Constraints on the Nuclear Equation of State. Hyperon Puzzle of Neutron Stars

Evgeni Kolomeitsev

Matej Bel University, Banska Bystrica

In collaboration with K.A. Maslov and D.N. Voskresensky (MEPhI, Moscow)

[PLB 748 (2015) 369; PRC 92 (2015) 052801(R), NPA 950 (2016) 64]

Constraints on the nuclear EoS:

 maximum neutron-star mass
 baryon mass vs. gravitational mass
 mass-radius relation
 particle flow in heavy-ion collisions

- Making RMF model flexible
- Hyperon puzzle

Neutron Star Zoo

>1400 neutron stars in isolated rotation-powered pulsars ~ 30 millisecond pulsars

>100 neutron stars in accretion-powered X-ray binaries ~ 50 x-ray pulsar intense X-ray bursters (thermonuclear flashes)

short gamma-ray bursts neutron

neutron star -- neutron star, neutron star -- black-hole mergers

soft gamma-ray repeaters – magnetars (super-strong magnetic fields)

Measuring pulsar mass

Pulsar mass can be measured only in binary systems

direction of observation

Do not determine individual masses of stars and the orbital inclination.

Measurement of any 2 post-Keplerian parameters allows to determine the mass of each star.

White dwarf -- neutron star binaries

Measuring pulsar mass

X-ray binaries

Lattimer ARNPS62 (2012)

Neutron star mass (M_{\odot})

Stm

Dany Page

Accretion disk Pulsar magnetosphere

Measuring pulsar mass

Double neutron star binaries

1974 PSR B1913+16 Hulse-Taylor pulsar

First precise test of Einstein gravitation theory

2003 J0737-3039 first double pulsar

Pulsar A: $P^{(A)}=22.7 \text{ ms}$, $M^{(A)}=1.338 \text{ M}_{sol}$ Pulsar B: $P^{(B)}=2.77 \text{ ms}$, $M^{(A)}=1.249\pm0.001 \text{ M}_{sol}$ Orbiting period 2.5 hours

[Nature 426, 531 (2003), Science 303, 1153 (2004)]

Double neutron star binaries

Neutron star mass (M_{\odot})

Pulsar J03448+0432

radio-timing observations of pulsar +phase-resolved optical spectroscopy of WD

${f M}=(2.01\pm 0.04)~{f M}_{\odot}$

Pulsar J1614-2230

Measured Shapiro delay with high precision

Time signal is getting delayed when passing near massive object.

$\mathbf{M} = (\mathbf{1.97} \pm \mathbf{0.04}) \; \mathbf{M}_{\odot}$

P.Demorest et al., Nature 467, 1081-1083 (2010)

Highest well-known masses of NS

there are heavier, but far less precisely measured candidates

Antonadis et al., Science 340,448

Gravitational mass -- baryon number constraint

first double pulsar system J0737-3039

Pulsar A: $P^{(A)}$ =22.7 ms, $M^{(A)}$ =1.338 M_{sol} Pulsar B: $P^{(B)}$ =2.77 ms, $M^{(A)}$ =1.249±0.001 M_{sol} Orbiting period 2.5 hours

[Nature 426, 531 (2003), Science 303, 1153 (2004)]

Pulsar B: progenitor ONeMg white dwarf, driven hydrodyn. unstable by e- captures on Mg & Ne;

[Podsiadlowski et al., MNRAS 361, 1243 (2005)]

observed NSs gravitational mass (remnant star): 1.248—1.250 M_{so} critical baryon mass of progenitor white dwarf: 1.366—1.375 M_{so}

assume no mass-loss during collapse...

Mass-radius relation

BPA: Bayesian probability analysis [Lattimer, Steiner ...]

msp PSRJ0437-4715: 3σ confidence Bogdanov ApJ 762, 96 (2013)

