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I. Introduction

ELECTROMAGNETIC FORCE
VsS.
GRAVITATIONAL FORCE:

82

w1 OF 36
= Gz = 125X 10

Aa

Complete screening — gravity should play the dominant role
in determining the stellar structure

Hydrostatic equilibrium equations are usually supplemented
by:

LOCAL ELECTRONEUTRALITY CONSTRAINT



I. Introduction

LOCAL ELECTRONEUTRALITY CONSTRAINT (LEC)

Similar to A, e _%E_Imu+x, 0<x<1;
A, = CBfi3b, NpUBOAALLANA K

noTepe Ha4vdasibHOro ycinoeuna

An example from: Bacuasesa Azenanaa BopucosHa
byry3os Ba.entuH PenoposBud

ACHUMIITOTUYECKHE METO/bI
B TEOPHHU CHHIVYJIAPHbBIX BOSMYUIEHHUHA

How fundamental is LEC?

® ABSOLUTELY FUNDAMENTAL FOR ISOLATED SYSTEMS
(thermodynamics)
® NOT FUNDAMENTAL FOR SYSTEMS IN EXTERNAL FIELDS
(multi-component Gibbs’ condition)



I. Introduction

Systems in external fields obey chemical potential:

u= 0E/ON
Gibbs’ CONDITION

1 +V (X) =const

OcHosHbie ypasHeHus P
A, TUna cneayroT us

For n-component fluid ' 3TUX ypaBHeHUM

u,+V (x)=const (a=12,...,n)
O. Klein (1949)
Kodama, Yamada (1972)  in GRT
Olson and Bailyn (1975)

—

Multi-component Gibbs’ condition is
INCOMPARTIBLE WITH LEC



I. Introduction

As early as 1924, Rosseland in a paper recommended
for publication by Sir Arthur Eddington showed that
in thermodynamic equilibrium in stars,

within A_ problem,

» The approximate character of LEC (= A))
But for a particular, regular solution only

Similar results: S. B. Pikel'ner (1961)
E. Olson and M. Bailyn (1978)
L. Neslusan (2001)
M. Rotondo et al. (2011)
R. Belvedere et al. (2012)



I. Introduction

Up to date astrophysicists are discussing
particular, regular solutions of the A_ problem.

The problem is to construct
the general solution to the A, problem

SOME OF THE PROPERTIES OF THE GENERAL SOLUTION
CAN BE FORESEEN ON THE BASIS OF
THE FOLLOWING SIMPLE ARGUMENTS:

(TWO HINTS)



I. Introduction

lonosphere
& e’AN ? GM AN m
L P s= Tpp
e
RS RS
N y GM
* + = AN, < e gz M,
+ ; ¢’ M@
F + 0<Q, <150C.
AV(r) EXPECTED TO FOLLOW
r FROM THE GENERAL SOLUTION




I. Introduction

Electrosphere
e’AN ° GM AN m,
- — <>
W, | RS RS
- - = aN, <M 5 g Me
- € O]
— ~0.1C<Q, <150C.
AV(r) EXPECTED TO FOLLOW
_ E FROM THE GENERAL SOLUTION




I. Introduction

The general solution is not regular in the
gravitational constant G at G=o, as indicated by

e the Poincare theorem on analyticity and
e Dyson’s argument

EXPECTED TO FOLLOW FROM THE GENERAL SOLUTION
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B. Two-fluid model with equal polytropic indices
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9 n}fﬂﬁrl }.q FIT'F':]]'ITIF‘,TI"'.
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3. Charge-mass-radius relation



I. Introduction
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Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

A. Two-fluid model
Multi-component Gibbs’ condition:
li + mjpa + Lepg = const.
e + Mepa — €PE = CONSt,
i =ions, m,=Am_ , m = 931 MeV

e = electrons , m,_ = 0.51 MeV
¢ = electro-static potential

¢ = gravitational potential w= 0E/ON
Apoa = 4dnGpy. Pm = Mini + MeNe,
Npgp = —47pe. Pe = Zenj — €.
ANp(Zpe + i) = —47G(mi+Zme) pm-

Ap(miple — mepti) = —4me(mi+Zme)pe.

chemical potential:



Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

B TEOPUU NOJIUTPOIN.

