Phase transitions in hot nuclear matter composed of alpha-particles and nucleons

Igor N. Mishustin

Frankfurt Institute for Advanced Studies, Frankfurt am Main and NRC "Kurchatov Institute", Moscow

with L. M. Satarov (FIAS & NRCKI), M. I. Gorenstein (BITP), A. Motornenko (FIAS), V. Vovchenko (FIAS), H. Stöcker (FIAS & GSI)

Recent results -> arXiv: 1811.029024

Contents

- Introduction
- Equation of state (EoS) of iso-symmetric α -N matter with Skyrme effective interaction
- Conditions of Bose-Einstein condensation (BEC) of α 's
- Full phase diagram of α -N matter
- Stable (N-like) and metastable (α -like) Liquid-Gas PT
- Conclusions and outlook

Previous studies of strongly interacting matter with clusters

- Statistical models → D. Gross; Randrup&Koonin; Bondorf&Mishustin; Stoecker e. a. early works (80-s)
- Generalized liqui-drop model \rightarrow J. Lattimer and F. Swesty, Nucl. Phys. A535 (1991)
- more recent works → Botvina&Mishustin (2004, 2010); Hempel&Schaffner-Bielich(2010); Buyukcizmeci e.a. (2013); Furusawa&Mishustin (2018);
- RMF models \rightarrow J. Pais et al., Phys. Rev. C97 (2018); S. Typel, J. Phys. G45 (2018)
- virial EoS \rightarrow C. Horowitz and A. Schwenk, Nucl. Phys. A776 (2006)

(use information on observed phase shifts of NN, N α and $\alpha\alpha$ scatterings, the model applicable only at small particle densities)

- multi-component van der Waals model \rightarrow V. Vovchenko et al., Phys. Rev. C96 (2017) (N α and $\alpha\alpha$ attractive interactions are disregarded)
- quasi-particle model → X.-H. Wu et al., J. Low Temp. Phys. 189 (2017) [*] (only small densities are considered)

All these models (except [*]) disregard the BEC possibility. We are going to fill this gap!

Systems/processes with enhanced formation of α 's

- low-density excited states of light nuclei (¹²C, ¹⁶O, ²⁰Ne, ... ← large-size isomers)
- periphery of heavy nuclei
- multifragmentation reactions in heavy-ion collisions (spectators)
- outer regions of compact stars
- neutron star mergers, supernovae matter

.

(dilute and warm matter)

 \rightarrow key role in stellar nucleosynthesis

Two-step process: 1) $\alpha + \alpha \rightarrow {}^{8}Be$ 2) $\alpha + {}^{8}Be \rightarrow {}^{12}C^* \rightarrow {}^{12}C + \gamma$

Enhanced rate of ^{12}C formation at T \gtrsim 200 keV

Röpke et al. (1998): Hoyle state \approx BEC state of 3α

Energy per baryon of cold α -matter

Clark & Wang (1966): variational calculation with phenomenological αα potential, comparison with isospin-symmetric nucleon matter

+ Coulomb potential (4e²/r)

 $\sim \alpha$ -matter is energetically favorable at low baryon densities $n_b \lesssim 0.05 ~{
m fm}^{-3}$ (section AB)

ground state (GS) of pure α -matter at $n_{\alpha} \simeq 0.036 \text{ fm}^{-3}$ (point C) has higher energy $E/B \simeq -12 \text{ MeV}$ than normal nucleonic matter (-16 MeV)

Our assumptions

- isospin symmetry $(N_p = N_n)$
- homogeneous matter (no surface terms)
- no Coulomb interactions
- no clusters, except α (we neglect d, t, ³He, ⁵He ... and their excited states)
- moderate temperatures $(T \leq 30 \text{ MeV})$

→ neglect contributions of mesons (π , ρ , K ...), other baryons (Δ , N*, Λ ...) and antibaryons → nonrelativistic limit is accurate, since $T \ll m_N \simeq 0.939$ GeV, $m_{\alpha} \simeq 3.727$ GeV

- chemical equilibrium with respect to reactions $\alpha \leftrightarrow 4N$
- mean-field approximation for particle interactions
- no in-medium modification of particles masses

