Dispersive approach to non-Abelian axial anomaly and η , η' production in heavy ion collisions

S. Khlebtsov², Y. Klopot¹, A. Oganesian^{1,2} and O. Teryaev¹

¹BLTP JINR, Dubna

²ITEP, Moscow

Seminar "Theory of Hadronic Matter under Extreme Conditions" 4 July 2018, BLTP JINR, Dubna

- η and η' mesons are known to be deeply related to Abelian and non-Abelian axial anomalies.
- We generalize the exact anomaly sum rules to the case of non-Abelian axial anomaly and apply the results to the processes of η and η' radiative decays and their production in heavy ion collisions.

Outline

Introduction: Axial anomaly

Anomaly Sum Rule

ASR and meson contributions

Low-energy theorem for mixed states

Hadron contributions and analysis of the ASR

Numerical analysis

 η/η' ratio in heavy ion collisions

Conclusions & Outlook

Axial anomaly

In QCD, for a given flavor q, the divergence of the axial current $J^{(q)}_{\mu 5}=\bar{q}\gamma_{\mu}\gamma_{5}q$ acquires both electromagnetic and strong anomalous terms:

$$\partial_{\mu}J_{\mu5}^{(q)} = m_q \bar{q}\gamma_5 q + \frac{e^2}{8\pi^2} e_q^2 N_c F \tilde{F} + \frac{\alpha_s}{4\pi} G \tilde{G}, \qquad (1)$$

An octet of axial currents

$${\cal J}_{\mu5}^{(a)}=\sum_{q}ar q\gamma_5\gamma_\murac{\lambda^a}{\sqrt{2}}q$$

Singlet axial current $J^{(0)}_{\mu 5} = \frac{1}{\sqrt{3}} (\bar{u} \gamma_{\mu} \gamma_{5} u + \bar{d} \gamma_{\mu} \gamma_{5} d + \bar{s} \gamma_{\mu} \gamma_{5} s)$:

$$\partial^{\mu} J_{\mu 5}^{(0)} = \frac{1}{\sqrt{3}} (m_{u} \overline{u} \gamma_{5} u + m_{d} \overline{d} \gamma_{5} d + m_{s} \overline{s} \gamma_{5} s) + \frac{\alpha_{em}}{2\pi} C^{(0)} N_{c} F \tilde{F} + \frac{\sqrt{3} \alpha_{s}}{4\pi} G \widetilde{G},$$
(2)

The diagonal components of the octet of axial currents
$$J^{(3)}_{\mu 5} = \frac{1}{\sqrt{2}} (\bar{u}\gamma_{\mu}\gamma_{5}u - \bar{d}\gamma_{\mu}\gamma_{5}d),$$

 $J^{(8)}_{\mu 5} = \frac{1}{\sqrt{6}} (\bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d - 2\bar{s}\gamma_{\mu}\gamma_{5}s)$
acquire an electromagnetic anomalous term only:

$$\partial^{\mu} J_{\mu 5}^{(3)} = \frac{1}{\sqrt{2}} (m_u \overline{u} \gamma_5 u - m_d \overline{d} \gamma_5 d) + \frac{\alpha_{em}}{2\pi} C^{(3)} N_c F \tilde{F}, \qquad (3)$$

$$\partial^{\mu} J_{\mu 5}^{(8)} = \frac{1}{\sqrt{6}} (m_u \overline{u} \gamma_5 u + m_d \overline{d} \gamma_5 d - 2m_s \overline{s} \gamma_5 s) + \frac{\alpha_{em}}{2\pi} C^{(8)} N_c F \widetilde{F}.$$
(4)

The electromagnetic charge factors $C^{(a)}$ are

$$egin{aligned} C^{(3)} &= rac{1}{\sqrt{2}}(e_u^2 - e_d^2) = rac{1}{3\sqrt{2}}, \ C^{(8)} &= rac{1}{\sqrt{6}}(e_u^2 + e_d^2 - 2e_s^2) = rac{1}{3\sqrt{6}}, \ C^{(0)} &= rac{1}{\sqrt{3}}(e_u^2 + e_d^2 + e_s^2) = rac{2}{3\sqrt{3}}. \end{aligned}$$

(5)

