Screening mass of gluons in presence of external Abelian chromomagnetic field

N. V. Kolomoyets, V. V. Skalozub

Dnepropetrovsk National University Ukraine

December 5, 2018

Magnetic Mass

Magnetic (electric) mass shows how fast magetic (electric) field decreases with distance in plasma.

$$F_{\mu\nu} = C(r) \,\mathrm{e}^{-m^k r^k} \tag{1}$$

$$m=rac{1}{\lambda}, \qquad \lambda$$
 – screening length

Example: QED

$$m_{\rm el}^2 = \frac{1}{3}e^2T^2 - \text{electric (Debye) mass}$$
(3)

$$m_{\rm magn}^2 = 0 - \text{magnetic mass}$$
(4)
Screened Long range

(2)

Magnetic Mass in SU(N) Gauge Theory

$$F_{\mu
u} = \sum_{a=1}^{3} F^{(a)}_{\mu
u} t_a, \qquad t_a$$
 – generators of SU(N) group

// D. Gross, R. Pisarski, and L. Yaffe, Rev. Mod. Phys. **53**, 43 (1981)

1-loop calculations:

$$m_{\rm el}^2 = \frac{1}{3} g^2 T^2 \left(N + \frac{N_f}{2} \right)$$
(6)
$$m_{\rm magn}^2 = 0$$
(7)

Higher orders, nonperturbative calculations:

$$m_{\rm magn}^2 \sim g^4 T^2 \tag{8}$$

 $m_{\rm magn}=0$ is not excluded

(5)

Hypothesis: not all color components of chromomagnetic field contribute to the magnetic mass

Magnetic Mass in the Presence of External Field

External chromomagnetic field: $H^a_\mu = H \delta_{\mu 3} \delta^{a 3}$ High temperature: $g H/T^2 << 1$

Neutral gluon field:

$$m_{\rm el}^2 \sim g^2 T^2 \left(1 - C \sqrt{gH} / T \right), \qquad m_{\rm magn}^2 = 0$$
 (9)

// M. Bordag and V. Skalozub, Phys. Rev. D 75, 125003 (2007) [hep-th/0611256]
// S. Antropov, M. Bordag, V. Demchik and V. Skalozub, Int. J. Mod. Phys. A 26, 4831 (2011) [arXiv:1011.3147 [hep-ph]]
Color: changed colored fields:

Color-charged gluon fields:

$$m_{\rm el}^2 \sim g^2 T^2 \left(1 - C \sqrt{gH} / T \right), \qquad m_{\rm magn}^2 \sim g^2 T \sqrt{gH}$$
 (10)

// M. Bordag and V. Skalozub, Phys. Rev. D 77, 105013 (2008) [arXiv:0801.2306 [hep-th]]
// M. Bordag and V. Skalozub, Phys. Rev. D 85, 065018 (2012) [arXiv:1201.1978 [hep-th]]

SU(2

- T. A. DeGrand and D. Toussaint, "The Behavior of Nonabelian Magnetic Fields at High Temperature," Phys. Rev. D 25, 526 (1982)
 - Screening of the chromomagnetic field of the monopole-antimonopole string was shown
 - Color structure could not be clarified by this method
- S. Antropov, M. Bordag, V. Demchik and V. Skalozub, "Long range chromomagnetic fields at high temperature," Int. J. Mod. Phys. A 26, 4831 (2011) [arXiv:1011.3147 [hep-ph]]
 - Zero magnetic mass of the Abelian chromomagnetic field was shown
 - Non-Abelian components of the chromomagnetic field were not investigated

Magetic Mass: Analytical Calculations vs Lattice

The aim of this investigation: to show that m_{magn} is produced by the charged components of the gluon field on the lattice

Quantum Gluodynamics on the Lattice

 $\begin{array}{rcl} \mbox{Continuous Minkovsky space-time} & \longrightarrow & \mbox{Euclidean 4D discrete lattice} \\ & \mbox{Continuous operators} & \longrightarrow & \mbox{Discrete operators on the lattice} \\ & \mbox{Gluon fields} & \longrightarrow & \mbox{SU(N) matrices at the links of the lattice} \end{array}$

Expectation value of a measured quantity \mathcal{O} :