~ 141 .
e Pressure P = KinpT/™ . k= (i,e)

e Density nK = n.kUQEk

e Chemical potential 1 = 14,0,

_ 1/n
Ho = Ky (1+77k)nko ‘.
e Dimensionless coordinate x:

AT
ArGmi(mi + Zme)nio

e e e 2
I = Tqo.r. 'o =



Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

OCHOBHAS CUCTEMA YPABHEHUM

AI(QE + f\jgi) — —(9:?1 -+ i"'imi\eﬁge)
Ap(Be — ApAib;) = —AG(Q?" — AB)
C HaYaJIbHLIMU YyClloBUAMMU
O (0) =1, 6,.(0)=0.

U napameTpamm

~ 1 (= LEQ) Am =




Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

OCHOBHAS CUCTEMA YPABHEHUM
AI(QG —+ f\jgi) — —(9:?1 -+ i"'imi\eﬁge)
Ap(Be — AnAib;) —Ag (0" — A67)
O (0) =1, 6,.(0)=0.
0<x=<X,.

1. 3agauya Komu pist cucrembl O/1Y 4-ro mopsiaka.
2. CHHIYJISIpHO BO3MYIIEHHAS CHCTeMa, € = 1/A; <<1.
3. Tuxonosckasi cucrema O1Y:

(

_S;WF(Z y,l 8), d —f(z ya *)’

A, .
1 0 x < xy,

L 2(0)=2" y(O)=y".




Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

B. Two-fluid model with equal polytropic indices
A particular solution for 6(x) = 6,(x) = &(x)

and 7, = 7. = pwith - \/1 + AmAe
A Y

can be found from the Lane-Emden equation

Nz0(x) = —6"(x1) R. Emden
Free parameters A,and A_ become functions of Ag

B I‘iri L\G(l——ﬁl) — (1—;’\11]1'\1)
KAV z11m Ac(14+A:) + An(1-AnAy)

NB: A, measures deviations from LEC

A A = ASE —

€

The limit A, — oo Is smooth, the solution is regular.



Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

The limit A, — oo Is smooth, the solution is regular.

Similar to A, e%i—_u+x 0<x<1; @=L
X
Ag = cBA3b, NpUBOASALLAA K
notTepe HavalnibHoOro ycnoeus
B 3anaye A, yciioBHE PEery/IsipHOCTH MPUBOTUT

KA, =A8(A;) 4, COOTBETCTBEHHO, TAKXKe K
norTepe Ha4vdasibHoOro ycrqfosus.

Tpu A, = A.°2(A;) norpaHuyHaa gyHkums = 0,
T.e. perynsapHoe pelseHue ABNAETCA TOYHBIM

x(t,e)——ze (X () + L) (1)). r=1t/¢,
k=0 |—|—' 0 821/AG <1

Taylor Laurent



Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

C. A power-series expansion near the center

=14 Bipr™. k=(ie).

p=1
The zero-order term of the expansion gives
6(361 -+ Aﬁﬂ) — —(1 + i&mj&e),
6(_.1861 — Amﬂiﬁil) — —.AG(l — i'\e).

The condition of boundness to have a regular

solution:
ae

AG
B., and B,, are then fixed in terms of a_,
but a, Is not fixed (!)

1-A, =—, a,=0().



Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

The second order terms require

20(.-362 -+ 1'\1,312) — _(.-Silli;"i + i'\mi'"‘leﬁel?}e)_,
20(;8&2 — i'"\mj\iﬁig) = —1"\(:; (.ﬁil??i — 1’\8;851?36).
A new constraint discovered
"
Bi11)i1 = Pe1tjer + {
Ag

which allows to fix the lowest order parametrs

.ﬁel . ﬁ _ 1+ ;\m
i e 6(n; + Aine) "
1+ Am

Qe = (Th—f\mf’wem + Ayge
i Ldjlfe

Finally, we construct A, = A_"g(Ay)



Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

D. A power-series expansion in GG

O = Oro + O Agt + O(AG?),

Ae = Aeo +AciAgt + O(AG).
The initial conditions 6.0(0) = 6i0(0) = 1 give LEC

Oih () = 0k (), Aeo = 1.

