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S.N. Nedelko Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization

An overall task pursued by most of the approaches to QCD vacuum structure is an identification of
the properties of nonperturbative gauge field configurations able to provide a coherent resolution of
the confinement, the chiral symmetry breaking, the UA(1) anomaly and the strong CP problems, both
in terms of color-charged fields and colorless hadrons.

Finite classical action, pure gauge singularities ⇔ Global minima of the effective quantum action

Instantons, monopoles, vortices, double-layer domain walls ⇔ Defects in the initally homogeneous background
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• Confinement of both static and dynamical quarks −→W (C) = 〈Tr P ei
∫
C dzµÂµ〉

S(x, y) = 〈ψ(y)ψ̄(x)〉

• Dynamical Breaking of chiral SUL(Nf)× SUR(Nf) symmetry −→ 〈ψ̄(x)ψ(x)〉

• UA(1) Problem −→ η′ (χ, Axial Anomaly)

• Strong CP Problem −→ Z(θ)

• Colorless Hadron Formation: −→ Effective action for colorless collective modes:
hadron masses, formfactors, scattering

Light mesons and baryons, Regge spectrum of excited states of light hadrons,
heavy-light hadrons, heavy quarkonia

What would be a formalism for coherent simultaneous description
of all these nonperturbative features of QCD?

QCD vacuum as a medium characterized by certain condensates,
quarks and gluons - elementary coloured excitations (confined),

mesons and baryons - collective colourless excitations (masses, form factors, etc)
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I Effective action of SU(3) YM theory, global minima of the effective action.

I Gluon condensation, Weyl reflections, CP: kink-like gauge field configurations
and domain wall network as QCD vacuum

I Confinement and the spectrum of charged field fluctuations, color charged quasi-particles

I Impact of the strong electromagnetic fields on the QCD vacuum structure

I Formulation of the domain model.

I Testing the model on the strandard set of problems of pure gluodynamics: σ, χ, 〈F 2〉.

I Chirality of quark modes. Realisation of chiral symmetry and quark condensate:
UA(1) and SUL(N)× SUR(N).

I UA(1) and the strong CP problem. Anomalous Ward Identities.

I Nonlocal effective meson Lagrangian: hadronization scheme and meson masses.
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Pure Yang-Mills vacuum (no quarks present):

〈: g2F 2 :〉 6= 0, χ =

∫
d4x〈Q(x)Q(0)〉 6= 0, 〈Q(x)〉 = 0

Topological charge density Q(x) = g2

32π2F
a
µν(x)F̃ a

µν(x)
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Visualizations of Quantum Chromodynamics (QCD)Buried treasure in the sand of the QCD vacuum
P.J. Moran,Derek B. Leinweber, Centre for the Subatomic Structure of Matter (CSSM), University of Adelaide, Australia
arXiv:0805.4246v1 [hep-lat], 2008

Topological charge density Q(x) = g2

32π2F
a
µν(x)F̃ a

µν(x)
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In Euclidean functional integral for YM theory one has to allow the gluon condensate to be nonzero:

Z = N

∫
FB

DA exp{−S[A]}

FB = {A : lim
V→∞

1

V

∫
V

d4xg2F a
µν(x)F a

µν(x) = B2}, B2 6= 0.

Separation of the long range modes Ba
µ and local fluctuations Qa

µ in the background Ba
µ, background

gauge fixing condition (D(B)Q = 0): Aa
µ = Ba

µ + Qa
µ

1 =

∫
B

DBΦ[A,B]

∫
Q

DQ

∫
Ω

Dωδ[Aω −Qω −Bω]δ[D(Bω)Qω]

Qa
µ – local (perturbative) fluctuations of gluon field with zero gluon condensate: Q ∈ Q;

Ba
µ are long range field configurations with nonzero condensate: B ∈ B.

Z = N ′
∫
B

DB

∫
Q

DQ det[D(B)D(B + Q)]δ[D(B)Q] exp{−S[B + Q]}

Self-consistency: the character of long range fields has yet to be identified by the dynamics of fluctuations:

Z = N ′
∫
B

DB exp{−Seff [B]}.

Global minima of Seff [B] – field configurations that are dominant in the thermodynamic limit V →∞.
L. D. Faddeev,“Mass in Quantum Yang-Mills Theory”, arcxiv:0911.1013v1[math-ph]
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The Abelian B̂µ(x) part of the gauge fields

Âµ(x) = B̂µ(x) + X̂µ(x), [B̂µ(x), B̂ν(x)] = 0

L. D. Faddeev, A. J. Niemi (2007); Kei-Ichi Kondo, Toru Shinohara, Takeharu Murakami( 2008); Y.M. Cho (1980, 1981); S.V. Shabanov (1989,1999)

Covariantly constant Abelian (anti-)self-dual fields

Ba
µ = −1

2
naBµνxν, B̃µν = ±Bµν

are stable against local fluctuations Q. Explicit one-loop effective action:

S1−loop
eff = B2

[
11

24π2
ln
λB

Λ2
+ ε0

]
. (1)

H. Leutwyler (1980,1981); P. Minkowski (1981); H. Pagels, and E. Tomboulis (1978); H. D. Trottier and R. M. Woloshyn (1993).