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \,\mathcal{O}[U] e^{-S[U]} \longrightarrow \langle \mathcal{O} \rangle \approx \frac{1}{K} \sum_{U_k} \mathcal{O}[U_k]$$
(11)

$$z = \int \mathcal{D}U \, e^{-S[U]}, \quad \int \mathcal{D}U = \prod_{x,\mu} \int dU_{\mu}(x), \quad \text{configurations } U_k \text{ are distributed with probability } \propto e^{-S[U_k]}.$$
Lattice Wilson action: $S_W = \beta \sum_{\mu > \nu} \sum_x \left[1 - \frac{1}{N} \operatorname{Re} \operatorname{Tr} U_{\mu\nu} \right]$ (12)

$$S_W \xrightarrow{a \to 0} \frac{1}{4g^2} \int d^4x \, F_{\mu\nu}^{(c)}(x) F_{\mu\nu}^{(c)}(x)$$
(13)

$$U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x) - \text{plaquette.}$$
(14)

 ν_{\uparrow}

Idea of the investigation:

Two external chromomagnetic fields are introduced on the lattice:

- field of monopole-antimonopole string;
- Abelan field flux.

Screening of combination of that fields is investigated.

Monopole-Antimonopole String on the Lattice

// T. A. DeGrand and D. Toussaint

// M. Srednicki and L. Susskind, Nucl. Phys. B179, 239 (1981)

$$S = \beta \sum_{n} \sum_{\mu > \nu} \left[1 - \frac{1}{N} \operatorname{Re} \operatorname{Tr} U_{\mu\nu}(n) \Xi_{\mu\nu}(n) \right],$$
$$\Xi_{\mu\nu}(n) \in Z(N)$$

Center of the SU(N) group: $Z(N) = \{ \sqrt[N]{1} \cdot I \}$

SU(2) case: $Z(2) = \{1 \cdot I, -1 \cdot I\}$

SU(3) case:
$$Z(3) = \{ e^{-\frac{2}{3}\pi i} \cdot I, 1 \cdot I, e^{\frac{2}{3}\pi i} \cdot I \}$$

$$\Xi_{\mu\nu}(n) \neq I$$
 if string $\cap U_{\mu\nu}(n)$

$$\Xi_{\mu
u}(n)=-I \quad ext{if } x=0, \ y=0, \ \forall z,t$$

z 🛦

Abelian Field Flux on the Lattice

Plaquette:

$$U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)$$

$$U_{\mu}(n) = e^{iaA_{\mu}(n)} \} \Rightarrow U_{\mu\nu}(n) = e^{ia^{2}F_{\mu\nu}(n)}$$

$$U_{xy}' = e^{ia^{2}(H_{z}+H_{z}^{\text{ext}})} = U_{xy}e^{ia^{2}H_{z}^{\text{ext}}}$$

$$U_{y}'(0, n_{y}, n_{z}, n_{t}) = U_{y}(0, n_{y}, n_{z}, n_{t})e^{i\varphi}$$

 $\varphi = a^2 N_x H_z^{\text{ext}}$

Twisted boundary conditions:

$$\begin{cases} U_{y}(N_{x}, n_{y}, n_{z}, n_{t}) = U_{y}(0, n_{y}, n_{z}, n_{t}) e^{i\varphi}, \\ U_{\mu}(N_{x}, n_{y}, n_{z}, n_{t}) = U_{\mu}(0, n_{y}, n_{z}, n_{t}), & \mu \neq y, \\ U_{\mu}(n_{x}, N_{y}, n_{z}, n_{t}) = U_{\mu}(n_{x}, 0, n_{z}, n_{t}), \\ U_{\mu}(n_{x}, n_{y}, N_{z}, n_{t}) = U_{\mu}(n_{x}, n_{y}, 0, n_{t}), \\ U_{\mu}(n_{x}, n_{y}, n_{z}, N_{t}) = U_{\mu}(n_{x}, n_{x}, n_{z}, 0). \\ \end{cases} e^{i\varphi} = e^{i\varphi_{3}\sigma_{3}/2} = \begin{pmatrix} e^{i\varphi_{3}/2} & 0 \\ 0 & e^{-i\varphi_{3}/2} \end{pmatrix}$$

$$e^{i\varphi} = e^{i(\varphi_3\lambda_3 + \varphi_8\lambda_8)/2} = \begin{pmatrix} e^{i(\varphi_3 + \varphi_8/\sqrt{3})/2} & 0 & 0\\ 0 & e^{i(-\varphi_3 + \varphi_8/\sqrt{3})/2} & 0\\ 0 & 0 & e^{-i\varphi_8/\sqrt{3}} \end{pmatrix}$$
(15)

Ext. Field through the Flux vs Ext. Field through the Strength

твс

$$U_{\mu\nu}(n) = e^{ia^2 F_{\mu\nu}(n)}$$
$$a^2 F_{xy}(n) \to a^2 \left[F_{xy}(n) + H_z^{\text{ext}} \right]$$