Istorder: A,(6e0+ Aibo) = —(14+Am)0%
= —(1+Ay)0%
2nd order: Ai(fe1 + Aiby) =
o 911 Qel
_920 (”iﬁ_i[) an i'xm':’;'eg—@j -+ Amﬂel) .

Az (feo — AmAibho) = The region near the

_ Qe (]_911 b A ) surface should be
el h ??e iyel .
tio teo treated separately



Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

E. Global stellar parameters

The mass of the star takes the form

p,, = Mass density

R. v
M, = / 4?':'2(711?111 + netne)dr
0

. d
— —4??;'8 ﬂ.-j[]??'l-i;ifz]— (Fo+Aib;)

l.r I=Tp

The total stellar charge (at the boundary of the |
component) is equal to

p. = charge density

R ‘1,
Qs = /4ﬁr'2(Z€-r11€'r?.e)d-r'
0

e d
— _47;".*'3?1'10 f‘iG ;{:2 . (Qe—i'lmﬂiei) r—}




Il. Regular solution to the unconstrained hydrostatic
equilibrium equations

E. Global stellar parameters

The stellar charge can be estimated as

ZeMy oo A M,

Qs ~ AmyAa Z M

The total uncompensated electric charge of a star

of one solar mass Q = 100 C, in agreement with
Pikel'ner (1961)
Bally and Harrison (1978)

Neslusan (2001)

One mole of *C contains 6N, protons with Q =6 10° C.

Earth: Q =-(4-5.7) 10° C.
The solar charge |Q| < (0.4 -1) 108 C, lorio (2012).



lll. Electrosphere

Electron envelopes @: the boundaries of

e solids W~ 3 eV
e strange stars W ~ 30 MeV
e phases,

in nuclear matter W ~ 30 MeV

‘9eb

>




lll. Electrosphere
A. A polytropic model

Gibbs' condition:
[le T+ Mepa — €PE — coNst,

Applying Laplacian, we get the Thomas-Fermi

equation: §
0 G'm
Appie = 4me ne (1 — )

2

with the boundary conditions:
e u_ is continuous
e u_' also is continuous due to the balance of
pressure & EM + gravity:

LdP. _ Qs | Gmell
ne dr | RZ R




lll. Electrosphere
A. A polytropic model

Dimensionless units:

Me

Am =

My

Ha0
r= Rs+ray., 12 =
=Tl Ta T e (1=X2,/A\c) nao

The main equation:

d?6
T =0l (y).

with the boundary conditions 0,(0) = 1

do, Py

— = —(gs + )\m

dy ly=0 (7 )\/(1 + e ) Pao(Ac — A2))

G2

where P, = THE PROBLEM IS THUS FORMULATED.

4rRE



lll. Electrosphere
A. A polytropic model

The main equation: 20

dy?

looks like the 2" Newton law, y is time,
the potential and the energy:

= 0 (y).

9!2
W =22 4+ V(6,)
2
12
b 0
2 1+ 7
3 TYPES OF SOLUTIONS:

1. W,>0 charged stars
2. W,=0 neutral stars
3. W, <0 (compressed states)




lll. Electrosphere
A. A polytropic model
Implicit solution:
Y="Ya —

A
V2(Wo —V (8,))

1 2+ Ne _V(Qa)
Fy| . 1: :

Charge of the envelope:
Ya
Qe = —4?33/ eNnelady
0

2
— ATRZenaora (9;(0) + \/ 672(0) ) .

1+ e

Where 0 < # < Fmax Rmax — L /\m/qs >
1 — A/ A

Qtot — Qs ‘|_Qe . E?x ~ —0.05 C



lll. Electrosphere
A. A polytropic model

Estimate of thickness of the electron envelope:
aB s My e
(%) 3
3/5 1/5
~ 2.2 x10” 16( ) (MG)

Yo ~ 106 ag for R, = Ry, M, = Mg.