Thermodynamic functions for α -N matter

free energy density $F/V = f(T, n_N, n_\alpha) \rightarrow$ thermodynamic potential in canonical ensemble chemical potentials $\mu_i(T, n_N, n_\alpha) = (\partial f/\partial n_i)_T$ $(i = N, \alpha) \rightarrow (1)$ pressure $p = \mu_N n_N + \mu_\alpha n_\alpha - f$ entropy density $s = -(\partial f/\partial T)_{\{n_i\}}$ energy density $\varepsilon = Ts + f$ baryon density $n_B = n_N + 4n_\alpha = B/V$ mass' fraction of alphas $\chi = 4n_\alpha/n_B \rightarrow$ one can use (n_B, χ) instead of (n_N, n_α) $[\chi \leq 1]$

condition of chemical equilibrium: $\mu_N = \mu_{\alpha}/4 \equiv \mu_B \rightarrow (2)$ (μ_B - baryon chem. potential) substituting (1) into (2) \rightarrow isotherms of chem. equilibrium in $(n_N, n_{\alpha}), (n_B, \chi)$ or (μ_B, p) planes $p = p(T, \mu_B), n_B = (\partial p/\partial \mu_B)_T \dots$ (grand canonical ensemble)

stability condition with respect to fluctuations of partial densities: $\det ||\partial^2 f / \partial n_i \partial n_j|| = (\partial \mu_N / \partial n_N)_{\{n_\alpha, T\}} (\partial \mu_\alpha / \partial n_\alpha)_{\{n_N, T\}} - (\partial \mu_N / \partial n_\alpha)_{\{n_N, T\}}^2 > 0$

Bose-Einstein condensation (BEC) in ideal boson gas

condition of BEC: $\mu = m o T < T_{
m BEC}(n)$ (T_{BEC} = threshold temperature of BEC)

$$n = \begin{cases} n_{\rm id}(T,\mu), & T > T_{\rm BEC}(n) \\ n_{\rm id}(T,m) + n_{\rm bc}, & T < T_{\rm BEC}(n) \end{cases}$$

→ equivalent to $\mu < \mu_{max}$ = m (boson mass) (n_{bc} – density of Bose-condensed particles with zero momenta)

 α N-mixture in mean-field approximation: $T_{BEC}(n_{\alpha})$ is the same as in ideal α -gas with density n=n_{\alpha}

Non-interacting α -N mixture in chemical equilibrium

pressure:
$$p = p_N^{id}(T, \mu_N) + p_\alpha^{id}(T, \mu_\alpha)$$
 partial densities:
 $p_i^{id}(T, \mu_i) = \frac{g_i}{(2\pi)^3} \int d^3k \frac{k^2}{3E_i} \left[\exp\left(\frac{E_i - \mu_i}{T}\right) + \eta_i \right]^{-1}$
 $\left(E_i = \sqrt{m_i^2 + k^2}, g_N = 4, g_\alpha = 1, \eta_N = 1, \eta_\alpha = -1 \right)$
chemical equilibrium: $\mu_N = \mu_\alpha/4 \rightarrow \text{isotherms } n_\alpha = n_\alpha (T, n_N)$
region of BEC states: $\mu_\alpha = m_\alpha \rightarrow \mu_N = m_\alpha/4 \equiv m_N - B_\alpha$
 $T < T_{BEC} \simeq \frac{2\pi}{m_\alpha} \left[\frac{n_\alpha}{\zeta(3/2)g_\alpha} \right]^{2/3}$ binding energy (per baryon)
of single $\alpha: B_\alpha \simeq 7.1 \text{ MeV}$
in non-relativistic limit
 $n_N|_{T < T_{BEC}} = g_N \left(\frac{m_N T}{2\pi} \right)^{3/2} \sum_{k=1}^{\infty} (-1)^{k+1} k^{-3/2} e^{-B_\alpha k/T}$