Cosmai & Cea

// P. Cea and L. Cosmai, Phys. Rev. D 60, 094506 (1999) [hep-lat/9903005]

 $U_{\mu}(n) = e^{iaA_{\mu}(n)}$

$$A_{\mu}(n) \rightarrow A_{\mu}(n) + H_z^{\text{ext}} x \delta_{\mu 2} t_3/2$$

$$U_{\mu}(x + N_x, y, z, t) = U_{\mu}(x, y, z, t)$$

$$\frac{ \underset{z}{\overset{}{\overset{}}}}{\frac{H_z^{\mathsf{ext}} N_x a}{2}} = 2\pi k, \quad k \in Z$$

Outline of the Investigation

Lattices: $N_t \times N^3$, $N_t = \text{const}$ Measured quantity: $\langle U \rangle = \langle \operatorname{Re} \operatorname{Tr} U_{\mu\nu} \rangle$ Investigated quantity: $f(N) = |\langle U \rangle_{\text{field}} - \langle U \rangle_0|$ $U_{\mu\nu}(n) = e^{ia^2 F_{\mu\nu}(n)} \approx 1 + ia^2 F_{\mu\nu}(n),$ $a \rightarrow 0$ (16) $\Delta U_{\mu\nu}(n) \approx i a^2 \Delta F_{\mu\nu}(n)$ (17) $F(\varphi) = -T \ln \frac{\mathcal{Z}(\varphi)}{\mathcal{Z}(0)},$ - free energy, $\mathcal{Z}(\varphi) = \int \mathcal{D}U \,\mathrm{e}^{-S(\varphi)}$ (18) $S(\varphi) = S(0) + \sum_{n=1}^{\infty} \frac{1}{n!} \left. \frac{\partial^n S(\varphi)}{\partial \varphi^n} \right|_{\varphi=0} \varphi^n = S(0) + S_{\varphi}(\varphi)$ (19) $\frac{\mathcal{Z}(\varphi)}{\mathcal{Z}(0)} = \mathrm{e}^{-\overline{S}_{\varphi}(\varphi)}$ $\mathcal{Z}(\varphi) = \int \mathcal{D}U \,\mathrm{e}^{-S(0)} \,\mathrm{e}^{-S_{\varphi}(\varphi)}$ (20) $f(n) \sim \frac{\partial F(n)}{\partial \beta}$ $F(\varphi) = T\overline{S}_{\varphi}(\varphi) = T(\overline{S}(\varphi) - \overline{S}(0))$ (21)

Outline of the Investigation

Lattices: $N_t \times N^3$, $N_t = \text{const}$ Measured quantity: $\langle U \rangle = \langle \operatorname{Re} \operatorname{Tr} U_{\mu\nu} \rangle$ Investigated quantity: $f(N) = |\langle U \rangle_{\mathsf{field}} - \langle U \rangle_0|$

Possibilities for *f*:

- $f \sim 1/N^2$ flux tubes, the flux is conserved;
- $f \sim 1/N^4$ Coulombic behavior, flux spreads out over the available area;
- $f \sim e^{-kN^2}$ screening of the field; $k = m_{magn}^2$;
- $f\sim 1/N$ spontaneous field generation, flux increases with distance.

Simulations are performed

- in absence of external Abelian field flux φ ;
- in presence of external Abelian field flux φ :

 φ is directed parallel to the monopole-antimonopole string.

Lattices used: $4 \times N^3$, $N = 6, 8, \dots, 72$ External Abelian field flux $\varphi = 0.08$ (~ 10^4 MeV²) $\begin{array}{l} \beta = 2.835 \; (T \sim 1.2 \; {\rm GeV}) \\ \beta = 3.020 \; (T \sim 1.9 \; {\rm GeV}) \\ \beta = 3.091 \; (T \sim 2.3 \; {\rm GeV}) \end{array}$

Simulations are performed with the QCDGPU program (https://github.com/vadimdi/QCDGPU, V. Demchik, N. K., Comp. Sc. and Appl., 1, 1 (2014) [arXiv:hep-lat/1310.7087])

χ^2 -analysis of the Data

The data are fitted through minimization of χ^2 function:

$$\chi^{2}(a) = \sum_{i=1}^{K} \frac{[y_{i} - \log f(N_{i}; a)]^{2}}{\sigma_{i}^{2}},$$

$$y_{i} = \log f_{i}, \qquad f(N_{i}; a) = \frac{A}{N^{b}} e^{-kN^{q}}.$$
(22)

$$\chi^2_{min} = \chi^2(\hat{a}) \sim \chi^2_{\nu}; \qquad \nu = K - L; \qquad L = \text{Length } a$$