.-flal

n=23/2: r "~

. T A My _ o [ Mg 1/2
n =3 FEN\/QWQAISNLBXlO (ﬂfs

Yofe ~ 1 millimeter for R, = 10 km, M, = M;.



IV. Exactly solvable model
A. General properties of solutions

e Poincare theorem on analyticity:
| Solutions to ODE systems, when they exist,
are analytic functions of the initial
coordinates and parameters in the region
of analyticity of the ODEs.

Since analytic functions are determined
by their singularities, one can talk about
THE SINGULARITIES
instead of THE REGION OF ANALYTICITY.

e Dyson's argument (1952)
provides an effective qualitative
criterion for non-analyticity of observables B
in terms of the system parameters.




IV. Exactly solvable model
A. General properties of solutions

Poincare theorem on analyticity

Ox. Yvro, AHarmtuyeckas reopma S-marpuysr (Mup, Mockea 1968),
cTp. 11-12:
Dop-
MAdJdbHO YKa3iaHHAaAd CBA3Db SABJAACTCA OTPAaxXKEHHEM HHT‘%H*

TUBHO MNOHATHOH Teopemu [Ilyaskape, Koropas, rpy6o
roBops, IVIACHT cjenymomee: ecJid Kospopuuuentor gudde-
pPEHUHAJbHOTO yYPaBHEHUS aHAJUTHUECKH 3aBHCST OT He-
KOTOPOH BEeJHUHHBI, TO H pelIeHds1 ypaBHesuda OyayT aHa-
JJUTHYCCKHMH (PYHKUHUSIMH 3TOH BEJUYHHH. IHBIMH cao-
BaMHu, [lyankape yTBepKaaer, 4yTO B TECOPDHAX, OCHOBaAHHEIX
Ha pupdepeHilHaJbHBIX YPABHEHHUSAX, COXpaHsieTcst obana
AHAJHTHYHOCTb, KOTOPYIO MBI BBOIHJIH B KO3(PPHIUEHTHL.




IV. Exactly solvable model
A. General properties of solutions

Poincare theorem on analyticity

The normal form, introducing 7y = 6, , and define the

vector :
O = (7e. be, 7. 6;)
and the vector function F(x,®, A). The main ODE system:
Q" =F(r. P, A)
where A = (Ae, Ai, Am. Ag), with the initial conditions:
O(r =0) = (0,1,0,1).
NB: Fx,®, A) is analytic in @, A € C¥\o; linear in A;
and singular for A = 2 (simple pole).
The solutions inherit analyticity and thereby

singularities of ODEs. We expect A = o to be
a singular point of the general solution.



IV. Exactly solvable model
A. General properties of solutions

Poincare theorem on analyticity
How it works?

Example:
A, e —‘;E-:_— cutx, 021l wO=1
X
U _ZUHX s has a simple pole at & =0.
dx g
Solution:

u, (x)=(14¢e)exp(—x/e){x—ec,

The simple pole of ODE turns to
an essential singularity of the solution



IV. Exactly solvable model
A. General properties of solutions

@>0: 0<Hgp  Dyson's argument ) @
in QED >
positrons electrons
—t— —t—
++"' BY - _
ot TUNNELING - = _
+ + < > -
If o <O: E.:<E,,. =0forN,. 2 1l/a*?

G”""’Z — o //0%i ( i ‘%l e- az//
VACUUM IS UNSTABLE & a =0 A BRANCH POINT



IV. Exactly solvable model
A. General properties of solutions

g>0: 0<H, Dyson's argument ) @
in Quantum mechanics N
Vi e

> <
~ ""Q\Mx BOUND (g > 0) AND UNBOUND (g < 0)

= — HAMILTONIANS ARE
/ QUALITATIVELY DIFFERENT
) 7}
V(x) = mw?x2/2 + gx4 ‘
E, = Eo(9) g = 0 is a branch point of E,