 \rightarrow n_N does not depend on n_{\alpha} for BEC states

 $\implies n_{lpha} \gg n_N$ in the BEC region

One-component matter with mean-field interaction

(pure nucleon- or α - matter)

attraction

 $\implies \Delta p(n) = -an^2 + bn^{(\gamma+2)}$

U = U(n) - mean-field potential (depends only on density n, w/o explicit dependence on T) shift of chemical potential $\mu = \tilde{\mu} + U(n)$ with respect to the ideal gas $\widetilde{\mu} = \widetilde{\mu}(T, n)$ - equivalent chemical potential of ideal gas (determined from $n = n_{id}(T, \widetilde{\mu})$) pressure $p(T,\mu) = p_{id}(T,\widetilde{\mu}) + \Delta p(n)$ where $\Delta p(n) = nU(n) - \int_0^n dn_1 U(n_1)$ 'excess' pressure We use Skyrme-like parametrization: $U(n) = -2an + \frac{\gamma + 2}{\gamma + 1}bn^{(\gamma+1)}$

short-range repulsion

parameters of interaction $a, b, \gamma > 0$ from fit of ground state (GS) at T=0

we compare the results for soft (γ =1/6) and hard (γ =1) repulsive interactions

[1] Satarov, Dmitriev, Mishustin, Phys. At. Nucl. 72 (2009) 1390 (iso-symmetric nuclear matter) [2] Satarov et al, J. Phys. G 44 (2017) 125102 (pure α-matter)

Iso-symmetric nucleon matter with Skyrme interaction

We choose Skyrme parameters a_N, b_N by fitting GS properties of such matter at T=0:

binding energy per baryon $W_N \equiv m_N - \min(\epsilon/n) = 15.9 \text{ MeV}$

ground-state (saturation) density $n = n_0 = 0.15 \text{ fm}^{-3}$

 \rightarrow equivalent to $p = 0, \ \mu = \mu_0 = 923 \text{ MeV}$

equations for a_N, b_N :

$$E_F(n_0) + U(n_0) = \mu_0, \quad p = p_{id}(T = 0, n_0) + \Delta p(n_0) = 0$$

γ	$a_N \left({ m GeV fm}^3 \right)$	$b_N \left({ m GeV fm}^{3+3\gamma} ight)$	$K_N({ m MeV})$	T_c (MeV) \sim	of critical point
1	0.40	2.05	372	21.3	ightarrow hard EoS
1/6	1.17	1.48	198	15.3	\rightarrow soft EoS

 \rightarrow

reasonable values of compressibility $K_N = 9(dp/dn)_{GS} = 200 - 240 \text{ MeV}$ are obtained for soft Skyrme repulsion ($\gamma = 1/6$)

Phase diagram of iso-symmetric nucleon matter

first-order liquid-gas phase transition (LGPT) \rightarrow formation of mixed phase (MP) exists for any a_N , $b_N > 0$ at $T \leq T_{max} \equiv T_c$ with coexisting gas $(n=n_g)$ and liquid $(n=n_I)$ domains $(n_g < n_I)$

Gibbs conditions of phase equilibrium: $p(T, n_g) = p(T, n_l), \ \mu(T, n_g) = \mu(T, n_l)$

 \rightarrow boundaries of MP in (n,T) plane ('binodals')

temperature of critical point increases with γ

Pure α matter

Clark & Wong (1966) calculated characteristics of GS (T=0) using phenomenological $\alpha\alpha$ -potentials: binding energy per baryon $W_{\alpha} \equiv m_N - \min(\varepsilon_{\alpha}/n_B) \simeq 12 \text{ MeV}$ $(n_B=4n_{\alpha})$ density of GS $n_{\alpha} = n_{\alpha 0} \simeq 0.036 \text{ fm}^{-3}$ all α 's are in BEC state with zero pressure using $\tilde{\mu}_{\alpha} = m_{\alpha} = 4(m_N - B_{\alpha}), \ p_{\alpha} = 0, \ \lim_{T \to 0} p_{\alpha}^{\text{id}} = 0$ one gets $\mu_{\alpha} = m_{\alpha} + U(n_{\alpha 0}) = 4(m_N - W_{\alpha}), \ \Delta p_{\alpha}(n_{\alpha 0}) = 0$ $\Longrightarrow a_{\alpha} = b_{\alpha}n_{\alpha 0}^{\gamma} = \frac{4(\gamma + 1)}{\gamma n_{\alpha 0}} (W_{\alpha} - B_{\alpha})$ (analytic relations for Skyrme parameters a_{α}, b_{α})