Effective action for covariantly constant Abelian (anti-)self-dual field within the Functional RG:

A. Eichhorn, H. Gies, J. M. Pawlowski, Phys. Rev. D83 (2011) [arXiv:1010.2153 [hep-ph]]
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Effective Lagrangian

Consider the following Ginsburg-Landau effective Lagrangian for the soft gauge fields satisfying the re-
quirements of invariance under the gauge group SU(3) and space-time transformations,

Leff = −1

4

(
Dab
ν F

b
ρµD

ac
ν F

c
ρµ + Dab

µ F
b
µνD

ac
ρ F

c
ρν

)
− Ueff

Ueff =
1

12
Tr

(
C1F̂

2 +
4

3
C2F̂

4 − 16

9
C3F̂

6

)
,

where

Dab
µ = δab∂µ − iÂab

µ = ∂µ − iAc
µ(T c)ab, F a

µν = ∂µA
a
ν − ∂νAa

µ − ifabcAb
µA

c
ν,

F̂µν = F a
µνT

a, T abc = −ifabc Tr
(
F̂ 2
)

= F̂ ab
µνF̂

ba
νµ = −3F a

µνF
a
µν ≤ 0,

gAµ → Aµ.

lim
V→∞

V −1

∫
V

d4x〈F 2〉 6= 0 −→ C1 > 0, C2 > 0, C3 > 0.

F a
µνF

a
µν = 4b2

vacΛ
4 > 0, b2

vac =

(√
C2

2 + 3C1C3 − C2

)
/3C3.
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Consider Aµ fields with the Abelian field strength
F̂µν = n̂Bµν,

where matrix n̂ can be put into Cartan subalgebra

n̂ = T 3 cos ξ + T 8 sin ξ, 0 ≤ ξ < 2π.

It is convenient to introduce the following notation:

b̂µν = n̂Bµν/Λ
2 = n̂bµν, bµνbµν = 4b2

vac,

ei = b4i, hi =
1

2
εijkbjk, e

2 + h2 = 2b2
vac.

(eh) = |e| |h| cosω, (eh)2 = h2
(
2b2 − h2

)
cos2 ω.

Hence the effective potential takes the form

Ueff = Λ4

[
−C1b

2
vac + C2

(
2b4

vac − (eh)2
)

+
1

9
C3b

2 (10 + cos 6ξ)
(

4b4
vac − 3 (eh)2

)]
.

There are twelve discrete global degenerated minima at the following values of the variables h, ω and ξ

h2 = b2
vac > 0, ω = πk (k = 0, 1), ξ =

π

6
(2n+ 1) (n = 0, . . . , 5).
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Kink-like configurations

Discrete minima mean that there exist kink-like field configurations interpolating between these minima.
For instance, for the angle ω

Leff = −1

2
Λ2b2

vac∂µω∂µω − b4
vacΛ

4
(
C2 + 3C3b

2
vac

)
sin2 ω,

with the sine-Gordon equation of motion
E3
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Figure 1: Kink profile in terms of the components of the chromomagnetic
and chromoelectric field strength (left), and a two-dimensional slice for the
topological charge density in the presence of a single kink measured in units of
g2F bαβF

b
αβ (right). Chromomagnetic and chromoelectric fields are orthogonal

to each other inside the wall (green color).

∂2ω = m2
ω sin 2ω, m2

ω = b2
vacΛ

2
(
C2 + 3C3b

2
vac

)
,

with kink solution

ω = 2 arctan
(

exp
(√

2mωx1

))
,

which can be treated as domain wall.
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Domain wall network
Denote the general kink configuration:

ζ(µi, η
i
νxν − qi) =

2

π
arctan exp(µi(η

i
νxν − qi))

µi – inverse width of the kink, ηiν – a normal vector to the plane of the wall, qi = ηiνx
i
ν with xiν - coordinates

of the wall.

Figure 2: Two-dimentional slice of a multiplicative superposition of two kinks with normal vectors anti-parallel to each other
ω(x1) = πζ(µ1, x1 − a1)ζ(µ2,−x1 − a2).
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Additive superposition of infinitely many such pairs

ω(x1) = π

∞∑
j=1

ζ(µj, x1 − aj)ζ(µj+1,−x1 − aj+1)

gives a layered topological charge structure in R4, Fig.3.

Figure 3: Two-dimentional slice of layered topological charge distribution in R4 . The action density is equal to the same nonzero
constant value for all three configurations. The LHS plot represents configuration with infinitely thin planar Bloch domain wall
defects, which is Abelian homogeneous (anti-)self-dual field almost everywhere in R4, characterized by the nonzero absolute
value of topological charge density almost everywhere proportional to the value of the action density. The most RHS plot shows
the opposite case of very thik kink network. Green color corresponds to the gauge field with infinitesimally small topological
charge density. The most LHS configuration is confining (only colorless hadrons can be excited) while the most RHS one supports
the color charged quasiparticles as elementary excitations.
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One may go further and consider a product

ω(x) = π
k∏
i=1

ζ(µi, η
i
νxν − qi). (2)

For an appropriate choice of normal vectors ηi this superposition represents a lump of anti-selfdual field in
the background of the selfdual one, in two, three and four dimensions for k = 4, 6, 8 respectively.