A. U. Baitnmreun, [Ipenpunat USAP® CO AH CCCP. HoBocudupck, (1964)
A. B. Typounep, YOH 144 35 (1984)



IV. Exactly solvable model
A. General properties of solutions

Dyson's argument ) @

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is a root branch point




IV. Exactly solvable model
A. General properties of solutions

Dyson's argument ) @

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is a root branch point




IV. Exactly solvable model
A. General properties of solutions

Dyson's argument ) @

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is a root branch point




IV. Exactly solvable model
A. General properties of solutions

Dyson's argument ) @

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is a root branch point

Aristotle



IV. Exactly solvable model
A. General properties of solutions

Dyson's argument ) @

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is a root branch point

U

Aristotle Parabola




IV. Exactly solvable model
A. General properties of solutions

Dyson's argument ) @

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is a root branch point

T~ N N

Aristotle Parabola Ellipse. due to Kepler laws




IV. Exactly solvable model
A. General properties of solutions

Dyson's argument ) @

in Classical theory 4 >
# 2. Viscosity n in Navier-Stokes equation

p(% + (VV)V) =-Vp+ nAv + %V(VV)

Example° water flow in a tube:

2P (2 ), n > 0 IS OKEY
n < 0 is NOT PHYSICAL
TWO STRONGLY DIFFERENT CASES

L]

n = 0 is a singular point of v

477|



# 3. 15t order phase transition

IV. Exactly solvable model
A. General properties of solutions

Dyson's argument

in Classical theory

F, MeV/fm3

100

10

a1

l'l Ll ai o 1 2

Quark phase

B=98 MeV/fm3
I‘ﬂ;:ﬁ(? MeV
n.=0,77 tm~3

R AU VU W N T

T+
5,720 J40 J60 F80 400 420 440460 Ha, MeV

"£] Hadronic phase

D - new phase occurs
TWO PHASES ARE
QUALITATIVELY DIFFERENT

L]

up IS a singular point of EoS

T



IV. Exactly solvable model
A. General properties of solutions

Dyson's argument 0 @

in our case: >
G > 0 STARS EXIST




IV. Exactly solvable model
A. General properties of solutions

Dyson's argument

| ©

in our case:
G > 0 STARS EXIST G < 0 STARS DO NOT EXIST




IV. Exactly solvable model
A. General properties of solutions

Dyson's argument

| ©

in our case:
G > 0 STARS EXIST G < 0 STARS DO NOT EXIST

TWO CASES LOOK
QUITE DIFFERENT

L]

G = 0 is a singular point of
solutions of hydrostatic
equilibrium equations




IV. Exactly solvable model
A. General properties of solutions

| ©

G<0: 0<Hg Dyson's argument
in our case:
G > 0 STARS EXIST G < 0 STARS DO NOT EXIST

TWO CASES LOOK
QUITE DIFFERENT

L]

G = 0 is a singular point of
solutions of hydrostatic
equilibrium equations




IV. Exactly solvable model
A. General properties of solutions

G <0: 0<Hg Dyson's argument ) @
in our case: =
G > 0 STARS EXIST G < 0 STARS DO NOT EXIST

TWO CASES LOOK
QUITE DIFFERENT

MOREOVER,
RADIUS AND MASS OF STAR:
G = 0 is a singular point of = 77
solutions of hydrostatic "~ [ s nemey

equilibrium equations = —anrbmomia® 3 0A0) | _



IV. Exactly solvable model
A. General properties of solutions

Dyson's argument 0 @

in our case: =

The general solution should be sought
in the class of functions
that depend on Ag at Ag = « in an irregular manner.



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

The above statements can be precisely 1 @
formulated using the model v, =%, =1. In terms of ===
o = wby () g <
. . o=—====
the main system of HE equations become
_|_ x]H‘"] — _(@i —|_i"\mf\eif?e)
\Lﬂl*xlﬁ"“l — _*"\G(*Fi — Ae*f?e)

We are looking for solutions in the form ¢x = axe’®  and obtain

The eigenvalues are as follows:
* 1
32 = Ac(1+AA) — (1+A2 AjA.
Tt 24-\1(1—’—:\111){ G( ) ( N m )

+ \/ AZ(14A5A0)% — 20 [(1=AmAiAL)? — AjAe(14+Am)2] + ( 1+A‘12n:\i:\e)2}



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

A
1+AjAe
Al(l + Amj
Ae(14+A o ===
3?2 = — 1( tl )—F()(AGIJ.

