On the thermodynamics and phase structure of QCD

Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute

Dubna, February 29th 2012

Heavy ion collisions

<image>

ALICE, LHC

Simulation of a heavy ion collision

UrQMD Frankfurt/M

STAR, RHIC

Heavy ion collisions

UrQMD Frankfurt/M

ALICE, LHC

Simulation of a heavy ion collision

STAR, RHIC

Heavy ion collisions

Heavy-ion collision timescales and "epochs" @ RHIC

Strickland

Phase diagram of QCD

Fukushima

From the quark-gluon plasma to the hadron gas

e.g. finite volume scaling: Braun, Klein, Piasecki, Schaefer '10-11

free energy

Yang-Mills theory

 $\partial_t \Gamma_k[\phi] =$

free energy

quark quantum fluctuations

NJL/PNJL model

Naturally encorporates PQM/PNJL models as specific low order trunations

Confinement

Free energy $F_{q\bar{q}}$ of a quark - antiquark pair

$$\Phi = e^{-\frac{1}{2T}F_{q\bar{q}}(\infty)}$$

 $F_{q\bar{q}} \simeq \sigma r$

•Confinement $\Phi = 0$

•Deconfinement $\Phi \neq 0$

string breaking at $r\approx 1 fm$

$\overbrace{r}^{r} \qquad F_{q\bar{q}} \simeq \text{const.}$

Polyakov loop

$$\Phi = \frac{1}{3} \langle \operatorname{Tr} \mathcal{P} \exp\{ ig \int_0^{1/T} dx_0 A_0 \} \rangle$$

Confinement

effective potential

$$V[A_0] = -\frac{1}{2} \operatorname{Tr} \log \langle AA \rangle [A_0] + O(\partial_t \langle AA \rangle) + \operatorname{Tr} \log \langle C\bar{C} \rangle [A_0] + O(\partial_t \langle C\bar{C} \rangle)$$

free energy

Confinement

Order parameter

Braun, Gies, JMP '07

$T_c = 276 \pm 10 \,\mathrm{MeV}$

 $T_c/\sqrt{\sigma} = 0.658 \pm 0.023$

lattice : $T_c/\sqrt{\sigma} = 0.646$

thermodynamics

Yang-Mills pressure

chiral symmetry broken

RG picture

Flow for four-fermion coupling $\hat{\lambda}_\psi = \lambda_\psi k^2$ with infrared scale k

$$k\partial_k \hat{\lambda}_{\psi} = 2\hat{\lambda}_{\psi} - A\left(\frac{T}{k}\right)\hat{\lambda}_{\psi}^2 - B\left(\frac{T}{k}\right)\hat{\lambda}_{\psi}\alpha_s - C\left(\frac{T}{k}\right)\alpha_s^2 + \cdots$$

dynamical hadronisation

Flow for four-fermion coupling $\hat{\lambda}_{\psi} = \lambda_{\psi} k^2$ with infrared scale k

 $\left(\begin{array}{c} \otimes \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \otimes \\ \\ \end{array} \right) + \frac{1}{2} \left(\begin{array}{c} \otimes \\ \\ \\ \end{array} \right)$

+ ...

 $\left(\begin{array}{c} \otimes \\ \end{array} \right) - \left(\begin{array}{c} \otimes \\ \end{array} \right) - \left(\begin{array}{c} \otimes \\ \end{array} \right) + \frac{1}{2} \left(\begin{array}{c} \end{array} \right)$

dynamical hadronisation

Full dynamical QCD: $N_f = 2$ & chiral limit

Phase structure

0.8

0.6

0.4

0.2

0

Braun, Haas, Marhauser, JMP '09

•
$$T_{\chi} \simeq T_{\rm conf} \simeq 180 {\rm MeV}$$

• Width $\Delta T_{\rm conf} \simeq \pm 20 {\rm MeV}$

• $T_{\rm conf, FRG} \lesssim T_{\rm conf, lattice}$

Log of dual condensate, m=60 MeV

Full dynamical QCD: $N_f = 2$ & chiral limit

Phase structure

Chiral phase structure

Nature of the RW endpoint

 ∞

Phase structure

Braun, Haas, Marhauser, JMP '09

$$\psi_{\theta}(t+\beta,\vec{x}) = -\psi(t,x)$$

dynamical Polyakov-extended models

Potential

Fermionic fluctuations

 $\Omega[\Phi, \Phi, \sigma, \vec{\pi}]$

Herbst, JMP, Schaefer '10

Mesonic potential

 $V[\sigma, \vec{\pi}]$

Polyakov-loop Potential

 $U[\Phi, \bar{\Phi}]$

Fit to YM-thermodynamics

fermionic fluctuations

mesonic fluctuations

quark fluctuations change glue dynamics

 $T_{0 \mathrm{YM}} \to T_0(N_f, \mu; m_q)$

estimated via HTL/HDL computation

Schaefer, JMP, Wambach '07

+

Polyakov-extended models as reduced QCD

Potential

Polyakov-extended models as reduced QCD

Full dynamical QCD

Full dynamical QCD

a glimpse at baryons

..., Ratti et al '04, ..., Brauner et al '08,, Strodthoff et al '11 FRG

a glimpse at multi-scatterings

JMP, Rennecke

a glimpse at strong magnetic fields

Summary & outlook

Phase diagram of QCD

- Phase structure and thermodynamics at finite T & μ

Summary & outlook

Phase diagram of QCD

- Phase structure and thermodynamics at finite T & μ
- 2+1 flavours, baryons, phenomenology, dynamics
- QCD meets cold quantum gases: two-colour QCD

Haas, Khan, JMP, Rennecke, Scherer

Summary & outlook

Phase diagram of QCD

- Phase structure and thermodynamics at finite T & μ
- 2+1 flavours, baryons, phenomenology, dynamics
- QCD meets cold quantum gases: two-colour QCD

EpisodeIII: QGP meets ultracold atoms (Hirschegg August 25th -31st)

Hadronic properties

- dynamical hadronisation
- dynamics