Dubna, JINR, 26/9/18

Solvable non-conformal holographic models for QCD

Giuseppe Policastro

LPT, Ecole Normale Supérieure Paris

1507.08628 with U. Gürsoy, M. Järvinen

1708.02252, 1807.01718 with P. Bezios, U. Gürsoy, M. Järvinen

1803.06764 with I. Aref'eva, A. Golubtsova

Outline

- Quark-gluon plasma and hydro
- Bjorken flow of CR solutions
- Quasi-normal modes of CR
- Solutions for two-exp potentials
- Conclusions

Conventional picture of QGP dynamics

Early stages: Glauber, CGC, problem of inital conditions

Middle: low-viscosity hydrodynamics

Late: hadronization

This scenario requires fast thermalization ~ 1 fm

Recent simulations cast some doubt and allow for slower build-up of the flow

Deviation from conformality

[arXiv:1402.6907]

pressure

trace anomaly

The study of deviations from the conformal behavior in the QGP dynamics has not been thoroughly investigated

[Buchel, Heller, Myers '15][Janik, Plewa, Soltanpanahi, Spalinski] consider the equilibration rate determined by lowest quasi-normal modes in non-conformal theories

N=2*

Einstein-scalar with

 $V(\phi) = \cosh(\phi) + \phi^2 + \phi^4 + \phi^6$

Variation of the imaginary part = attenuation rate by factor of ~ 2

Bottom-up non-conformal models [Gursoy, Kiritsis, Nitti et al]

Einstein-dilaton gravity

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{-g} \left(R - \frac{4}{3} (\partial\phi)^2 - V(\phi) \right) - \frac{1}{\kappa^2} \int d^4x \sqrt{-h} K$$

The potential can be tuned to reproduce the beta-function

For asymptotically AdS UV $V = V_0 + v_1 \lambda + v_2 \lambda^2 + \dots$

 $\lambda = e^{\phi} = g_{YM}^2 N_c$

$$\beta = -b_1\lambda^2 - b_2\lambda^3 + \dots$$

$$b_1 = v_1, \, b_2 = v_2 - v_1^2, \, \dots$$

For confinement in the IR

$$V \sim \lambda^Q (\log \lambda)^P$$

$$Q > 4/3 \text{ or } Q = 4/3, P \ge 0$$

Confinement <=> finite-T transition between thermal gas and BH

We consider a simple setup with an exponential potential $V = V_0(1 - X^2)e^{-\frac{8}{3}X\phi}$. X < 0 (confining for $X < -\frac{1}{2}$)

For $X > -\frac{1}{2}$ analytic BH solution [Chamblin,Reall '99]

$$ds^{2} = e^{2A(u)} \left(-f(u)dt^{2} + \delta_{ij}dx^{i}dx^{j} \right) + \frac{du^{2}}{f(u)}$$

$$e^{A} = e^{A_{0}} \lambda^{\frac{1}{3X}}$$
 $f = 1 - C_{2} \lambda^{-\frac{4(1-X^{2})}{3X}}$

$$\lambda \equiv e^{\phi} = \left(C_1 - 4X^2 \frac{u}{\ell}\right)^{\frac{3}{4X}}$$

ynamics
$$\beta = \pi \ell \frac{e^{-A_0} C_2^{-\frac{\frac{1}{4} - X^2}{1 - X^2}}}{1 - X^2}$$

Thermodynamics

for $X < -\frac{1}{2}$ negative specific heat

$$-T^{\mu}_{\mu} = E + 3F = 3c_s \frac{X^2}{1 - X^2} \left(T\ell\right)^{\frac{4(1 - X^2)}{1 - 4X^2}} \qquad p = \frac{1 - 4X^2}{3}\epsilon$$

Boost-invariant CR flow

Trace condition
$$-T_{\tau\tau} + \frac{1}{\tau^2}T_{yy} + 2T_{xx} = -cT^{\xi}$$
 $\xi = \frac{4(1-X^2)}{1-4X^2}$

$$T_{\mu\nu} = \text{diag} \left(\epsilon(\tau), \, -\tau^3 \partial_\tau \epsilon - \tau^2 \epsilon, \, \epsilon + \frac{\tau}{2} \partial_\tau \epsilon - \frac{c}{2} T^{\xi}, \, \epsilon + \frac{\tau}{2} \partial_\tau \epsilon - \frac{c}{2} T^{\xi} \right)$$