Hypothesis testing:

- H_0 : $f(N_i; a)$ describes the data;
- H_1 : $f(N_i; a)$ does not describe the data.

$$\Rightarrow \quad \chi^2_{min} \le \chi^2_{\nu;0.05}$$
 Functions
$$\Rightarrow \quad \chi^2_{min} > \chi^2_{\nu;0.05}$$
 describing
the data

 $f_i = |\langle U \rangle_{\text{field}} - \langle U \rangle_0|_i$

SU(2) Results: Data at $\varphi = 0$

 $f(N) = |\langle U \rangle_{\mathsf{field}} - \langle U \rangle_0|$

SU(2) Results: Fitting at $\varphi = 0$

	$\beta = 2.835$							$\beta =$	C	$\beta = 3.091$						
Function		χ^2_{min}	$\chi^2_{\nu;0.05}$	a/r	$\hat{k} \pm 2\sigma \operatorname{Cl} \times 10^{-2}$		χ^2_{min}	$\chi^2_{\nu;0.05}$	a/r	$\hat{k} \pm 2\sigma \operatorname{Cl} \times 10^{-2}$	χ^2_{min}	$\chi^2_{\nu;0.05}$	a/r	$ \hat{k} \pm 2\sigma \operatorname{CI} \\ \times 10^{-2} $		
A/N		137	9.49	×	_		509	9.49	×	_	190	9.49	×	-		
A/N^2		80.4	9.49	×	_		247	9.49	×	_	102	9.49	×	-		
A/N^4		14.0	9.49	×	-		19.5	9.49	×	_	9.53	9.49	×	-		
$A e^{-kN}$		0.40	7.81	~	63.9 ± 10.9		2.19	7.81	~	54.4 ± 4.5	0.98	7.81	✓	56.8 ± 8.0		
$A e^{-kN^2}$		3.18	7.81	✓	3.68 ± 0.63		11.8	7.81	×	3.33 ± 0.28	10.3	7.81	×	3.18 ± 0.45		
$(A/N) e^{-kN}$		0.60	7.81	~	51.7 ± 10.9		4.14	7.81	~	41.5 ± 4.5	0.64	7.81	~	44.8 ± 8.0		
$(A/N) e^{-kN^2}$		1.49	7.81	✓	2.99 ± 0.63		4.09	7.81	~	2.55 ± 0.28	5.10	7.81	✓	2.52 ± 0.45		
$(A/N^2) e^{-kN}$		0.99	7.81	~	39.5 ± 10.9		7.29	7.81	~	28.6 ± 4.5	0.77	7.81	✓	32.7 ± 8.0		
$(A/N^2) e^{-kN^2}$		0.63	7.81	~	2.30 ± 0.63		2.16	7.81	~	1.78 ± 0.28	1.89	7.81	✓	1.85 ± 0.45		
$(A/N^4) e^{-kN}$		2.32	7.81	✓	15.1 ± 10.9]	17.2	7.81	×	2.80 ± 4.52	2.45	7.81	✓	8.65 ± 7.96		
$(A/N^4) e^{-kN^2}$		1.36	7.81	✓	0.91 ± 0.63		15.5	7.81	×	0.23 ± 0.28	1.58	7.81	✓	0.52 ± 0.45		