Neutron star cooling data

Neutrino emission reactions

neutron star is transparent for neutrino $T < T_{\rm opac} \sim 10^{-1} - 10^0 \text{ MeV}$ *n*-nucleon reaction $L = \int \mathrm{d}V \sum \epsilon_{\nu}^{(r)}$ $C_V \frac{\mathrm{d}I}{\mathrm{d}t} = -L$ emissivity $T \ll \epsilon_{\rm F} \implies \epsilon_{\nu} \sim T^{2n+4}$ C_V - specific heat, L - luminosity standard: modified Urca $\sum_{n=1}^{p} \frac{e}{10^{22}} \left(\frac{T}{10^{9} \,\mathrm{K}}\right)^{8} \left(\frac{n_{e}}{n_{0}}\right)^{\frac{1}{3}} \frac{\mathrm{erg}}{\mathrm{cm}^{3} \,\mathrm{s}}$ allowed if $|p_{\mathrm{F},n} - p_{\mathrm{F},p}| < p_{\mathrm{F},e}$ exotic: direct Urca $L = 10^{27} \times \left(\frac{T}{10^9 \,\mathrm{K}}\right)^6 \left(\frac{n_e}{n_0}\right)^{\frac{1}{3}} = \frac{\mathrm{erg}}{\mathrm{cm}^3 \,\mathrm{s}}$

n

starts at some critical density, i.e. in stars with M>M^{DU}_{crit}

Neutron Star Cooling Scenario

standard scenario (MU+pairing) only "slow" cooling can be described

Neutron stars with $M > M_{\text{crit}}^{\text{DU}}$ will be too cold

DU process schould be "exotics" (if DU starts it is dificult to stop it) $M_{
m crit}^{
m DU} \gtrsim 1.3 \ M_{\odot} \qquad n_{
m crit}^{
m DU} \gtrsim 4 \, n_0$

[Blaschke, Grigorian, Voskresensky A&A 424 (2004) 979]

EoS should produce a large DU threshold in NS matter !

[EEK, Voskresensky NPA759 (2005) 373]

Constraints from heavy-ion collisions

[Danielewicz, Lacey, Lynch, Science 298, 1592 (2002)]

Cross section of a neutron star

Nucleus melting

Pasta structure

interplay of Coulomb energy and surface tension

saturation density $ho_0 = 2.8 imes 10^{14} rac{
m g}{
m cm^3}$

 $M_{crust} \sim 0.1 M_{sol}$ $R_{crust} \sim 10^2 - 10^3 m$

Tolman-Oppenheimer-Volkov equation

Equilibrium condition for a shell in a non-rotating neutron star

OUTPUT:

 $S_{\Omega}(r) dp = dF_G \qquad \text{Newton's Law}$ Ir $4 \pi r^2 dp = G \frac{M(r) dM}{r^2} \qquad dM = 4 \pi r^2 \varepsilon(p) dr$

INPUT: equation of state (EoS)

$$\varepsilon = \varepsilon(p) \quad \text{ or } \quad \left\{ \begin{array}{l} p = p(n) \\ \varepsilon = \varepsilon(n) \end{array} \right.$$

boundary conditions: $\varepsilon(r=0) = \varepsilon_c$, M(r=0) = 0, P(r=R) = 0

neutron star density profile, radius R and mass M

relativistic corrections

$$\frac{dp}{dr} = -\frac{G \varepsilon M}{r^2} \left(1 + \frac{p}{\varepsilon c^2}\right) \left(1 + \frac{4\pi P r^3}{M c^2}\right) \left(1 - \frac{2GM}{c^2 r}\right)$$

Neutron star configuration

Ab inito calculations of the EoS starting from NN potential

[Akmal, Pandharipande, Ravenhan הרכיס (שס) וסטיין

[Gandolfi et al PRC 79, 054005 (2009)]

non-relativistic EoS!

Relativistic mean-field models

nucleon-nucleon interaction

vacuum: one boson-exchange for NN-potential+ Lippmann-Schwinger equations

<u>a model</u>

$$\mathcal{L} = \sum_{N} \bar{N} \left[i \left(\hat{\partial} + i g_{\omega N} \hat{\omega} + i g_{\rho N} \tau \, \hat{\rho} \right) \right] - (m - g_{\sigma N} \sigma) \right]$$

+
$$\frac{1}{2} \left(\partial_{\mu} \sigma \, \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) - U(\sigma)$$

scalar
-
$$\frac{1}{4} \omega_{\mu\nu} \, \omega^{\mu\nu} + \frac{1}{2} m_{\omega} \, \omega_{\mu} \, \omega^{\nu} - \frac{1}{4} \rho_{\mu\nu} \rho^{\mu\nu} + \frac{1}{2} \rho_{\mu} \rho^{\mu}$$

vector
iso-vector

medium: mean-field approximation

 $\sigma(r,t) = \sigma$ $\omega_{\mu}(r,t) = \delta_{\mu,0} \omega_{0}$ $\rho^{a}_{\mu}(r,t) = \delta^{a,3} \delta_{\mu,0} \rho^{(3)}_{0}$ constant fields