Figure 4: A two-dimensional slice of the four-dimentional lump of anti-selfdual field in the background of the self-dual configura-
tion. The domain wall surrounding the lamp in the four-dimensional space is given by the multiplicative superposition of eight
kinks as it is defined by Eq.(2).

divH 6= 0

BLTP, July 3, 2013
15
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Gauge field parameterization

Cho-Faddev-Niemi-Shabanov-Kondo: the Abelian part V̂µ(x) of the gauge field Âµ(x) is separated mani-
festly,

Âµ(x) = V̂µ(x) + X̂µ(x),

V̂µ(x) = B̂µ(x) + Ĉµ(x),

B̂µ(x) = [naAa
µ(x)]n̂(x) = Bµ(x)n̂(x),

Ĉµ(x) = g−1∂µn̂(x)× n̂(x),

X̂µ(x) = g−1n̂(x)×
(
∂µn̂(x) + gÂµ(x)× n̂(x)

)
,

Âµ(x) = Aa
µ(x)ta, n̂(x) = na(x)ta, nana = 1

∂µn̂× n̂ = ifabc∂µn
anbtc, [ta, tb] = ifabctc.

The field V̂µ is the Abelian field:
[V̂µ(x), V̂ν(x)] = 0

F̂µν(x) = n̂(x)
[
∂µBν − ∂νBµ + ig−2fabcna∂µn

b(x)∂νn
c(x)

]
L. D. Faddeev, A. J. Niemi // Nucl. Phys. B. 776. 2007
Kri-Ichi Kondo, Toru Shinohara, Takeharu Murakami // arXiv:0803.0176v2 [hep-th] 2008
Y.M. Cho, Phys. Rev. D 21, 1080(1980); Y.M. Cho, Phys. Rev. D 23, 2415(1981).
S.V. Shabanov, Phys. Lett. B 458, 322(1999); Phys. Lett. B 463, 263(1999),

Teor. Mat. Fiz., Vol. 78, No. 3, pp. 411-421, 1989.
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The general kink network is then given by additive superposition of lumps (2)

ω = π

∞∑
j=1

k∏
i=1

ζ(µij, η
ij
ν xν − qij).

Correponding topological charge density is shown in Fig.5. The LHS plot in Figs.5 and 3 represents con-
figuration with infinitely thin domain walls, that isAbelian homogeneous (anti-)self-dual field almost every-
where in R4, characterized by the nonzero absolute value of topological charge density which is constant
and proportional to the value of the action density almost everywhere.
The most RHS plots Figs.3 and 5 show the opposite case of the network composed of very thik kinks. Green
color corresponds to the gauge field with infinitesimally small topological charge density. Study of the
spectrum of clorless and color charged fluctuations indicates that the most LHS configuration is expected to
be confining (only colorless hadrons can be excited as particles) while the most RHS one (crossed orthogonal
field) supports the color charged quasi-particles as the dominant elementary excitations.

Figure 5: Three-dimensional slices of the kink network - additive superposition of numerous four-dimensional lamps.
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Impact of electromagnetic fields on “QCD vacuum“.

• Relativistic heavy ion collisions - extremely strong electromagnetic fields
V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,

V. P. Konchakovski and S. A. Voloshin, Phys. Rev C 84 (2011)
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One-loop quark contribution to the effective potential in the presence of arbitrary homogenous
Abelian fields

Ueff(G) = − 1

V
ln

det(i6D −m)

det(i6∂ −m)
=

1

V

∫
V

d4xTr

∞∫
m

dm′ [S(x, x|m′)− S0(x, x|m′)] |

U ren
eff (G) =

B2

8π2

∞∫
0

ds

s3
Trn

[
sκ+ coth(sκ+)sκ− coth(sκ−)− 1− s2

3
(κ2

+ + κ2
−)

]
e−

m2

B s,

κ± =
1

2B

√
Qσ± =

1

2B

(√
2(R +Q)±

√
2(R−Q)

)
,

R = (H2 − E2)/2 + n̂2B2 + n̂B(H cos(θ) + iE cos(χ) sin(ξ))

Q = n̂BH cos(ξ) + in̂BE sin(θ) cos(φ) + n̂2B2(sin(θ) sin(ξ)cos(φ− χ) + cos(θ)cos(ξ))

Y. M. Cho and D. G. Pak, Phys.Rev. Lett., 6 (2001) 1047
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Hi = Hδi3, Ej = Eδj1, H
c = {B, θ, φ}, Ec = {B, ξ, χ}
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H 6= 0, E 6= 0 and arbitrary gluon field

=(Ueff) = 0 =⇒ cos(χ) sin(ξ) = 0, sin(θ) cos(φ) = 0

Effective potential (in units of B2/8π2) for the electric E = .5B and the magnetic H = .9B fields as
functions of angles θ and ξ (φ = χ = π/2 )

Minimum is at θ = π and ξ = π/2:
orthogonal to each other chromomagnetic and chromoelectric fields: Q = 0.

Strong electro-magnetic field plays catalyzing role for deconfinement and anisotropies?!

B.V. Galilo and S.N. Nedelko, Phys. Rev. D84 (2011) 094017.

M. D’Elia, M. Mariti and F. Negro, Phys. Rev. Lett. 110, 082002 (2013)

G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber and A. Schaefer, JHEP 1304, 130 (2013)
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Spectrum of the charged field in (anti-)selfdual background

Consider the eigenvalue equation of the charged field in the kink-like background

− (∂µ − iBµ(x))2 φ = λφ.

The homogeneous (anti-)self-dual fields

Bµ(x) = Bµνxν, B̃µν = ±Bµν, BµαBνα = B2δµν, B = Λ2bvac,

The eigenvalue equation can be rewritten as follows[
β+
±β± + γ+

+γ+ + 1
]
φ =

λ

4B
φ

where creation and annihilation operators β±, β+
± , γ±, γ+

± are expressed in terms of the operators α+, α,

β± =
1

2
(α1 ∓ iα2) , γ± =

1

2
(α3 ∓ iα4) , αµ =

1√
B

(Bxµ + ∂µ),

β+
± =

1

2

(
α+

1 ± iα+
2

)
, γ+
± =

1

2

(
α+

3 ± iα+
4

)
, α+

µ =
1√
B

(Bxµ − ∂µ).