The general solution: g =8 | & £, =/ |
oK () = ayq sinh(Byx) + age sin(Fax),
with the constraint
k11 + akef2 = 1.

to fulfill ,(0) = @, (0)” =0, ¢ (0)’ = 1.

NB: JIj1s1 0oqHOQTOMHOTO HJI€aJIbHOTO Iasa
nokaszarenb anuadatel Yy = 5/3, ynacy =1+ 1/n = 6/3.



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

1. Closer inspection of analyticity in G

The normal form: introducing 7, = ¢}, and define the
vector O = (7, @i, e, Pe)
The main ODE system:
dD'(x) = AD(X)

where A = A(A) is linear in A € C*\00; with simple poles for
A=o A = (Ae, Ai, Ay, Ac), with the initial conditions:

O(x=0)=1(0,1,0,1).
The solution:

D(X) = exp(Ax)D(0)



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

1. Closer inspection of analyticity in GG

D'(X) = AD(X)
®(x) = D(X)D(0)
D(x) = exp(Ax)
e D(x) is analytic in A € C#\o.

e A simple pole of A at A = x is transformed into
a fixed (essential) singularity of D(x).
e d(X) are analytic in A € C*\o0 and ®(0), in agreement
with the Poincare theorem on analyticity.



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

1. Closer inspection of analyticity in G

Let & (= £B, € C') denote the eigenvalues of A (n=1,2,3,4)
and let |n) and (m| be their right and left eigenvectors:

Alny = & [nY and (n|A = (n|é,

The evolution operator admits the representation
D(x) = >_|n)(n|exp(&,X).

g, are fixed from det||A—] = 0

and acquire ADDITIONAL SINGULARITIES,



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

1. Closer inspection of analyticity in GG Aé‘m®
===
D(x) = >_|n)(n|exp(&,X). ) I
" o=—=—==
Frobenius representation: ¢
A_ém
myn|=2, %~

D(x) is explicitly symmeiric under the permufaﬁons

mﬂ& «f
det||A—§||=O = det|A-& =0

nocJie 00xXoAa 0. CHHIYISIPHOCTH & <> &



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

1. Closer inspection of analyticity in G

+B, € C! and the projection operators |n}n|
have 4 singular points

¢ (X) has one singular point A = oo.

S

If we want a regular, non-trivial solution,
A, must be a function of Ag:

A, —> A, =T(AL)

NB: ®opmasbHaa Mamemamuyeckas NpuyuHa
no4yemy 8 peay/iApHOM peweHuu
napamempsl CMAaHoOB8AMCA PYHKYUAMU

e C napamMempamu - MOYHbIX pe2yaapHbix peweHuu Hem (I1 = 0)
e C pyHKyuAamMu - mo4Hbie peayanapHole peweHua ecms (1 =0)



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

2. FElectro- and tonospheres

The general solution:
o () = agq sinh(S1x) + ago sin(Sax).
with the constraint
k131 + axaFs = 1.

Regular (/71 =0) solution: a,, =0,

(1+A1)35 = 1+AmAe.
(1—-AmAi) 535 = Ac(1—Ad).

AG (1——;\1) — (1—1’\111 1'\1)

_ ATeg __
IS POSSIBLEFOR A, = A, Ac(1+A) + A (1—AmAy)



IV. Exactly solvable model

B. Two-fluid model with unit polytropic indices

2. FElectro- and tonospheres

The general solution:

sinh( /71« sin( Gox
Qk(;i.') = (k1 (i 1i) + (k92 (-.,3'2i )
1 — C]‘fkl.ﬁl
(Yk2 = ; .
_{32

A baryon boundary at 1, = J}U + A where

An electrosphere:
(9k A

Oi(xp) = 0. » \
fe (i-'b) ere g

ro = 7/Pag

eb

~—

X, X



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

2. FElectro- and tonospheres

An electrosphere of A FINITE EXTENT:

0o < AL/ (+7) (1 +ne) (gs + Am)” M, >0\
Coe 20c(1 4+ Apm)(1 — A2 /Aa) \dmrgnigm; Ry

1/(1+ne)

For Ax << X,

1 AANeexp (731/52)
Ay L ‘
-t B4 44 ( 2(1 + Ay) )

where M x) is the Lambert W-funciton which gives solution
of the equation

W(x)expW(x)) = x
We note that Ax<0and  AA. ~ exp (—O( ;‘\G)) > 0.