[Serot, Walecka]

pion dynamics falls out completely in this approx.

nucleon spectrum in MF approximation

$$E_N(p) = \sqrt{m_N^{*2} + p^2} + g_{\omega N} \,\omega_0 + g_{\rho N} \,I_N \,\rho_{03} \quad m_N^* = m_N - g_{\sigma N} \,\sigma$$

Energy-density functional

$$E[n_p, n_n; \sigma] = \frac{m_{\sigma}^2 \sigma^2}{2} + U(\sigma) + C_{\omega}^2 \frac{(n_n + n_p)^2}{2 m_N^2} + C_{\rho}^2 \frac{(n_n - n_p)^2}{8 m_N^2} + \sum_N \int_0^{p_{\mathrm{F},N}} \frac{dp \, p^2}{\pi^2} \sqrt{(m_N - g_{\sigma N} \, \sigma)^2 + p^2}$$

evaluated for σ field followed from the equation

$$\frac{\delta E[n_p, n_n, \sigma]}{\delta \sigma} = 0$$

Paremeters $C_i^2 = \frac{g_{iN}^2 m_N^2}{m_i^2}$ are adjusted to properties of nuclear matter at saturation

If we add gradient terms this energy density functional can be used for a description of properties of atomic nuclei.

n_0	\simeq	$0.16 \pm 0.015 \text{ fm}^{-3}$
$E_{ m bind}$	\simeq	$-15.6\pm0.6~{\rm MeV}$
$m^*_N(ho_0)$	\simeq	$(0.75 \pm 0.1) m_N$
K	\simeq	$240 \pm 40 \text{ MeV}$
$a_{ m sym}$	\simeq	$32 \pm 4 \text{ MeV}$

(pure) Walecka model $U(\sigma)=0$ $n_0 = 0.16 \text{fm}^{-3}, E_{\text{bind}} = -16 \text{ MeV}$ \downarrow $K = 553 \text{ MeV}, m_N^*(n_0) = 0.54 m_N$

<u>modified Walecka</u> $U(\sigma)=a\sigma^3+b\sigma^4$

non-linear Walecka model (NLW)

maximal mass of NS

Examples for illustrations

Relativistic Mean Field Models

ΝL ρ, ΝL ρδ	T. Gaitanos, M. Di Toro, S. Typel, V. Baran,
	C. Fuchs, V. Greco, H.H. Wolter

scalar-field dependent couplings

[Nucl. Phys. A 732, 24 (2004)]

KVR, KVOR E.E. Kolomeitsev, D.N.Voskresensky

reduction of hadron masses in dense medium is included

density dependent couplings

[Nucl. Phys. A 759, 373 (2005)]

DD, D³C, DD-F S. Typel [Phys. Rev. C 71, 064301 (2005)]

Dirac- Bruekner-Hartree-Fock

DBHF E.N.E. van Dalen, C. Fuchs, A. Faessler

EoS at saturation

 $E(n,\beta) = E_0(n) + \beta^2 E_S(n) \approx a_V + \frac{K}{18}\epsilon^2 - \frac{K'}{162}\epsilon^3 + \dots + \beta^2 \left(J + \frac{L}{3}\epsilon + \dots\right) + \dots$ $\epsilon = (n - n_{sat})/n \qquad \beta = (n_n - n_p)/(n_n + n_p)$

✓ constraints from heavy-ion collisions

✓ maximum mass constraints

Dots indicate star masses and corresponding central densities, at which direct Urca reaction starts.

maximal NS mass constraint

✓ baryon vs. gravitational mass

$$M_N = 4 \pi m_N \int_{0}^{R} \frac{\mathrm{d}r r^2 n(r)}{\sqrt{1 - 2G m(r)/r}}$$