Assuming $T = T_0 \tau^{-\alpha}$ the energy is determined

$$\epsilon(\tau) = \epsilon_0 \tau^{-\frac{4}{3}} + \frac{c T_0^{\xi}}{4 - 3\alpha\xi} \tau^{-\alpha\xi}$$

If $\alpha\xi < \frac{4}{3}$ the trace anomaly determines the late time behaviour

Ansatz for metric and dilaton

$$ds^{2} = z^{-\frac{2}{1-4X^{2}}} \left(dz^{2} - e^{a(v)} d\tau^{2} + e^{b(v)} \tau^{2} dy^{2} + e^{c(v)} dx_{\perp}^{2} \right)$$
$$\lambda = z^{-\frac{3X}{1-4X^{2}}} e^{\lambda_{1}(v)} \qquad v = \frac{z}{\tau^{s/4}}$$

Complicated system of equations for late time...

Basis of solutions

$$a(v) = A(v) - 2(1 - 4X^{2})m(v) + 2Xn(v)$$

$$b(v) = A(v) + 2(s - 1 + 4X^{2})m(v) + 2Xn(v)$$

$$c(v) = A(v) - (s - 2 + 8X^{2})m(v) - 2Xn(v)$$

$$\lambda_{1}(v) = \frac{3}{2}XA(v) + X(1 - 4X^{2})m(v) + (1 - X^{2})n(v)$$

The equations decouple

$$A(w) = \frac{2}{\chi}w - \frac{1}{2}\log m'(w) + \text{const.}, \qquad n(w) = \kappa m(w) + \text{const.}$$
$$w = \log v, \qquad \chi = \frac{1 - 4X^2}{1 - X^2}$$

The dual stress-energy tensor can be obtained by holographic renormalization in 5d, or more easily lifting the solution by a generalized dimensional reduction

$$S = \frac{1}{16\pi\tilde{G}_N} \int d^{d+1}x \, d^{2\sigma-d}y \, \sqrt{-\tilde{g}} \left(\tilde{R} - 2\Lambda\right)$$

Reducing on $\mathbb{R}^{d+1} \times T^{2\sigma-d}$ $\tilde{ds}^2 = e^{-\delta_1\phi(x)} dx^2 + e^{\delta_2\phi(x)} dy^2$

$$\delta_1 = \frac{4\sqrt{2\sigma - d}}{\sqrt{3(d - 1)(2\sigma - 1)}}, \quad \delta_2 = \frac{4\sqrt{d - 1}}{\sqrt{3(2\sigma - 1)(2\sigma - d)}} \qquad 2\sigma - d = \frac{4(d - 1)^2 X^2}{3 - 4(d - 1)X^2}$$

The uplifted metric is AAdS $\langle T^{\mu\nu} \rangle_{2\sigma} = \frac{2\sigma t^2}{16\pi}$

 $T_{\mu\nu}$ consistent with perfect fluid

$$\langle \gamma^{\mu\nu} \rangle_{2\sigma} = \frac{2\sigma l^{2\sigma-1}}{16\pi \tilde{G}_N} \tilde{g}^{\mu\nu}_{(2\sigma)}$$

$$\epsilon(\tau) \sim \tau^{-\frac{4}{3}(1-4X^2)}$$

leading w.r.t. the conformal form

Estimate of thermalization time

Viscous e.m. tensor
$$T_{\mu\nu} = \begin{pmatrix} \epsilon(\tau) & & \\ & p(\tau) - \frac{4}{3}\frac{\eta}{\tau} & \\ & & p(\tau) + \frac{2}{3}\frac{\eta}{\tau} & \\ & & p(\tau) + \frac{2}{3}\frac{\eta}{\tau} \end{pmatrix}$$

$$T_{\mu\nu}^{CGC} = \begin{pmatrix} \epsilon(\tau) & & & \\ & 0 & & \\ & & p(\tau) & \\ & & & p(\tau) \end{pmatrix} \quad \epsilon^{CGC}(\tau) \sim \frac{A}{\tau}$$

matching at time τ_0

CGC e.m. tensor

$$p(\tau_0) = \frac{4}{3} \frac{\eta}{\tau_0} \propto T(\tau_0)^{\xi} \qquad \text{using} \qquad \eta \sim T^{\xi - 1} \qquad T \sim \tau^{-\frac{1}{3}(1 - 4X^2)}$$

$$\tau_0 \sim \left(\frac{\eta}{T^{\xi-1}}\right)^{\frac{2}{3(1-2X^2)}}$$

The lowest-lying modes encode the thermalization rate

In gravity they correspond to Quasi-Normal Modes (black hole ringdown)