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

2. FElectro- and tonospheres
An ionosphere of A FINITE EXTENT:

. 2 4
i, < )\élf(ler) (14 mi)(—qs + /‘\m/i“xm)2 ( M, ) (ro )

A (14 Am)(1 —1/A¢) \drrd3niom; R

1/(1+m;)

The same as electrosphere, with the replacements A, — 1/A,,
O, — i & AANe — —AAe

We note that A+ < 0 and A_Ae < 0

We got a two-parameter set of the equations.
CONCENTRATIONS AT THE CENTER OF THE STAR

ARE ARBITRARY,
however, in an exponentially small vicinity
of the regular solution.



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

3. Charge-mass-radius relation

. My (1T +Ay)
MGSS . 4?“8 N o jz ?
° RS T
Radius: T Gy
0 .i-'jQ

Bulk electric charge q, & Charge of the electrosphere q,

Z L= AmAi (14 Ag)A

—(qs = i’ﬂ'(‘)e :

A1 1+ A (1+A)2 <P

Z 1+ A A A A4

e = — 2 [l - ———70a | — ——72672 1 — ——70,

£ 1 1+ A4 |: \/( 1+ A b) 1+ A cb ( 14+ A4 b):|
where

(")eb — J)l Heb/ﬁgg ~ 1
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IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

3. Charge-mass-radius relation

q;+q,
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FIG. 4: (color online) The bulk charge ¢s and the total charge
gs + qe as functions of the difference O — O;1 for a mixture

of electrons and protons (Z

NB: (gs+ge)™™ =A/Z

= A = 1) and for A\ A



IV. Exactly solvable model
B. Two-fluid model with unit polytropic indices

m In the two-fluid model with unit polytropic
indices, it is possible to explicitly construct the
general solution describing charged stars with
electro- and ionospheres.

m The guiding parameter of the problem is A,
m In an exponentially small neighborhood
of A,=A_¢9, the electron and ion densities can be

varied without restrictions.

m The stellar envelope is sensitive to exponentially
small deviations of A, from A 9.



V. General solution to
the unconstrained hydrostatic equilibrium equations

The general solution is of the form:

O« = ko + Yk.

regular irregular

In inner layers of the star
Small deviations in:

Ahe = Ao — A8 |AA,| < 1

Linearization of the main ODE system gives

Ax(xe +Aixi) = —(mbip " xi
A Aol T e + AmAALTS),
/_\.-_13(3(6 — 1'\1ni'\ki’(j) = —;\G(-}?itg’%_lxi

—Aeonebe e — AN,
w(0) =x1(0)=0 & initial conditions



V. General solution to
the unconstrained hydrostatic equilibrium equations

A. Irregular component in the WKDB
approximation

A similar case occurs in the Schraodinger equation
2

(A, ) EY(X) = (—;Z—mA +V (X))\P(X), h— 0,

which makes the analogy quite obvious. In quantum
mechanics, the Wentzel, Kramers, and Brillouin
approximation is used, known as the WKB METHOD



V. General solution to
the unconstrained hydrostatic equilibrium equations

A. Irregular component in the WKDB

approximation
irr

To restore the initial conditions: Xk = Xk T Xko
FoIIowing the WKB method: Obuiee YacTHoe
. N e pelweHue peweHue
Xifr( ) = gilw) exp ( AeS (i)) OAHOPOAHOrOo HeoAHOPOAHOrO
where k = i,e, yp-1 yp-9

gk1 ('if) gk2 (if)
k() = guo(r) + + +.e

j\G i'XG

m To the lowest order

nib ( 4+ AjAe ey 9”5_1(;1:’)
Sy(xr)==L =
+() / AT+ Ay

dx’.

Finally (cf.: 1/Ag; €~ #?)