Anomaly sum rule for the singlet axial current



The matrix element for the transition of the axial current $J_{\alpha 5}$ with momentum p = k + q into two real or virtual photons with momenta k and q is:

$$e^{2}T_{\alpha\mu\nu}(k,q) = \int d^{4}x d^{4}y e^{(ikx+iqy)} \langle 0|T\{J_{\alpha5}(0)J_{\mu}(x)J_{\nu}(y)\}|0\rangle; \quad (6)$$

Kinematics:

$$k^2=0, Q^2=-q^2$$

Anomalous axial-vector Ward identity for the singlet component of axial current:

$$p_{\alpha}T^{\alpha\mu\nu} = 2mG\epsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma} + \frac{C_{0}N_{c}}{2\pi^{2}}\epsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma} + N(p^{2},q^{2},k^{2})\epsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma},$$
(7)
where $2mG\epsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma} = \langle 0|\sum_{\sigma=\nu,d=\sigma}m_{\sigma}\bar{q}\gamma_{5}q|\gamma\gamma\rangle,$

. $\chi_{\rho}q_{\sigma} = \langle 0 | \angle q = u, d, s m q \sigma / 5 q | r r r$

_

$$\langle 0|\frac{\sqrt{3\alpha_s}}{4\pi}G\tilde{G}|\gamma(k)\gamma(q)\rangle = e^2 N(p^2,k^2,q^2)\epsilon^{\mu\nu\rho\sigma}k_{\mu}q_{\nu}\epsilon^{(k)}_{\rho}\epsilon^{(q)}_{\sigma}, \quad (8)$$

$$\langle 0|F\tilde{F}|\gamma(k)\gamma(q)\rangle = 2\epsilon^{\mu\nu\rho\sigma}k_{\mu}q_{\nu}\epsilon^{(k)}_{\rho}\epsilon^{(q)}_{\sigma}.$$
(9)

The VVA triangle graph amplitude presented as a tensor decomposition:

$$T_{\alpha\mu\nu}(k,q) = F_{1} \varepsilon_{\alpha\mu\nu\rho}k^{\rho} + F_{2} \varepsilon_{\alpha\mu\nu\rho}q^{\rho} + F_{3} k_{\nu}\varepsilon_{\alpha\mu\rho\sigma}k^{\rho}q^{\sigma} + F_{4} q_{\nu}\varepsilon_{\alpha\mu\rho\sigma}k^{\rho}q^{\sigma} (10) + F_{5} k_{\mu}\varepsilon_{\alpha\nu\rho\sigma}k^{\rho}q^{\sigma} + F_{6} q_{\mu}\varepsilon_{\alpha\nu\rho\sigma}k^{\rho}q^{\sigma},$$

 $F_j = F_j(p^2, k^2, q^2; m^2)$, p = k + q. In the kinematical configuration with one real photon ($k^2 = 0$) the anomalous Ward identity can be rewritten in terms of form factors F_j as follows ($N(p^2, q^2) \equiv N(p^2, q^2, k^2 = 0)$):

$$(q^2 - p^2)F_3 - q^2F_4 = 2mG + \frac{C_0N_c}{2\pi^2} + N(p^2, q^2).$$
 (11)

-G, F_3 , F_4 can be rewritten as dispersive integrals without subtractions. [Horejsi, Teryaev '94] -N: rewrite it in the form with one subtraction.

$$N(p^2, q^2) = N(0, q^2) + p^2 R(p^2, q^2),$$
(12)

where the new form factor R can be written as an unsubtracted dispersive integral.

The imaginary part of AWI (11) w.r.t. p^2 (s in the complex plane) reads

$$(q^2 - s)ImF_3 - q^2ImF_4 = 2mImG + sImR.$$
 (13)

– Divide every term of Eq. (13) by $(s - p^2)$ and integrate:

$$\frac{1}{\pi} \int_0^\infty \frac{(q^2 - s)ImF_3}{s - p^2} ds - \frac{q^2}{\pi} \int_0^\infty \frac{ImF_4}{s - p^2} ds = \frac{1}{\pi} \int_0^\infty \frac{2mImG}{s - p^2} ds + \frac{1}{\pi} \int_0^\infty \frac{sImR}{s - p^2} ds + \frac{1}{\pi} \int_0^\infty$$