The eigenvalues and the square integrable eigenfunctions are

λr = 4B (r + 1) , r = k + n (for self − dual field), r = l + n (for anti− self − dual field) (3)

φnmkl(x) =
1√

n!m!k!l!π2

(
β+

+

)k (
β+
−
)l (

γ+
+

)n (
γ+
−
)m
φ0000(x), φ0000(x) = e−

1
2Bx

2

, (4)

Discrete spectrum. Absence of periodic solutions is treated as confinement of the charged field.

D2(x)G(x, y) = −δ(x− y) G(x, y) = eixByH(x− y) H̃(p2) =
1− e−p2/B

p2

BLTP, July 3, 2013
22



S.N. Nedelko Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization

Orthogonal to each other Euclidean chromoelectric and chromomagnetic fields
∼ pure chromomagnetic field:

B2 = 0, B1 = 2Bx2, B3 = 0, B4 = 0 (Hi = 2Bδi2, Ei = −2Bδi3)

Φ(x) = exp(−ip4x4 − ip3x3)ϕ(x1, x2)[
−∂2

2 + (p1 + 2Bx2)2 + p2
3 + p2

4

]
χ = λχ

Square integrable over x1, x2 solution

ϕn(x1, x2) =

∫
dp1f (p1)e−ip1x1 exp

{
−B

(
x2 +

p1

2B

)2
}
Hn

(√
2B
(
x2 +

p1

2B

))
λn(p2

3, p
2
4) = 2B

(
2n + 1 +

p2
3

2B
+
p2

4

2B
)

)
Continuous spectrum similar to Landau levels. Periodic eigenfunction can be treated as the presense
of charged quasi-particles moving along the chromomagnetic field:

p2
0 = p2

3 + µ2
n, µ2

n = 2B(2n + 1)
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V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,

V. P. Konchakovski and S. A. Voloshin, Phys. Rev C 84 (2011)
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π in the region 5fm× 5fm× .2fm× .2fm/c

A bag filled by hundreds of color charged quasi-particles, azimuthal asymmetry

K. A. Bugaev, V. K. Petrov and G. M. Zinovjev, Phys. Atom. Nucl. 76 (2013) 341.
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H  E H  E

Quark contribution to QCD effective 
potential for Abelian gluon field in the 
presence of the strong crossed 
electromagnetic field

Parity

Weyl reflections in the root 
space of color su(3) — kink 
between boundaries of 
Weyl chambers 

Parity transformation -  kink interpolates 
Between self- and antiself-dual Abelian 
gluon configurations

B. Galilo, S. Nedelko,
Phys.Part.Nucl.Lett., 8, 2011;
Phys. Rev. D 84,2011.

<F  > = 02

SU(3) U(1) x U(1)

Dynamical breaking of CP and colour gauge symmetry:

Topological defects(domain walls and lower dim. deffects at their 
intersections) bring disorder into ensemble of vacuum gluon 
 configurations — on average SU(3) and CP are not broken!

Weyl reflections  ?

Strong crossed electromagnetic 
field creates relatively stable 
domain wall defect and thus triggers 
deconfinement of color charged particles 
in the space-time region of the  
relativistic heavy ion collision

Ensemble of domain structured vacuum fields: 
dynamical quark confinement,  chiral symmetry breaking.
In bulk of domain color is confined, color charged quasi-
particles are localized at the boundaries.

Weyl group, CP and the kink-like field configurations  
in the effective SU(3) gauge theory

  

A. Eichorn, et al, 
Phys.Rev.D83, 2011
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Charged field fluctuations in the background of a domain wall
A single planar domain wall of the Bloch type.

Scalar color charged field

The quadratic part of the action for the scalar field in the background field of a planar kink with finite width placed at x1 = 0
looks as

S[Φ] = −
∫
d4x(DµΦ)†(x)DµΦ(x) =

∫
d4xΦ†(x)D2Φ(x),

Dµ = ∂µ + iB̂µ, B̂µ = −n̂Bµ(x).

Here n̂ is a constant color matrix, Bµ is the vector potential for the planar Bloch domain wall.

B1 = H2(x1)x3 +H3(x1)x2,

B2 = B3 = 0, B4 = −Bx3,

H2 = B sinω(x1), H3 = −B cosω(x1),

ω(x1) = 2 arctg expµx1.

A kink with finite width is a regular everywhere in R4 function. However, there is a peculiarity related to the chosen gauge of the
background field.

D2 = D̃2 + i∂µB̂µ,

D̃2 = ∂2 + 2iB̂µ∂µ − iB̂µB̂µ = (∂1 − in̂H2(x1)x3 − in̂H3(x1)x2)
2 + ∂2

2 + ∂2
3 + (∂4 + in̂Bx3)

2 − i∂1B1

∂µB̂µ = −n̂H ′2(x1)x3 − n̂H ′3(x1)x2.

The action can be written as

S[Φ] =

∫
d4xΦ†(x)D̃2Φ(x)− i

∫
d4xΦ†(x)n̂Φ(x) [H ′2(x1)x3 +H ′3(x1)x2] .
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Figure 6: Derivatives of the components of the chromomagnetic field are plotted for two values of the width parameter µ/
√
B = 3, 10.The coordinate x1

is given in units of 1/
√
B. In the limit of infinitely thin domain wall (µ/

√
B → ∞) the derivatives develop the delta-function singularities at the location

of the wall.