Making RMF EoS flexible

Non-linear Walecka model: Play with a scalar-field potential

Scaling of meson masses and coupling constants

The standard non-linear Walecka (NLW) model

$$\begin{split} \mathcal{L} &= \overline{\Psi}_N \begin{bmatrix} \left(i \, \partial_\mu - g_\omega \omega_\mu - g_\rho t \boldsymbol{\rho}_\mu \right) \gamma^\mu - m_N + g_\sigma \sigma \end{bmatrix} \Psi_N \text{ nucleons} \\ &+ \frac{1}{2} [\left(\partial_\mu \sigma \right)^2 - m_\sigma^2 \sigma^2] - U(\sigma) & \text{scalar field} \\ &- \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu^2 - \frac{1}{4} \boldsymbol{\rho}_{\mu\nu} \boldsymbol{\rho}^{\mu\nu} + \frac{1}{2} m_\omega^2 (\boldsymbol{\rho}_\mu)^2 & \text{vector fields} \end{split}$$

$$U(\sigma) = \frac{b}{3}m_N(g_{\sigma N}\sigma)^3 + \frac{c}{4}(g_{\sigma N}\sigma)^4$$

Input parameters

$$egin{aligned} n_0 &= 0.16 \, {
m fm}^{-3}, \, \mathcal{E}_0 = -16 \, {
m MeV}, \, K = 250 \, {
m MeV} \ \mathcal{E}_{
m sym} &= 30 \, {
m MeV}, \, m_N^*(n_0)/m_N = 0.8 \ &\Longrightarrow M_{
m max} = 1.92 \, M_{\odot} \end{aligned}$$

For better description of atomic nuclei one Includes no-linear terms $\omega_{\mu}^4, \, \omega_{\mu}^2 \rho_{\nu}^2$

→ softening of EoS and M_{max} reduction

Maximum mass strongly depends on $m_N^*(n_0)$ and weakly on K.

K.A. Maslov et al., PRD92 (2015) 052801(R) If we modify the scalar potential $\widetilde{U}(\sigma) = U(\sigma) + \Delta U(\sigma)$ so that the $m_{N}^{*}(n)$ levels off then the EoS stiffens $\frac{\mathrm{d}f}{\mathrm{d}n} = \frac{2(\partial n_{\mathrm{S}}/\partial n)}{m_{\scriptscriptstyle N}^3 C_{\sigma}^{-2} + \tilde{U}''(f)/m_N - 2(\partial n_{\mathrm{S}}/\partial f)}$ $f = g_{\sigma} \sigma / m_N$ n_S – scalar density $\frac{\partial n_{\rm S}}{\partial n} = \frac{m_N^*}{2\sqrt{p_{\rm D}^2 + m_N^{*2}}} \qquad -\frac{\partial n_S}{\partial f} = \int \frac{m_N p^4 dp / \pi^2}{(p^2 + m_N^{*2})^{3/2}}$ NLWcut model soft core: $\Delta U(f) = \alpha \ln[1 + \exp(\beta(f - f_{s,core}))]$ hard core: $\Delta U(f) = lpha ig \delta f / (f_{
m h.core} - f) ig]^{2eta}$ $f_{\rm s.core} = f_0 + c_\sigma (1 - f_0)$

 $m_N^*(n_0) = m_N \left(1 - f_0
ight)$

EEK and D.Voskresensky NPA 759 (2005) 373

• in standard RMF model m_{σ} , m_{ω} , and m_{ρ} do not change

Can the in-medium modification (decrease) of meson masses be included in an RMF model??

• Song, Brown, Min, Rho (1997) $m_{\sigma}^*/m_{\sigma} \approx m_{\omega}^*/m_{\omega} \approx m_{\rho}^*/m_{\rho} = \Phi(n)$

Lattice QCD (SC-QCD): common drop of meson masses [Ohnishi Miura Kawamoto Mod.Phys.Lett A23, 2459]

- decreasing functions of σ : $m^*_{\omega}(\sigma)$, $m^*_{\rho}(\sigma) \leftarrow$ self-consistent σ field results in *increase* of ρ an ω masses
- $\bullet~\sigma$ field dependent masses and couplings constant

KVOR EoS successfully tested in Klaehn at al., PRC74 (2006) 035802

Aim: Construct a better parameterization which satisfies new constraints on the nuclear EoS Inclusion of hyperons. "Hyperon puzzle". Increase of hyperon-hyperon repulsion due to phi-meson exchange (phi-mass reduction)