[Horowitz, Hubeny 99]

- $\omega_I = 11.16 T \qquad \text{for } d = 4$
- $\omega_I = 8.63 T \qquad \text{for } d = 5$
- $\omega_I = 5.47 T \qquad \text{for } d = 7$

$t_{th} \sim 0.5 \mathrm{fm}$

Fluctuations around the CR solution

$$\delta g = e^{2A_0} \hat{r}^{-\frac{2}{1-4X^2}} \left[-H_{vv} dv^2 + 2H_{vi} dv dx^i + H_{ij} dx^i dx^j \right]$$

$$\delta \lambda = \hat{r}^{-\frac{3X}{1-4X^2}} \psi \ .$$

Spin-2 modes
$$H_{23}$$
, $\frac{H_{22} - H_{33}}{2}$
Spin-0 mode $\frac{H_{22} + H_{33}}{2} - \frac{2}{3X}\psi$

are decoupled and degenerate

$$rf(r)\zeta''(r) + (2ir\omega + f(r) - \xi)\zeta'(r) - (k^2r + (\xi - 1)i\omega)\zeta(r) = 0$$

It can be solved analytically at large ξ or in the UV expansion Matching the solutions gives an analytic form of the correlator

$$\begin{aligned} G(k,\omega) &= \frac{2\pi\xi^{\xi}\hat{r}_{h}^{-\xi}}{\Gamma\left(\frac{\xi}{2}\right)\Gamma\left(1+\frac{\xi}{2}\right)} \left(\frac{(\varpi^{2}-q^{2})}{16}\right)^{\frac{\xi}{2}} \\ &\times \left[i - \left(\frac{1+i\widetilde{S}}{1-i\widetilde{S}}\right)^{\frac{\xi}{2}} e^{-i\xi\widetilde{S}} \frac{\Gamma\left(1-i\widetilde{S}\right)}{\Gamma\left(1+i\widetilde{S}\right)} \frac{\Gamma\left(\frac{1}{2}\left(1-i\varpi+i\widetilde{S}\right)\right)^{2}}{\Gamma\left(\frac{1}{2}\left(1-i\varpi-i\widetilde{S}\right)\right)^{2}}\right]^{-1} \end{aligned}$$

$$q = \frac{k}{2\pi T}$$
 $\varpi = \frac{\omega}{2\pi T}$ $\widetilde{S} = \sqrt{\varpi^2 - q^2 - 1}$

Dependence of QNM on X at q=0 -0.46 < X < 0

Dependence of QNM on q at X=-0.45

Crossover of hydro and non-hydro modes at $q^* \sim \xi^{-1/2}$

Dependence of QNM on q in the sound channel

The Chamblin-Reall solution has bad UV behavior, not AAdS (it is hyperscaling-violating)

A simple regularization: attach a slice of AdS in the UV

The QNM depend non-trivially on T

QNM of the X=-I/2 UV-completed CR geometry

A better model: interpolate between CR and AdS with a smooth potential

A simple Ansatz
$$V = C_1 e^{2k_1\phi} + C_2 e^{2k_2\phi}$$

gives a model that 1) allows for non-trivial flows between fixed points 2) is solvable