– After transformation and making use of the dispersive relations for the form factors F_3 , F_4 , G, R:

$$(q^2 - p^2)F_3 - \frac{1}{\pi}\int_0^\infty ImF_3ds - q^2F_4 = 2mG + p^2R + \frac{1}{\pi}\int_0^\infty ImRds.$$
 (15)

Comparing (15) with (11) we arrive at the anomaly sum rule for the singlet current:

$$\frac{1}{\pi} \int_0^\infty Im F_3 ds = \frac{C_0 N_c}{2\pi^2} + N(0, q^2) - \frac{1}{\pi} \int_0^\infty Im R(s, q^2) ds, \qquad (16)$$

ASR and meson contributions

Saturating the l.h.s. of (16) with resonances according to global quark-hadron duality, we write out the first resonances' contributions explicitly, while the higher states are absorbed by the integral with a lower limit s_0 ,

$$\Sigma f_M^0 F_{M\gamma}(q^2) + \frac{1}{\pi} \int_{s_0}^{\infty} Im F_3 ds = \frac{C_0 N_c}{2\pi^2} + N(0, q^2) - \frac{1}{\pi} \int_0^{\infty} Im R(s, q^2) ds,$$
(17)

where

$$\int d^4x e^{ikx} \langle M(p)|T\{J_{\mu}(x)J_{\nu}(0)\}|0\rangle = e^2 \epsilon_{\mu\nu\rho\sigma} k^{\rho} q^{\sigma} F_{M\gamma}(q^2) , \quad (18)$$

$$\langle 0|J_{\alpha 5}^{(a)}(0)|M(p)\rangle = ip_{\alpha}f_{M}^{a}.$$
⁽¹⁹⁾

- ► "Continuum threshold" $s_0(q^2)$ [KOT'11],[Oganesian,Pimikov,Stefanis,Teryaev'15]. $s_0 \gtrsim 1 \text{ GeV}^2$.
- If one saturates with resonances the last term in the ASR: the glueball-like states.

Low-energy theorem

The matrix element $\langle 0|G\tilde{G}(p)|\gamma(k)\gamma(q)\rangle$?

- No rigorous calculation from the QCD.
- Possible to estimate it in the limit $p^{\mu} = 0$. [Shifman'88].

We consider the case of two real photons $(q^2 = k^2 = 0)$. Supposing that there are no massless particles in the singlet channel in the chiral limit (i.e. no admixture of the η):

 $\lim_{p\to 0} p^{\mu} \langle 0|J_{\mu 5}(p)|\gamma\gamma\rangle = 0,$

$$\langle 0|\partial^{\mu}J_{\mu5}|\gamma\gamma\rangle = 0.$$

Using the explicit expression for the divergence of axial current in the chiral limit (put $m_q = 0$), one can relate the matrix elements of $\langle 0|G\tilde{G}|\gamma\gamma\rangle$ and $\langle 0|F\tilde{F}|\gamma\gamma\rangle$ in the considered limits.

• Mixing: η spoils the theorem!

Low-energy theorem for mixing states

Take into account mixing.

$$J_{\mu 5}^{(x)} = a J_{\mu 5}^{(0)} + b J_{\mu 5}^{(3)}, \quad \langle 0 | J_{\mu 5}^{(x)} | \eta \rangle = 0.$$
 (20)

$$J_{\mu 5}^{(x)} = b(J_{\mu 5}^{(8)} - \frac{f_{\eta}^{8}}{f_{\eta}^{0}}J_{\mu 5}^{(0)}), \qquad (21)$$

$$\langle 0|J_{\mu 5}^{(i)}(0)|M(p)\rangle = ip_{\mu}f_{M}^{i}.$$
 (22)

The current (21) gives no massless poles in the matrix element $\langle 0|J_{\mu 5}^{(x)}|\gamma\gamma\rangle$ even in the chiral limit, and therefore

$$\lim_{\rho \to 0} \langle 0 | \partial_{\mu} J_{\mu 5}^{(\mathbf{x})}(\rho) | \gamma \gamma \rangle = 0.$$
 (23)