Generalized RMF Model

Nucleon and meson Lagrangians

$$\mathcal{L}_{N} = \bar{\Psi}_{N} \left(i D \cdot \gamma \right) \Psi_{N} - m_{N} \Phi_{N} \bar{\Psi}_{N} \Psi_{N},$$

$$D_{\mu} = \partial_{\mu} + i g_{\omega} \chi_{\omega} \omega_{\mu} + \frac{i}{2} g_{\rho} \chi_{\rho} \rho_{\mu} \tau,$$

$$\mathcal{L}_{M} = \frac{\partial^{\mu} \sigma \partial_{\mu} \sigma}{2} - \Phi_{\sigma}^{2} \frac{m_{\sigma}^{2} \sigma^{2}}{2} - U(\sigma)$$

$$-\frac{\omega_{\mu\nu} \omega^{\mu\nu}}{4} + \Phi_{\omega}^{2} \frac{m_{\omega}^{2} \omega_{\mu} \omega^{\mu}}{2} - \frac{\rho_{\mu\nu} \rho^{\mu\nu}}{4} + \Phi_{\rho}^{2} \frac{m_{\rho}^{2} \rho_{\mu} \rho^{\mu}}{2},$$

$$\omega_{\mu\nu} = \partial_{\nu} \omega_{\mu} - \partial_{\mu} \omega_{\nu}, \quad \rho_{\mu\nu} = \partial_{\nu} \rho_{\mu} - \partial_{\mu} \rho_{\nu} + g_{\rho}' \chi_{\rho}' [\rho_{\mu} \times \rho_{\nu}],$$

effective masses: $\ m_i^*/m_i \ = \ \Phi_i(\chi_\sigma\sigma)$

Energy-density functional

 $B \in SU(3)$ ground state multiplet scalar field $f = g_{\sigma} \chi_{\sigma} \sigma / m_N$ $E[f, \{n_{\rm B}\}] = \sum_{\rm F} E_{\rm kin}(p_{{\rm F},B}, m_B \Phi_B(f)) + \sum_{\rm F} E_{\rm kin}(p_{{\rm F},l}, m_l)$ $l{=}e,\mu$ $+\frac{m_N^4 f^2}{2C_-^2}\eta_{\sigma}(f)+\frac{1}{2m_{\gamma}^2}\left[\frac{C_{\omega}^2 \widetilde{n}_B^2}{n_{\omega}(f)}+\frac{C_{\rho}^2 \widetilde{n}_I^2}{n_{\omega}(f)}+\frac{C_{\phi}^2 \widetilde{n}_S^2}{n_{\omega}(f)}\right],$ effective densities: $\widetilde{n}_B = \sum_{R} x_{\omega B} n_B$ $\widetilde{n}_I = \sum_{D} x_{\rho B} t_{3B} n_B$ $\widetilde{n}_S = \sum_{H} x_{\phi H} n_H$ with coupling constant ratios $x_{\omega(\rho)B} = \frac{g_{\omega(\rho)B}}{g_{\omega(\rho)N}} \quad x_{\phi H} = \frac{g_{\phi H}}{g_{\omega N}}$ scaling functions mass scaling: $\eta_i(f) = \frac{\Phi_i^2(f)}{\gamma_i^2(f)}, \quad i = \sigma, \, \omega, \, \rho$ $\Phi_m(f) \approx \Phi_N(f) = 1 - f$ $\Phi_H(f) = 1 - x_{\sigma H} \frac{m_N}{m_H} \xi_{\sigma H} f$

The standard sigma potential can be introduced as $\eta_{\sigma}(f) = 1 + rac{2 \, C_{\sigma}^2}{m^4 \, f^2} U(f)$

KVORcut model

Apply cut-scheme to η_{ω} function

$$\eta_{\omega}^{\mathrm{KVOR}}(f) \to \eta_{\omega}^{\mathrm{KVOR}}(f) + \frac{a_{\omega}}{2} \left[1 + \tanh(b_{\omega}(f - f_{\mathrm{cut},\omega})) \right]$$

 $C_{\sigma^2}, C_{\omega^2}, C_{\rho^2}$ and parameters of η_{σ} are fitted to reproduce