- sinh (VAgSy () _1
ko (4) = Co ( = ) +O(Ag?)
xy/ S ()



V. General solution to
the unconstrained hydrostatic equilibrium equations

B. Correction to the irregular component
KaK 4acTHoe pelveHue HeOAQHOPOAHOro ypasHeHUs

Ay (Xe + Ai?{i) - _(??iaiﬂ%_l?ﬁ
+ A A0 e + A AN,
A:,;(_’)(e — 1"\1]11'\1)(1) = —1‘\(}(?}191%_1)(1

e 1 [=]
— A0 Yo — AN,

The functions

ak(}(i') = 0 (0)0xo (ttr %zl (({{)j)) \ Aii((?))))

are the regular solutions of the main ODE system
with the modified initial condition 8(0) # 1 and
6" (0)

AT€Z/ (A Y areg [ 91(0)
AT (M) = 9;(0)”‘6 ) (Al 96(0))‘




V. General solution to
the unconstrained hydrostatic equilibrium equations

B. Correction to the irregular component

The functions R
Xk0 = fxo — Oxo

satisfy the non-linear eqs. for
AN, = e’ — \res

with |AA,l<< 1.

Finally,
Do () 1 Al — A,
Yio(#) = Oo(x)Ab + k.DF ) 1
O.r )
. Obo(x)
+ Ay A, (NG —Nbe).

where |AG(0)I<< 1 (k = i,e).



V. General solution to
the unconstrained hydrostatic equilibrium equations

C. General solution

The initial conditions 8(0) = 1 are satisfied for
ckﬂ\/i-xgsi(on L AG =0
The ion and electron components are related by
Ceo + AiCjo =0

m Finally, the irreqular part takes the form

xy/ S (x) 2 aN;

B CioAi . ) _ Obeo(z) mitAi | Obeo(z) ,
Ye(z) = —Immh(wn@&(m)+cg1/ﬁgs [Age[. e Mg (1A

Gle) = —asinh (vAGS,(x)) — Coy/AcSL (0 [a,ﬂ LRy 20D 1y |,




Conclusions

HaupeHo obuiee pelseHue
ypasHeHUU ruapocTaTUvecKoro pasHosecus
B OTCYTCTBUE NOKASIbHOU 3/1eKTPOHEeMUTpPasnbHOCTU
ANa ABYX-KOMMOHEHTHOro BelecTsa
B HbloTOHOBOU Teopuu rpasmutTauUu.

m Moapo6HO paccMoTpeHbl ABe TOYHO pellaeMble MOAEAU 3Be3A
AAAl TIOAUTPOIHbIX YpaBHEHUN COCTOAHUSA BellecTBa.

m OnucaHa CTpyKTypa U ycnosus pOpMUpPOBaAHUS
3NeKTpoc(pepbl U UOHOCEepLI 3B8e3A,.

m DfleKTpUYeCKUU 3apsas 3sess, BapbupyeTtcs B npepeniax
- 0.1 + 100 KynoH.



Conclusions
HEPEIIIEHHBIE BOIIPOCHI

o PerynapHeie peweHus BbigeneHur: obliee peleHue
CKOHLIEHTPUPOBAHO BOKpYr perynspHoro. TTouemy?

o TToyemy pyHKUUa A 9(A;) eAUHCTBEHHA?

e B TouHO pelwaemou mopenu ectb obbacHeHUe npespalleHuo
napameTtpa A, B PyHKUUFO A, 9(A;) . Hackonbko obumm moxHO
cuutatb obbacHeHue?



Conclusions
HEPEIIIEHHBIE BOIIPOCHI

e 0606L1eHKe Ha 06LLylo TeopUtlo oTHocuTenbHocTU (OTO).

e O6oblieHWe Ha MHOrOKOMMNOHEeHTHbIEe BellecTBa
(n > 2). Oxupnaemaa KapTUHa - cenapauusa 35emeHToB
(B Kaxxaom cnoe 2-x KOMNOHEHTHOe B-BO?)

A — OYeHBb THAXKEABIE
B - TaxkeAnie

C - Aerxkue

D — oueHBb AEeTr'KHe

@,

e 3apsKeHHbIe cTpaHHbIe 3sesabr: Q. ~10°C ?
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