It should be noted that the integral in the second line is equal to zero if Φ†(x)n̂Φ(x) is an even function of x2 and x3.
A continuity of the normal to the wall component of the total (through the whole hypersurface of the wall) charged current offers
a reliable guiding principle for identification of the matching conditions. Continuity of the integral current means that the surface
terms do not appear under integration by parts in the action

lim
ε→0

[J1(ε)− J1(−ε)] = 0,

Jµ(x1) =

∫
d3xΦ†(x)DµΦ(x),

d3x = dx2dx3dx4.

Moreover, this requirement restricts the form of the eigenfunctions in such a way that the surface terms associated with the gauge
dependent delta-function singularuties in ∂µB̂µ, vanish as well.
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Confined fluctuations in the bulk: x1 6= 0
Consider the eigenvalue problem

−D̃2Φ = λΦ.

for the functions square integrable in R4 and satisfying the integral current continuity condition .
For all x1 6= 0 the operator D̃2 takes the form

D̃2 = (∂1 ± in̂Bx2)
2 + ∂2

2 + ∂2
3 + (∂4 + in̂Bx3)

2

“+” corresponds to the anti-selfdual configuration (x1 > 0) and “-” is for the self-dual one (x1 < 0). Respectively the square
integrable solutions are

Φkl =

∫
dp1dp4f(p1)g(p4) exp

{
±ip1x1 + ip4x4 −

1

2
|n̂|B(x2 + p1/|n̂|B)2 − 1

2
|n̂|B(x3 + p4/|n̂|B)2

}
×Hk

(√
|n̂|B

[
x2 +

p1

|n̂|B

])
Hl

(√
|n̂|B

[
x3 +

p4

|n̂|B

])
,

where Hm are the Hermite polynomials. The eigenvalues are

λkl = 2|n̂|B(k + l + 1), k, l = 0, 1, . . . .

The amplitudes f(p1) and g(p4) have to provide the square integrability of the eigenfunctions in x1 and x4. The integral
current through the domain wall is continuous if both f andHk are odd or even functions simultaneously under the combined
change p1 → −p1 and x2 → −x2

f(−p1)Hk(−z) = f(p1)Hk(z).

This property also guarantees the absence of the gauge specific contribution to the action related to the derivative of H3.
The eigenfunctions are of the bound state type with the purely discrete spectrum. Field fluctuations of this type can be seen as
confined. The eigenvalues coincide with those for the purely homogeneous (anti-)selfdual Abelian field. In this sense domain
wall defect does not destroy confinement of dynamical color charged fields. The eigenfunctions are restricted by the correlated
evenness condition, while in the case of the the homogeneous field the properties of the amplitude f(p1) and the polynomial Hk

are mutually independent.
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Color charged quasi-particles on the wall: x1 = 0

On the wall the chromomagnetic and chromoelectric fields are orthogonal to each other (see Fig.6). In conformity with
integral current continuitythe absence of the charged current off the infinitely thin domain wall requires

∂1Φ|x1=0 = 0,

and the eigenvalue problem on the wall takes the form[
−∂2

2 − ∂2
3 + n̂2B2x2

3 + (i∂4 − n̂Bx3)
2
]

Φ = λΦ

with the solution
Φkp2p4(x2, x3, x4) = eip2x2+ip4x4e−

|n̂|B√
2 (x3− p4

2|n̂|B)
2

Hk

[√√
2|n̂|B

(
x3 −

p4

2|n̂|B

)]
,

λk(p
2
2, p

2
4) =

√
2|n̂|B(2k + 1) +

p2
4

2
+
p2

2

2
, k = 0, 1, 2, . . .

The spectrum of the eigenmodes on the wall is continuous, it depends on the momentum p2 longitudinal to the chromo-
magnetic field and Euclidean energy p4, the corresponding eigenfunctions are oscillating in x2 and x4.
In the transverse to chromomagnetic field direction x3 the eigenfunctins are bounded and the eigenvalues display the Landau level
structure.
This can be treated as the lack of confinement - the color charged quasi-particles can be excited on the wall.
The continuation p4 = −p0 leads to the dispersion relation for the quasi-particles with the masses µn

p2
0 = p2

2 + µ2
k, µ2

k = 2
√

2(2k + 1)|n̂|B, k = 0, 1, 2, . . . .
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Formulation of the Domain Model

Euclidean partition function is defined as

Z(θ) = lim
V,N→∞

N
∫

Ωα,~β

dΩα,~β

N∏
i=1

∫
B

dBi

∫
F iψ

Dψ(i)Dψ̄(i)

∫
F iQ

Dµ[Qi]e−S
QCD
Vi

[Q(i)+B(i),ψ(i),ψ̄(i)]−iθQVi [Q
(i)+B(i)]

Dµ = δ[D(B(i))Q(i)]∆FP[B(i), Q(i)]

The thermodynamic limit: v−1 = N/V = const, as V,N → ∞. Functional spaces F i
Q and F i

ψ are specified by BCs at
(x− zi)2 = R2

n̆iQ
(i)(x) = 0, i 6ηi(x)ei(α+βaλa/2)γ5ψ(i)(x) = ψ(i)(x), ψ̄(i)ei(α+βaλa/2)γ5i 6ηi(x) = −ψ̄(i)(x),