In the chiral limit, at $p^{\mu} = 0$:

$$\langle 0|\frac{\sqrt{3}\alpha_s}{4\pi}G\tilde{G}|\gamma\gamma\rangle = \frac{N_c}{f_\eta^8}(f_\eta^0 C^{(8)} - f_\eta^8 C^{(0)})\langle 0|\frac{\alpha_e}{2\pi}F\tilde{F}|\gamma\gamma\rangle.$$
(24)

$$N(0,0,0) = \frac{N_c}{2\pi^2 f_\eta^8} (f_\eta^0 C^{(8)} - f_\eta^8 C^{(0)}).$$
 (25)

Hadron contributions and analysis of the ASR

$$\Sigma f_M^0 F_{M\gamma}(q^2) + rac{1}{\pi} \int_{s_0}^\infty Im F_3 ds = rac{C_0 N_c}{2\pi^2} + N(0,q^2) - rac{1}{\pi} \int_0^\infty Im R(s,q^2) ds$$

The first hadron contributions to the ASR: η and η' . For real photons, the transition form factors determine the 2-photon decay amplitudes A_M $(M = \eta, \eta')$:

$$A_M \equiv F_{M\gamma}(0) = \sqrt{\frac{64\pi\Gamma_{M\to 2\gamma}}{e^4 m_M^3}}.$$
 (26)

The ASR for the octet channel [KOT'12] for real photons:

$$f_{\eta}^{8}A_{\eta} + f_{\eta'}^{8}A_{\eta'} = \frac{1}{2\pi^{2}}N_{c}C^{(8)}.$$
(27)

The ASR in the singlet channel:

$$f_{\eta}^{0}A_{\eta} + f_{\eta'}^{0}A_{\eta'} = \frac{1}{2\pi^{2}}N_{c}C_{0} + B_{0} + B_{1}, \qquad (28)$$

where

$$B_0 \equiv N(0,0,0), \ B_1 \equiv -\frac{1}{\pi} \int_0^\infty ImR(s)ds - \frac{1}{\pi} \int_{s_0}^\infty ImF_3ds.$$
(29)

- The B₀ term stands for a subtraction constant in the dispersion representation of gluon anomaly;
- ▶ The B_1 term consists of two parts: spectral representation of gluon anomaly and the integral covering higher resonances. The latter is proportional to α_s^2 : F_3 is described by a triangle graph (no α_s corrections) plus diagrams with additional boxes ($\propto \alpha_s^2$ for the first box term). The α_s^2 suppression of the box graph contribution is due to $s > s_0 \gtrsim 1 \text{ GeV}^2$.
- ▶ In the case of both real photons in the chiral limit the triangle amplitude is zero ($\propto q^2$). So, B_1 is represented by the integral with the lower limit $s_0 \sim 1 \text{ GeV}^2$ and is suppressed at least as α_s^2 on the scale of 1 GeV².

Combining ASRs for the octet and singlet channels, we obtain the 2-photon decay amplitudes:

$$A_{\eta} = \frac{1}{\Delta} \left(\frac{N_c}{2\pi^2} (C^{(8)} f_{\eta'}^0 - C^{(0)} f_{\eta'}^8) - (B_0 + B_1) f_{\eta'}^8 \right),$$
(30)

$$A_{\eta'} = \frac{1}{\Delta} \left(\frac{N_c}{2\pi^2} (C^{(0)} f_{\eta}^8 - C^{(8)} f_{\eta}^0) + (B_0 + B_1) f_{\eta}^8 \right),$$
(31)

where $\Delta = f_{\eta}^{8} f_{\eta'}^{0} - f_{\eta'}^{8} f_{\eta}^{0}$. Making use of the result of the LET for B_{0} :

$$A_{\eta} = \frac{N_c C^{(8)}}{2\pi^2 f_{\eta}^8} - \frac{B_1 f_{\eta'}^8}{\Delta},$$
(32)

$$A_{\eta'} = \frac{B_1 f_{\eta}^8}{\Delta}.$$
(33)

Note, that low energy theorem leads to the cancellation of the photon anomaly term with subtraction part of gluon anomaly B_0 in (31), so the amplitude $\eta' \rightarrow \gamma \gamma$ (in the chiral limit) is entirely determined by B_1 , i.e., predominantly by the spectral part of the gluon anomaly.

