̄ T12̄ · · · T1N̄
...

. . .
... T21̄ T22̄ · · · T2N̄

...
...

...
. . .

...
0 · · · · · · 0 TN 1̄ TN 2̄ · · · TNN̄

T1̄1 T1̄2 · · · T1̄N 0 · · · · · · 0

T2̄1 T2̄2 · · · T2̄N

...
. . .

...
...

. . .
...

...
...

TN̄1 TN̄2 · · · TN̄N 0 · · · · · · 0


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Dirac operator with the pair ensemble

[ /D] =



0 · · · · · · 0 T11̄ 0 · · · 0
...

. . .
... 0 T22̄ · · · 0

...
...

...
. . .

...
0 · · · · · · 0 0 0 · · · TNN̄

T1̄1 0 · · · 0 0 · · · · · · 0

0 T2̄2 · · · 0
...

. . .
...

...
. . .

...
...

...
0 0 · · · TN̄N 0 · · · · · · 0


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Simple example: gaussian distributed pairs
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The dyon ensambles

We need is to generate an ensemble. We study 3 models

I The random dyon model RDM

I The random molecule model RMM

I The reweighed molecule model RWMM

We take that TDD̄ = c e−Mr
√

1+Mr
, and the molecules for the RMM

and RWMM are generated with the distribution

dist(r) = norm× r2

(
e−Mr

√
1 + Mr

)2Nf

where M is a parameter of our model, as well as Nf (although they
are quite similar, so it is really one an the same parameter, so we
set Nf = 2). All dimensional quantities are expressed in terms of
dyon density n = N/V .
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Dirac spectrum of the random dyon model
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Dirac spectrum of the random molecule model
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Dirac spectrum of the reweighed random molecule model
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What is M in the dyon picture?

I For physical, anti periodic fermions M = v̄/2 = 2πT−v
2 , so

increasing the holonomy parameter v helps break chiral
symmetry (possible connection between confinement and
chiral symmetry breaking, more later)!

I For (anti periodic) adjoint fermions it turns out that
M = π − v (but there are more of them), so they have long
tails close to v = π (confining holonomy). This explains why
it is more difficult to restore chiral symmetry for adjoint
fermions then for fundamental.
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Critical coupling as a function of Nf
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p3d plot pppmod, axesfont = Times, bold, 20 ;

p3 := PLOT ...

ppdash := [[11.,1.],[11, 2.4],[11.,7.]]; p2dash := plot(ppdash, 
linestyle=dash, thickness=2,color = black);

ppdash := 11., 1. , 11, 2.4 , 11., 7.

p2dash := PLOT ...

display p1, p11, p2dash, p2Aconf, p2Achi, pp2loop, pmod ;
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βc = 6
g2(Tc )

as a function of Nf

From our analysis

〈r〉3 nc = const.

〈r〉 ∼ 1

MNf

where nc is critical density of

dyons which nc ∼ e
− 8π2

g2 , which
means that

β2
c = β1

c + (. . . ) ln
〈r2〉
〈r1〉
≈

≈ β1
c + (. . . ) ln

N1
f

N2
f
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Some works and comments on confinement

Dyons in the vacuum present a potential explanation for
confinement and they have been explored by: Diakonov & Petrov,
Bruckmann et al, Unsal and Poppitz, ...
The main results are the following

I Diakonov & Petrov showed that a theory made out of only
self-dual dyons in pure gluonic theory confines

I Bruckmann et. al showed that a random ensemble of dyons
and antidyons of all kinds yields confinement

I Unsal, Poppitz et al explored the role of dyons in perturbative
regime where they force Polyakov loop to be confining.
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Large N

Why instantons cannot confine at large N!

Z ∝ e−Sinst = e−N 8π
λ → 0

So pairs will be suppressed as pulling an instanton–anti-instanton
pair out of the vacuum costs infinite action!

However dyons carry a fractional action, and at maximally
nontrivial holonomy Sdyon = 1

N Sinst . So pulling a dyon pair out of

the vacuum costs ∼ 2× 8π
λ , i.e. they are suppressed as e−2× 8π

λ , so
at strong coupling they become quite common fluctuations!

43 / 45



Conclusion

I Dyons in the vacuum appear as pair fluctuations of
dyon-antidyon pairs, suppressed by their action (smallness of
coupling)

I The pairs by themselves do not break chiral symmetry, but
generate Dirac spectra with two bumps around 0 eigenvalues

I As the density of dyons becomes larger the gap between the
bumps closes and develops eigenvalue density at zero,
breaking chiral symmetry

I The parameter which does this is the holonomy, and it has
qualitatively different behaviour when fermions are
fundamental and adjoint, as well as when they are periodic
and anti periodic

I Qualitative behaviour of adjoint chiral transition being pushed
to much larger temperature is natural from the point of view
of adjoint zero modes
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Outlook and some things not mentioned

I Back reaction of fermionic zero modes on the holonomy
(preference of nontrivial holonomy)

I Large N contributions of dyons

I Role of dyons at finite chemical potential

I Detailed interactions of dyons (string interactions)

I Moduli space interactions (very important!)

I Magnetic field and the “hairs” of topological charge

I Magnetic field and additional zero modes (on top of
instantons Basar, Kharazeev)

I Full scale simulations of the dyon ensemble (first simulations
soon by E. Shuryak and ...)

I Correlation functions, masses of hadrons, etc.
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