ηµi =
(x− zi)µ

|x− zi|
, n̆i = naiT

a, T a−adjoint representation.∫
Σ

dσiZi(σ) =⇒ Ensemble of ”domain-” or ”cluster-like” structured background fields with the field strength tensor

F a
µν(x) =

N∑
j=1

n(j)aB(j)
µν θ(1− (x− zj)2/R2), B(j)

µνB
(j)
µρ = B2δνρ, B2 = const

B̃(j)
µν = ±B(j)

µν , n̂(j) = t3 cos ξj + t8 sin ξj, ξj ∈ {
π

6
(2k + 1), k = 0, . . . , 5}

Free parameters: the field strength B and the radius R. Domains are hyperspherical, centered at random points zj.∫
B

dBi · · · =
1

24π2

∫
V

d4zi
V

2π∫
0

dϕi

π∫
0

dθi sin θi

2π∫
0

dξi

3,4,5∑
l=0,1,2

δ(ξi −
(2l + 1)π

6
)

π∫
0

dωi
∑
k=0,1

δ(ωi − πk) . . .

BLTP, July 3, 2013
30



S.N. Nedelko Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization

Testing The Model In Pure Yang-Mills System.

• Mean topological charge is zero. At finite volume V = vN the distribution of the topological charge −Nq ≤ Q ≤ Nq is
symmetric about Q = 0.

Q(x) =
g2

32π2
F̃ (x)F (x), PN(Q) =

N !

2N (N/2−Q/2q)! (N/2 +Q/2q)!
,

Q =

∫
V

d4xQ(x) = q(N+ −N−), q =
B2R4

16
, N+ +N− = N

• Gluon condensate: 〈: g2F a
µν(x)F a

µν(x) :〉 = 4B2

• Topological susceptibility for pure YM χ =
∫
d4x〈Q(x)Q(0)〉 = B4R4/128π2

• The area law: Wilson loop for a circular contour with radius L >> R for Nc = 3

W (L) = lim
V,N→∞

N∏
j=1

∫
dσj

1

Nc
Tre

i
∫
SL

dσµν(x)B̂µν(x)
= e−σπL

2+O(L),

σ = Bf(πBR2), f(z) =
2

3z

3−
√

3

2z

2z/
√

3∫
0

dx

x
sinx− 2

√
3

z

z/
√

3∫
0

dx

x
sinx


Fitting (B,R) :

√
B = 947MeV, R = (760MeV)−1 = 0.26fm

σ = (420MeV)2, χ = (197MeV)4, αs
π 〈F

2〉 = .081GeV4 ; q = 0.15, v−1 = 42fm−4

Here q is a fraction of top. charge per domain, and v−1 is the density of domains .
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Including Quark Fields

I Eigen modes
ψ(x) =

∑
n bnψn(x), ψ̄(x) =

∑
n b̄nψ̄n(x)

6Dψn(x) = λnψn(x),

i 6η(x)eiαγ5ψ(x) = ψ(x), x2 = R2

ψ̄(x)eiαγ5i 6η(x) = −ψ̄(x), x2 = R2.

I Quark determinant and realisation of UA(1) and SUL(Nf)× SUL(Nf)

Anomaly reduces UA(1) to a discrete subgroup. Unlike UA(1) flavour chiral symmetry is broken spontaneously.

〈ψ̄(x)ψ(x)〉 = − 1

π2R3
Tr

∞∑
k=1

k

k + 1

[
M(1, k + 2, z)− z

k + 2
M(1, k + 3,−z)− 1

]
z = n̂BR2/2 , Tr – color trace (matrix n̂ - diagonal).

With B,R determined from pure gluodynamics 〈ψ̄ψ〉 = −(237.8MeV)3

1 2 3 4

Domain radius R/R
0

0

200

400

600

800

1000

|<
ψ

ψ
>

|1
/3

 (
M

e
V

)

Absolute value of quark con-

densate as a function of domain

radius in units of

R0 = (760MeV)−1.
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Poincaré Recurrence Theorem and The Strong CP-problem

- π  π

 θ

- π  π- π  π

-1

0

1

<
ψ

ψ
>

- π  π

 θ

-1

0

1

<
ψ

 γ
5
 ψ

>

A B

C D

The scalar (A and B) and pseudoscalar (C and D) quark condensates as func-
tions of θ for Nf = 3 in units of ℵ. The plots A and C are for rational
q = 0.15, while B and D correspond to any irrational q, for instance to
q = 3

2.02π2 = 0.15047 . . . which is numerically only slightly different from
0.15. The dashed lines in A and C correspond to discrete minima of the free
energy density which are degenerate for m ≡ 0. The solid bold lines de-
note the minimum which is chosen by an infinitesimally small mass term for
a given θ. Points on the solid line in A, where two dashed lines cross each
other, correspond to critical values of θ, at which CP is broken spontaneously.
This is signalled by the discontinuity in the pseudoscalar condensate in C. For
irrational q, as illustrated in B and D, the dashed lines densely cover the strip
between 1 and −1, and the set of critical values of θ is dense in R.

The set of critical values of the θ is dense in the interval [−π, π]:

Z = lim
V→∞

ZV (θ) = lim
V→∞

ZV (0), lim
V→∞
〈E〉θV ≡ lim

V→∞
〈E〉θ=0

V , lim
V→∞
〈O〉V,θ ≡ 0,

for any CP-even and CP-odd operators E and O respectively, which resolves the problem of CP-violation.