γ	$a_{lpha} \left({ m GeV fm^3} ight)$	$b_{lpha}\left({ m GeVfm^{3+3\gamma}} ight)$	$K_{lpha}({ m MeV})$	$T_c({ m MeV})$
1	1.09	30.4	354	13.7
1/6	3.83	6.67	207	10.2

smaller critical temperatures as compared to nucleon matter (at th

Phase diagram of α matter

Satarov et al., J. Phys. G44 (2017) 125102 \rightarrow simultaneous description of LGPT and BEC in pure α matter condition of BEC: $\widetilde{\mu}_{\alpha}(T, n_{\alpha}) = m_{\alpha} \rightarrow T < T_{BEC} \simeq \frac{2\pi}{m_{\alpha}} \left| \frac{n_{\alpha}}{\zeta(3/2) q_{\alpha}} \right|^{2/3}$ (in the MP region $n_{\alpha} \rightarrow n_{\alpha}$) BEC boundary in the (n_{α}, T) plane is not sensitive to interaction (in the mean-field appr.) triple point (TP)- crossing of BEC line with MP boundary: $T_{TP} \simeq 3.6 \text{ MeV}$ (for $\gamma = 1/6, 1$) we obtain phase diagrams similar to those observed for atomic ⁴He (μ,T) plane (n_B,T) plane 16 full dots: 14 LGPT line, $\gamma = 1/6$ critical points 14 MP boundary, $\gamma = 1/6$ --- BEC boundary, $\gamma = 1/6$ BEC boundary, $\gamma = 1/6$ 12 - LGPT line, $\gamma = 1$ 12 --- MP boundary, $\gamma=1$ open dots: BEC boundary, γ=1 BEC boundary, $\gamma=1$ T (MeV) 10 10 T (MeV) triple points 8 squares: 6 ground state 4 $\mu = \mu_{\alpha}/4$ BEC 2 GS $n_B = 4n_\alpha$ 0 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-8} -25 -20 -15 -10 -5 Λ

 $n_B (fm^{-3})$

region II (MP states with T<T_{TP}): gas domains w/o BEC + liquid domains with BEC

 μ -m_N (MeV)

Skyrme-like interaction for α -N binary mixture

generalized Skyrme parametrization of excess pressure:

$$\Delta p(n_N, n_\alpha) = p - p_N^{id}(T, n_N) - p_\alpha^{id}(T, n_\alpha) = -\sum_{i,j} a_{ij} n_i n_j + \left(\sum_i B_i n_i\right)^{j+2} \quad (i, j = N, \alpha)$$

 $\begin{array}{c} \longrightarrow \\ \Delta p(n_N,n_\alpha) = -(a_N n_N^2 + 2a_{N\alpha}n_N n_\alpha + a_\alpha n_\alpha^2) + b_N(n_N + \xi n_\alpha)^{\gamma+2} \\ \text{cross-term coefficient of attraction} \\ \end{array}$

excess free energy:

$$\Delta f(n_N, n_\alpha) = f - f_N^{id}(T, n_N) - f_\alpha^{id}(T, n_\alpha) = \int_0^1 \frac{d\lambda}{\lambda^2} \,\Delta p(\lambda n_N, \lambda n_\alpha) \quad \to U_i \equiv \mu_i - \widetilde{\mu}_i = \frac{\partial \Delta f}{\partial n_i}$$

chemical potentials:

$$\mu_{N} = \tilde{\mu}_{N}(T, n_{N}) - 2(a_{N}n_{N} + a_{N\alpha}n_{\alpha}) + \frac{\gamma + 2}{\gamma + 1}b_{N}(n_{N} + \xi n_{\alpha})^{\gamma + 1}$$

$$\mu_{\alpha} = \tilde{\mu}_{\alpha}(T, n_{\alpha}) - 2(a_{N\alpha}n_{N} + a_{\alpha}n_{\alpha}) + \frac{\gamma + 2}{\gamma + 1}b_{N}\xi(n_{N} + \xi n_{\alpha})^{\gamma + 1}$$

chemical equilibrium

$$\mu_{N} = \mu_{\alpha}/4$$

below we assume $\gamma = 1/6$ and study sensitivity of results to cross-term coefficient $a_{N\alpha}$

the only unknown model parameter

Ground state of α -N matter at T=0

EoS of α -N matter (numerical scheme)

simultaneously solving the equations:

 $\mu_i = \tilde{\mu}_i(T, n_i) + U_i(n_N, n_\alpha) \qquad (U_i - \text{mean-filed potentials}, \tilde{\mu}_i - \text{chemical pot. of ideal gas, i=N,}\alpha)$