D G	\mathcal{E}_0	n_0	K	$m_N^*(n_0)$	\widetilde{J}_0	L	K'	$K_{\rm sym}$
EoS	[MeV]	$[fm^{-3}]$	[MeV]	$[m_N]$	[MeV]	[MeV]	[MeV]	[MeV]
KVOR	-16	0.16	275	0.805	32	71	423	-85
MKVOR	-16	0.16	240	0.73	30	41	557	-159

scaling functions for coupling constants vs scalar field:

Scalar field in dense matter

Scalar and vector potentials in KVOR and MKVOR models vs. DBHF calculations

BM: Brockmann – Machleidt PRC42 (1990)

KS: Katayama-Saito PRC88 (2013)

Neutron matter EoS

empirical constraints on symmetry energy

-- (AIS) analog isobar states [Danielewicz, Lee NPA 922 (2014) 1] -- α_D electric dipole polarizability ²⁰⁸Pb [Zhang, Chen 1504.01077]

microscopic calculations

Akmal, Pandharipande, Ravenhall -- (AFDMC) Gandolfi et al.MNRAS 404 (2010) L35 Hebeler, Schwenk EPJA 50 (2014) 11

Constraints on EoS from HICs

Particle flow: Danielewicz, Lacey and Lynch, Science 298 (2002) 1592

Kaon production: Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1

Gravitational vs baryon mass of PSR J0737-3039(B)

- 1. Podsiadlowski et al., MNRAS 361 (2005) 1243
- 2. Kitaura et al., A&A 450 (2006) 345

Hyperon puzzle

[Weissenborn et al., NPA 881 (2012) 62]

Inclusion of hyperons

1) standard. extension: H

Vector coupling constants from SU(6) symmetry:

$$g_{\omega\Lambda} = g_{\omega\Sigma} = 2g_{\omega\Xi} = \frac{2}{3}g_{\omega N}, \quad g_{\rho\Sigma} = 2g_{\rho\Xi} = 2g_{\rho N},$$
$$2g_{\phi\Lambda} = 2g_{\phi\Sigma} = g_{\phi\Xi} = -\frac{2\sqrt{2}}{3}g_{\omega N}, \quad g_{\rho\Lambda} = g_{\phi N} = 0.$$

Scalar coupling constants from hyperon binding energies

$$\mathcal{E}_{\text{bind}}^{H}(n_0) = C_{\omega}^2 m_N^{-2} x_{\omega H} n_0 - (m_N - m_N^*(n_0)) x_{\sigma H}$$
$$x_{\omega(\rho)B} = g_{\omega(\rho)B} / g_{\omega(\rho)N}$$

data on hypernuclei

$$\mathcal{E}_{\text{bind}}^{\Lambda}(n_0) = -28 \text{ MeV}$$

 $\mathcal{E}_{\text{bind}}^{\Sigma}(n_0) = +30 \text{ MeV}$
 $\mathcal{E}_{\text{bind}}^{\Xi}(n_0) = -15 \text{ MeV}$

2) +phi mesons. extension: Ho

$$\Phi_{\phi} = 1 - f, \quad \chi_{\phi H} = 1 \qquad \eta_{\phi} = \frac{\Phi_{\phi}^2}{\chi_{\phi}^2} = (1 - f)^2$$

Phi meson mediated repulsion among hyperons is enhanced

<u>3) + hyperon-sigma couplings reduced. extension</u>: $H\phi\sigma$

 $\Phi_H(f) = 1 - x_{\sigma H} \frac{m_N}{m_H} \xi_{\sigma H} f$

 $\xi_{\sigma H}(n \le n_0) = 1$ but $\xi_{\sigma H}(n \gtrsim n_\Lambda) \to 0$ hyperon-nucleon mass gap grows with density

QMC model: Guichon, Thomas

Strangeness concentration

Maximum NS mass and the strangeness concentration

Mass-radius constraints

BPA: Bayesian probability analysis [Lattimer, Steiner ...]

msp PSRJ0437-4715: 3σ confidence Bogdanov ApJ 762, 96 (2013)

Compact stars do provide some constraints on the nuclear EoS

RMF model with with scaled meson masses and coupling constants

✓ Universal scaling of hadron masses. Not universal scaling of coupling constants

✓ The model is flexible enough to satisfy many astrophysical constraints, constraints from HIC and microscopic calculations.

✓ Hyperon puzzle can be partially resolved if the reduction of phi meson mass is taken into account