P
φ

θ

A simple example: the Poincaré theorem for uniform motion on a
torus,

θ̇ = bθ, φ̇ = bφ,

where θ and φ are the latitude and longitude of a point on the torus.
If b = bθ/bφ – rational number, trajectory is closed and can be
characterised by an integer winding number. In the case of irrational
b the trajectory is dense on the torus.
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Mass relations

Simultaneously topological succeptibility in QCD with massive quarks

χQCD = − lim
V→∞

1

V

∂2

∂θ2
ZV (θ) = −m〈ψ̄ψ〉

Nf
+O(m2)

is nonzero, independent of θ and consistent (in Euclidean space) with the identity

N 2
fχ

QCD = Nfm
2
πF

2
π +O(m4

π).

F 2
πm

2
π/η = −2m〈ψ̄ψ〉

which indicates a correct implementation of the UA(1) symmetry. In the chiral limit the mass of the η′ is expressed via the
topological succeptibility χYM of pure gluodynamics in agreement with the Witten-Veneziano formula.

m2
η′F

2
π = 2Nfχ

YM +m2
πF

2
π

The anomaly contribution to the free energy suppresses continuous axial U(1) degeneracy in the ground state, leaving only a
residual axial symmetry. This discrete symmetry and flavour SU(Nf)L × SU(Nf)R chiral symmetry in turn are spontaneously
broken with a quark condensate arising due to the asymmetry of the spectrum of Dirac operator in the presense of domains.
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Hadronization: Effective meson action, meson spectrum

Z = N lim
V→∞

∫
DΦQ exp

{
−B

2

h2
Q

g2CQ

∫
dxΦ2

Q(x)−
∑
k

1

k
Wk[Φ]

}
,

CJnl = CJ
l + 1

2ln!(l + n)!
, CS/P =

1

9
, CS/P =

1

18

1 =
g2CQ
B

Γ̃
(2)
QQ(−M 2

Q|B), h−2
Q =

d

dp2
Γ̃

(2)
QQ(p2)|p2=−M2

Q
.

Wk[Φ] =
∑
Q1...Qk

hQ1
. . . hQk

∫
dx1 . . .

∫
dxkΦQ1

(x1) . . .ΦQk(xk)Γ
(k)
Q1...Qk(x1, . . . , xk|B),

Γ
(2)
Q1Q2

= G
(2)
Q1Q2

(x1, x2)− Ξ2(x1 − x2)G
(1)
Q1
G

(1)
Q2
,

Γ
(3)
Q1Q2Q3

= G
(3)
Q1Q2Q3

(x1, x2, x3)−
3

2
Ξ2(x1 − x3)G

(2)
Q1Q2

(x1, x2)G
(1)
Q3

(x3)

+
1

2
Ξ3(x1, x2, x3)G

(1)
Q1

(x1)G
(1)
Q2

(x2)G
(1)
Q3

(x3),

Γ
(4)
Q1Q2Q3Q4

= G
(4)
Q1Q2Q3Q4

(x1, x2, x3, x4)−
4

3
Ξ2(x1 − x2)G

(1)
Q1

(x1)G
(3)
Q2Q3Q4

(x2, x3, x4)

− 1

2
Ξ2(x1 − x3)G

(2)
Q1Q2

(x1, x2)G
(2)
Q3Q4

(x3, x4)

+ Ξ3(x1, x2, x3)G
(1)
Q1

(x1)G
(1)
Q2

(x2)G
(2)
Q3Q4

(x3, x4)

− 1

6
Ξ4(x1, x2, x3, x4)G

(1)
Q1

(x1)G
(1)
Q2

(x2)G
(1)
Q3

(x3)G
(1)
Q4

(x4).

The vertices Γ(k) are expressed via quark loops G(n)
Q with n quark-meson vertices
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G
(k)
Q1...Qk(x1, . . . , xk) =

∫
Σ

dσjTrVQ1
(x1|B(j))S(x1, x2|B(j)) . . . VQk(xk|B(j))S(xk, x1|B(j))

G
(l)
Q1...Ql(x1, . . . , xl)G

(k)
Ql+1...Qk(xl+1, . . . , xk) =

∫
Σ

dσj

×Tr
{
VQ1

(x1|B(j))S(x1, x2|B(j)) . . . VQk(xl|B(j))S(xl, x1|B(j))
}

×Tr
{
VQl+1

(xl+1|B(j))S(xl+1, xl+2|B(j)) . . . VQk(xk|B(j))S(xk, xl+1|B(j))
}
,

bar denotes integration over all configurations of the background field with measure dσj.

All the elements of the effective action are fixed: nonlocal meson-quark vertices VQ1
(x|B) and quark propagators S(x, y|B)

and background field correlators Ξn(x) are given in explicit analytical form.
The quark propagator

S(x, y) = exp

(
− i

2
xµB̂µνyν

)
H(x− y),

H̃(p) =
1

2vΛ2

1∫
0

dse−p
2/2vΛ2

(
1− s
1 + s

)m2/4vΛ2

×
[
pαγα ± isγ5γαfαβpβ +m

(
P± + P∓

1 + s2

1− s2
− i

2
γαfαβγβ

s

1− s2

)]
.
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in the presence of the (anti-)self-dual homogeneous field

B̂µ(x) = −1

2
n̂Bµνxν, B̂µνB̂µρ = 4v2Λ4δνρ,

fαβ =
n̂

vΛ2
Bµν, v = diag(1/6, 1/6, 1/3),

Λ2 =

√
3

2
B.

Quark-meson vertices

VQ ∝ ΓλT (l)(
↔
∇/iΛ)Fnl(

↔
∇

2

/Λ2)

Fnl(s) =

1∫
0

dttl+nest, s =
↔
∇

2

/Λ2,

↔
∇ff ′= ξf

←
∇ −ξf ′

→
∇, ξf = mf/(mf +mf ′),

←
∇µ=

←
∂µ +iBµ,

→
∇µ=

→
∂µ −iBµ.