Numerical analysis

Gluon anomaly term contributions for different sets of meson decay constants

	($\begin{pmatrix} f_{\eta}^8 \\ f_{\eta}^0 \\ f_{\eta}^0 \end{pmatrix}$	$ \begin{pmatrix} f_{\eta'}^8 \\ f_{\eta'}^0 \\ f_{\eta'}^0 \end{pmatrix} \frac{1}{f_{\pi}} $	-	$B_0 \times 10^2$	$B_1 imes 10^2$	$(B_0+B_1)\times 10^2$
[KOT'12], free analysis		$1.11 \\ 0.16$	-0.42 1.04)	-5.55	4.91	-0.64
[KOT'12], OS mix. sch.		0.85 0.20	-0.22 0.81)	-5.36	3.84	-1.53
[KOT'12], QF mix. sch.	(1.38 0.18	-0.63 1.35)	-5.58	6.39	0.81
[Escribano,Frere'05], free analysis		1.39 0.054	-0.59 1.29)	-5.77	5.86	0.095
[Feldmann,Kroll'98], QF mix. sch.		1.17 0.19	-0.46 1.15)	-5.51	5.47	-0.047

- ► The contribution of gluon anomaly and higher order resonances (expressed by $B_0 + B_1$ term) to the 2-photon decay amplitudes appears to be rather small numerically in comparison with the contribution of electromagnetic anomaly $(1/2\pi^2)N_cC^{(0)} \simeq 0.058$.
- B₀ and B₁ enter the ASR with different signs and almost cancel each other, giving only a small total contribution to the two-photon decay widths of the η and η'.

η/η' ratio in heavy ion collisions $\langle 0 \mid G\widetilde{G} \mid \eta(\eta') \rangle$ enter J/Ψ decays:

$$R_{J/\Psi} = \frac{\Gamma(J/\Psi \to \eta'\gamma)}{\Gamma(J/\Psi \to \eta\gamma)} = \left| \frac{\langle 0 \mid G\widetilde{G} \mid \eta' \rangle}{\langle 0 \mid G\widetilde{G} \mid \eta \rangle} \right|^2 \left(\frac{p_{\eta'}}{p_{\eta}} \right)^3, \quad (34)$$

 $p_{\eta(\eta')} = M_{J/\Psi}(1 - m_{\eta(\eta')}^2/M_{J/\Psi}^2)/2$. [Novikov et al. '80] Can be evaluated in terms of the decay constants:

$$R_{J/\Psi} = \left(\frac{f_{\eta'}^{8} + \sqrt{2}f_{\eta'}^{0}}{f_{\eta}^{8} + \sqrt{2}f_{\eta}^{0}}\right)^{2} \left(\frac{m_{\eta'}}{m_{\eta}}\right)^{4} \left(\frac{p_{\eta'}}{p_{\eta}}\right)^{3}.$$
 (35)
$$R_{J/\Psi} = 4.67 \pm 0.15, \quad \left(\frac{p_{\eta'}}{p_{\eta}}\right)^{3} \sim 0.81$$

(used as an additional constraint in [KOT'12]) Similarly, ratio of production of η/η' from gluons (CGC) in HIC: no kinematical factor.

η/η' ratio in heavy ion collisions

Possible sources of $G\tilde{G}$:

– rotating gluon-dominated plasma [Torrieri'18, " η' Production in Nucleus-Nucleus collisions as a probe of chiral dynamics", suggested η'/π^0 as a probe – we use η/η'],

- self-dual fields [Nedelko et al.]
- inclusive process $(G \tilde{G})^2 \sim G^4$.

Multihadron production in HIC – universal thermal pattern with $T \sim 160 - 170$ MeV for hadron abundances and transverse momentum spectra \rightarrow Less η' than η . Direct gluonic production should dominate at larger transverse

momentum. We expect growth of the ratio η'/η at larger transverse momentum. Detailed calculations are still required.

Conclusions

- Employing the dispersive approach to axial anomaly in the singlet current, we obtained the sum rule with photon and gluon anomaly contributions.
- ► The contributions of gluon and electromagnetic parts of axial anomaly in the $\eta(\eta') \rightarrow \gamma\gamma$ decays have been evaluated using the ASR for the singlet axial current.
- LET was generalized for the mixing states and the estimation for the subtraction constant of the gluon anomaly contribution in the dispersive form of axial anomaly was obtained.
- ▶ In HIC, the abundance ratio η'/η is expected to grow at larger transverse momentum.

Thank you for your attention!