 $\widetilde{\mu}_{\alpha} = \begin{cases} \widetilde{\mu}_{\alpha}(T, n_{\alpha}), & n_{\alpha} < n_{*}(T) \\ m_{\alpha}, & n_{\alpha} > n_{*}(T) \end{cases} \xrightarrow{\rightarrow \text{outside BEC region}} n_{*}(T) \equiv g_{\alpha} \left(\frac{m_{\alpha}T}{2\pi}\right)^{3/2} \zeta(3/2)$

 $\mu_N = \mu_lpha/4 \; (\equiv \mu) \;
ightarrow$ condition of chemical equilibrium

we get $n_N, \mu, p = p_N^{
m id} + p_{lpha}^{
m id} + \Delta p$ as functions of n_{lpha}, T

 \implies isotherms in (n_N, n_α) , (μ, p) planes

in general, there are several solutions at given T: (in (μ ,p) plane) \rightarrow LGPT

- unstable (spinodal) states $(\det ||\partial^2 f / \partial n_i \partial n_j|| < 0)$
- stable/metastable states with larger/smaller pressure at the same μ

Isotherms T=2 MeV in (μ,p) plane

stable (PT_1) and metastable (PT_2) liquid-gas phase transitions (at T=2 MeV)

- \rightarrow
- low sensitivity to $a_{N\alpha}$ in the (µ,p) plane

Isotherms T=2 MeV in (n_N, n_α) plane

suppression of α 's at large nucleon densities \rightarrow similar to Mott effect fractions of α 's are small (large) for stable (metastable) LGPT states with BEC are metastable

set B is preferable (closer to virial EoS as compared to set A)

reasonable values:

Phase diagram of α -N matter (stable states)

		$T_{\rm CP}({ m MeV})$	$n_{B{ m CP}}{ m (fm^{-3})}$	$\chi_{ ext{CP}}$
of critical point (CP):	set A	15.4	4.8·10 ⁻²	2.5·10 ⁻⁴
	set B	14.7	5.3·10 ⁻²	6.9·10 ⁻²

 \rightarrow found from

 $\begin{aligned} &(\partial p/\partial n_B)_T=0\\ &(\partial^2 p/\partial n_B^2)_T=0 \end{aligned}$

squares: ground state (GS) $T = 0, \ \varepsilon/n_B = \min$

parameters of GS coincide with those for pure nucleon matter (χ =0): $\mu = m_N - 15.9 \text{ MeV}$ $n_B = 0.15 \text{ fm}^{-3}$

position of critical point (CP) only slightly changes with a_{Nlpha}

Phase diagram of α -N matter (metastable states)

characteristics of metastable PT:		$T_K({ m MeV})$	$n_{BK} ({\rm fm}^{-3})$	χ_K	$T_{TP}(\text{MeV})$
	set A	7.6	(1.2-2.6)·10 ⁻²	0.14–1.0	3.5
	set B	4.6	1.3 ·10 ⁻³ -0.1	0.46–0.86	3.4

LGPT in pure α-matter

K – end point, TP – triple point (intersection of LGPT and BEC lines)

Fraction of α in (n_B,T) plane (stable states)

strong influence of interaction: non-monotonic density behavior of X
 maximum values of X (~10-20%) are reached near the left boundary of MP

(larger fractions can be achieved for metastable states)

α -like multiplicities in HI collisions

K. Hagel et al. (Texas A & M University)

large number of events with significant yields of α -conjugate nuclei

larger abundances than predicte by the AMD models

Conclusions

- A simultaneous description of LGPT and BEC in clusterized nuclear matter has been presnted for the first time
- Two L-G phase transitions (stable and metastable) are predicted in interacting $\alpha-N$ matter
- Abundances of α -clusters are maximal at mixed-phase boundary, but strongly suppressed at large baryon densities
- It would be interesting to search for metastable states with α condensates in heavy-ion collisions, both at intermediate and high energies (spectator decay)

Outlook

- Include other light nuclei {d, t, 3He, ...) and hypernuclei $(3H_{\Lambda}, 4He_{\Lambda}...)$
- Study possible α -condensation in isospin-asymmetric (neutron star) matter