Ξ2(x− y) =
N

V

∫
V

dzθ(x− z)θ(y − z) =
2

3π
φ

(
(x− y)2

4R2

)
,

φ(ρ2) =

[
3π

2
− 3 arcsin(ρ)− 3ρ

√
1− ρ2 − 2ρ(1− ρ2)

√
1− ρ2

]
.
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mu (MeV) md (MeV) ms (MeV) mc (MeV) mb (MeV) Λ (MeV) g
198.3 198.3 413 1650 4840 319.5 9.96

Meson π ρ K K∗ ω φ
M 140 770 496 890 770 1034
M exp 140 770 496 890 786 1020
fP 126 - 145 - - -
f expP 132 - 157 - - -
h 6.51 4.16 7.25 4.48 4.16 4.94
M∗ 630 864 743 970 864 1087

Meson D D∗ Ds D∗s B B∗ Bs B∗s
M 1766 1991 1910 2142 4965 5143 5092 5292
M exp 1869 2010 1969 2110 5278 5324 5375 5422
fP 149 - 177 - 123 - 150 -

Meson ` j M M exp

π 0 0 140 140
b1 1 1 1252 1235

K 0 0 496 496
K1(1270) 1 1 1263 1270

ρ 0 1 770 770
1 0 1238

a1 1 1 1311 1260
a2 1 2 1364 1320

K∗ 0 1 890 890
1 0 1274

K1(1400) 1 1 1342 1400
K∗2 1 2 1388 1430

Meson ηc J/ψ χc0 χc1 χc2 ψ′ ψ′′

n 0 0 0 0 0 1 2
` 0 0 1 1 1 0 0
j 0 1 0 1 2 1 1
M (MeV) 3000 3161 3452 3529 3531 3817 4120
M exp (MeV) 2980 3096 3415 3510 3556 3770 4040

Meson Υ χb0 χb1 χb2 Υ′ χ′b0 χ′b1 χ′b2 Υ′′

n 0 0 0 0 1 1 1 1 2
` 0 1 1 1 0 1 1 1 0
j 1 0 1 2 1 0 1 2 1
M (MeV) 9490 9767 9780 9780 10052 10212 10215 10215 10292
M exp (MeV) 9460 9860 9892 9913 10230 10235 10255 10269 10355

Mη = 640 MeV, Mη′ = 950 MeV, hη = 4.72, hη′ = 2.55,
√
BR = 1.56.
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Features of the spectrum of light vector and pseudoscalar mesons are driven by the chiral symmetries and are correctly
reproduced by the model quantitatively.

Ba
µ = naBµνxν, B̃µν = ±Bµν, BµαBαν = δµνB

2, B2 = const

D2(x)G(x, y) = −δ(x− y) G(x, y) = eixByH(x− y) H̃(p2) =
1− e−p2/B

p2

H̃f(p | B)→ O

(
exp

{
p2

Λ2

})
, Fn`

(
p2
)
→ O

(
exp

{
p2

Λ2

})
,

Regge behaviour of the spectrum is due to nonlocality of the vertices and propagators.

IM 2
aJ`n =

8

3
ln

(
5

2

)
· Λ2 · n +O(lnn) , for n� `, M2

aJ`n =
4

3
ln 5 · Λ2 · ` +O(ln `) , for `� n.

Heavy-light mesons and heavy quarkonia

I mQ � Λ,mQ � mq, MQq̄ = mQ + ∆
(J)
Qq̄ +O(1/mQ)

I mQ � Λ, MQQ̄ = 2mQ −∆QQ̄, ∆
(P )

QQ̄
= 2∆

(V )

QQ̄
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Summary

Starting with

lim
V→∞

1

V

∫
V

d4xg2F a
µν(x)F a

µν(x) 6= 0.

one arrives at the importance of the lumpy structured gluon configurations (almost everywhere homogeneous abelian (anti-)self-
dual field) and correctly implemented:

• Confinement of both static and dynamical quarks −→W (C) = 〈Tr P ei
∫
C
dzµÂµ〉,

S(x, y) = 〈ψ(y)Pei
∫ x
y
dzµÂµψ̄(x)〉

• Dynamical Breaking of SUL(Nf)× SUR(Nf) −→ 〈ψ̄(x)ψ(x)〉

• UA(1) Problem −→ η′, χ, Axial Anomaly

• Strong CP Problem −→ Z(θ) = Z(0)

• Colorless Hadron Formation: −→ Effective action for colorless collective modes: spectrum, formfactors
(Light mesons and baryons, Regge spectrum of excited states of light hadrons, heavy-light hadrons, heavy quarkonia)

• QCD vacuum is characterized as heterophase mixed state with corresponding phase transition mechanism.
V. I. Yukalov and E. P. Yukalova, PoS ISHEPP 2012, 046 (2012) [arXiv:1301.6910 [hep-ph]]; Phys. Rep. 208 (1991) 395;

• Impact of a strong electromagnetic field as a trigger of deconfinement is indicated.
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