N. V. Kolomoyets

Screening mass of gluons in presence of external Abelian chromomagnetic field

SU(2) Results: Fitting at $\varphi = 0$

		$\beta =$	2.83	5	$\beta = 3.020$						$\beta = 3.091$						
Function	χ^2_{min}	$\chi^2_{\nu;0.05}$	a/r	$ \hat{k} \pm 2\sigma \text{ CI} \\ \times 10^{-2} $	χ^2_{min}	$\chi^2_{\nu;0.05}$	a/r	$\hat{k} \pm \times$	$ \hat{k} \pm 2\sigma \operatorname{CI}_{\times 10^{-2}} $		in	$\chi^2_{\nu;0.05}$	a/r	$\hat{k} \pm 2\sigma \times 10^{-1}$	CI • 2		
A/N	137	9.49	×	-	509	9.49	×		PHYSICAL REVI	wD		VOLUME 25, N	UMBER 2		15 JANUAR	Y 1982	
A/N^2	80.4	9.49	×	-	247	9.49	×			Behavior of non-Abelian magnetic fields at high temperature T. A. DeGrand [*] and D. Toussaint							
A/N^4	14.0	9.49	×	-	19.5	9.49	×		-	9.	53	10 ⁻²	, ,				
$A e^{-kN}$	0.40	7.81	~	63.9 ± 10.9	2.19	7.81	~	54.	4 ± 4.5	0.	98	10%	ł	Į	1		
$A e^{-kN^2}$	3.18	7.81	~	3.68 ± 0.63	11.8	7.81	×	3.3	3 ± 0.28	10).3	T OF TWIST	¥ ·	İ	-		
$(A/N) e^{-kN}$	0.60	7.81	~	51.7 ± 10.9	4.14	7.81	~	41.	5 ± 4.5	0.	64	EFFEC		¥	(0) (•)		
$(A/N) e^{-kN^2}$	1.49	7.81	~	2.99 ± 0.63	4.09	7.81	~	2.5	5 ± 0.28	5.	10	10*			Ţ(×)		
$(A/N^2) e^{-kN}$	0.99	7.81	~	39.5 ± 10.9	7.29	7.81	~	28.	6 ± 4.5	0.	77	10	20	30 AREA (N ²)	40		
$(A/N^2) e^{-kN^2}$	0.63	7.81	~	2.30 ± 0.63	2.16	7.81	~	1.78		TABLE II	Fits t	o quantities to a	/N ² , b/N	¹⁴ , or Ce^{-kN^2} , w	with χ^2 .		
$(A/N^4) e^{-kN}$	2.32	7.81	~	15.1 ± 10.9	17.2	7.81	×	2.80	$\frac{\text{Quantif}}{\langle U_{xx} - \frac{1}{2}(U_{xx} - \frac{1}{2}) \rangle}$	$(U_{rr})\rangle_{tw}$	، 0.0216	α χ^2 0.0027 26.5	b 0.53±0.06	χ^2 c 7.5 0.021	k 0.136±0.02	χ ² 1 1.1	
$(A/N^4) \mathrm{e}^{-kN^2}$	1.36	7.81	~	0.91 ± 0.63	15.5	7.81	×	0.23	$\frac{\langle U \rangle_{\rm tw} - \langle U \rangle_{\rm n}}{\langle U_{xy} \rangle_{\rm tw} - \langle U_{\chi}}$	> ₁₀	0.0112	0.0028 12.6 0.045 38.6	0.28 ± 0.06 0.89 ± 0.09	5.1 0.0187 12.3 0.0507	0.165±0.054 0.157±0.031	4 1.3 1 1.5	

Screening mass of gluons in presence of external Abelian chromomagnetic field

SU(2) Results: Data at $\varphi = 0.08$

 $f(N) = |\langle U \rangle_{\mathsf{field}} - \langle U \rangle_0|$

SU(2) Results: Fitting at $\varphi = 0.08$

Screening mass of gluons in presence of external Abelian chromomagnetic field

Comparison of the results

SU(3) Results: Data at $\varphi = 0$

 $\chi^2 > \chi^2_{\nu;0.05} \Rightarrow$ rejection at 95% CL

SU(3) Results: Data at $\varphi = 0$

- B. Grossman, S. Gupta, U. M. Heller and F. Karsch, "Glueball like screening masses in pure SU(3) at finite temperatures," Nucl. Phys. B 417, 289 (1994) [hep-lat/9309007].
 - External field sources are not introduced
 - $m_{\rm el}$ and $m_{
 m magn}$ are measured through Plyakov loop correlators
 - $2m_{magn} = 5.8(4)T$ @ $T = 1.5T_c$

- Both monopole-antimonopole string and external Abelian field flux are introduced on the lattice.
- Results of the previous investigations for SU(2) gauge group are reproduced.
- In SU(2) it is shown that adding of the Abelian field flux weakens the screening of the string field. This confirms that
 - for the Abelian field $m_{magn} = 0$;
 - $m_{\rm magn}$ of the monopole-antimonopole string field is produced by its non-Abelian components.
- In SU(3) formation of flux tubes is obtained.

- Both monopole-antimonopole string and external Abelian field flux are introduced on the lattice.
- Results of the previous investigations for SU(2) gauge group are reproduced.
- In SU(2) it is shown that adding of the Abelian field flux weakens the screening of the string field. This confirms that
 - for the Abelian field $m_{magn} = 0$;
 - $m_{\rm magn}$ of the monopole-antimonopole string field is produced by its non-Abelian components.
- In SU(3) formation of flux tubes is obtained.

Thank you for your attention!