A change of variables turns the Einstein equations into an integrable (Toda lattice) system if $k_2 = \frac{16}{9k_1}$

$$ds^{2} = F_{1}^{\frac{8}{9k^{2}-16}} F_{2}^{\frac{9k^{2}}{2(16-9k^{2})}} \left(-e^{2\alpha^{1}u} dt^{2} + e^{-\frac{2}{3}\alpha^{1}u} d\vec{y}^{2} \right) + F_{1}^{\frac{32}{9k^{2}-16}} F_{2}^{\frac{18k^{2}}{16-9k^{2}}} du^{2}$$

$$\phi = -\frac{9k}{9k^{2}-16} \ln F_{1} + \frac{9k}{9k^{2}-16} \ln F_{2}$$

$$F_{s}(u-u_{0s}) = \begin{cases} \sqrt{\frac{|C_{s}|}{2|E_{s}|}} \sinh\left[\mu_{s}(u-u_{0s})\right], & \text{if} \quad \eta_{ss}C_{s} > 0, \eta_{ss}E_{s} > 0, \\ \sqrt{\frac{|C_{s}|}{2|E_{s}|}} \sin\left[\mu_{s}(u-u_{0s})\right], & \text{if} \quad \eta_{ss}C_{s} > 0, \eta_{ss}E_{s} < 0, \\ \sqrt{\frac{|C_{s}|}{2|E_{s}|}} \cosh\left[\mu_{s}(u-u_{0s})\right], & \text{if} \quad \eta_{ss}C_{s} > 0, E_{s} = 0, \\ \sqrt{\frac{|C_{s}|}{2|E_{s}|}} \cosh\left[\mu_{s}(u-u_{0s})\right], & \text{if} \quad \eta_{ss}C_{s} < 0, \eta_{ss}E_{s} > 0, \end{cases}$$
$$s = 1, 2, \quad \mu_{1} = \sqrt{\left|\frac{3E_{1}}{2}(k^{2} - \frac{16}{9})\right|}, \quad \mu_{2} = \sqrt{\left|\frac{3E_{2}}{2}\left(\left(\frac{16}{9}\right)^{2}\frac{1}{k^{2}} - \frac{16}{9}\right)\right|}.$$

$$E_1 + E_2 + \frac{2}{3}\alpha_1^2 = 0 \qquad \qquad u_{01}, u_{02}$$

 $\alpha_1 = 0$ Poincaré invariant vacuum solutions

 $\alpha_1 \neq 0$ finite-temperature solutions Regularity of the horizon fixes $E_1, E_2(\alpha_1)$

Vacuum flows

Figure: Dilaton as a function of u: A) $u < u_{02}$, B) $u_{02} < u < u_{01}$, C) the dilaton for $u > u_{01}$, $u_{01} = 1$. For all $u_{01} = 1$, $u_{02} = 0$, $E_1 = -E_2 = -1$, $C_1 = -C_2 = -1$, k = 0.4, 1, 1.2.

flow to AdS

Figure: The behaviour of the dilaton (solid lines) and its asymptotics at infinity (dashed lines) for $u_{01} = u_{02} = 0$, $C_1 = -C_2 = -1$, $E_1 = -E_2 = -1$ and different values of k. From bottom to top k = 0.4, 1, 1.2.

- $\begin{array}{ll} & -- & (u_{01}, \, u_{02}) = (0, \, 1.1), & E = 28 \\ & -- & (u_{01}, \, u_{02}) = (0, \, 1.06), & E = 28 \\ & -- & (u_{01}, \, u_{02}) = (0, \, 1), & E = 30 \\ & -- & (u_{01}, \, u_{02}) = (0, \, 1.021), & E = 28 \\ & -- & (u_{01}, \, u_{02}) = (0, \, 1), & E = 28 \\ & -- & (u_{01}, \, u_{02}) = (0, \, 1.1), & E = 23.5 \end{array}$
- $---(u_{00}, u_{00}) = (0, 1)$ E = 25.7

Running of the coupling

Only the type C solutions are non-singular (in the Gubser's sense) and can be promoted to regular BH solutions at finite T There are BH solutions that interpolate from CR(UV) to AdS(IR)

Summary

Bottom-up holographic models can be used to approach a more realistic description of the QGP phase

Simple models can be useful to gain insight into general aspects

CR solutions: deviation from conformality results in longer thermalization and even breakdown of hydro at the critical point

More refined potentials can be used to embed CR into a realistic model (work in progress)

Outlook

Match the collective modes of CR to some hydro model, understand the appearance of branch cut

Relevant for RHIC / LHC ??

Explore the thermodynamics and fluctuations of the flows

Charged BH solutions

Other solvable potentials (three exponentials...)