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I η and η′ mesons are known to be deeply related to Abelian and
non-Abelian axial anomalies.

I We generalize the exact anomaly sum rules to the case of
non-Abelian axial anomaly and
apply the results to the processes of η and η′ radiative decays and
their production in heavy ion collisions.
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Axial anomaly

In QCD, for a given flavor q, the divergence of the axial current

J
(q)
µ5 = q̄γµγ5q acquires both electromagnetic and strong anomalous

terms:

∂µJ
(q)
µ5 = mq q̄γ5q +

e2

8π2
e2
qNcF F̃ +

αs

4π
GG̃ , (1)

An octet of axial currents

J
(a)
µ5 =

∑
q

q̄γ5γµ
λa√

2
q

Singlet axial current J
(0)
µ5 = 1√

3
(ūγµγ5u + d̄γµγ5d + s̄γµγ5s):

∂µJ
(0)
µ5 =

1√
3

(muuγ5u + mddγ5d + mssγ5s) +
αem

2π
C (0)NcF F̃ +

√
3αs

4π
GG̃ ,

(2)



The diagonal components of the octet of axial currents

J
(3)
µ5 = 1√

2
(ūγµγ5u − d̄γµγ5d),

J
(8)
µ5 = 1√

6
(ūγµγ5u + d̄γµγ5d − 2s̄γµγ5s)

acquire an electromagnetic anomalous term only:

∂µJ
(3)
µ5 =

1√
2

(muuγ5u −mddγ5d) +
αem

2π
C (3)NcF F̃ , (3)

∂µJ
(8)
µ5 =

1√
6

(muuγ5u + mddγ5d − 2mssγ5s) +
αem

2π
C (8)NcF F̃ . (4)

The electromagnetic charge factors C (a) are

C (3) =
1√
2

(e2
u − e2

d) =
1

3
√

2
,

C (8) =
1√
6

(e2
u + e2

d − 2e2
s ) =

1

3
√

6
,

C (0) =
1√
3

(e2
u + e2

d + e2
s ) =

2

3
√

3
. (5)



Anomaly sum rule for the singlet axial current

The matrix element for the transition of the axial current Jα5 with
momentum p = k + q into two real or virtual photons with momenta k
and q is:

e2Tαµν(k , q) =

∫
d4xd4ye(ikx+iqy)〈0|T{Jα5(0)Jµ(x)Jν(y)}|0〉; (6)

Kinematics:
k2 = 0,Q2 = −q2



Anomalous axial-vector Ward identity for the singlet component of axial
current:

pαT
αµν = 2mGεµνρσkρqσ +

C0Nc

2π2
εµνρσkρqσ + N(p2, q2, k2)εµνρσkρqσ,

(7)
where 2mGεµνρσkρqσ = 〈0|

∑
q=u,d,s mq q̄γ5q|γγ〉,

〈0|
√

3αs

4π
GG̃ |γ(k)γ(q)〉 = e2N(p2, k2, q2)εµνρσkµqνε

(k)
ρ ε(q)

σ , (8)

〈0|F F̃ |γ(k)γ(q)〉 = 2εµνρσkµqνε
(k)
ρ ε(q)

σ . (9)



The VVA triangle graph amplitude presented as a tensor decomposition:

Tαµν(k , q) = F1 εαµνρk
ρ + F2 εαµνρq

ρ

+ F3 kνεαµρσk
ρqσ + F4 qνεαµρσk

ρqσ (10)

+ F5 kµεανρσk
ρqσ + F6 qµεανρσk

ρqσ,

Fj = Fj(p
2, k2, q2;m2), p = k + q.

In the kinematical configuration with one real photon (k2 = 0) the
anomalous Ward identity can be rewritten in terms of form factors Fj as
follows (N(p2, q2) ≡ N(p2, q2, k2 = 0)):

(q2 − p2)F3 − q2F4 = 2mG +
C0Nc

2π2
+ N(p2, q2). (11)

– G ,F3,F4 can be rewritten as dispersive integrals without subtractions.
[Horejsi, Teryaev ’94]
– N : rewrite it in the form with one subtraction,

N(p2, q2) = N(0, q2) + p2R(p2, q2), (12)

where the new form factor R can be written as an unsubtracted
dispersive integral.



The imaginary part of AWI (11) w.r.t. p2 (s in the complex plane) reads

(q2 − s)ImF3 − q2ImF4 = 2mImG + sImR. (13)

– Divide every term of Eq. (13) by (s − p2) and integrate:

1

π

∫ ∞

0

(q2 − s)ImF3

s − p2
ds−q2

π

∫ ∞

0

ImF4

s − p2
ds =

1

π

∫ ∞

0

2mImG

s − p2
ds+

1

π

∫ ∞

0

sImR

s − p2
ds.

(14)
– After transformation and making use of the dispersive relations for the
form factors F3,F4,G ,R:

(q2−p2)F3−
1

π

∫ ∞

0

ImF3ds−q2F4 = 2mG +p2R +
1

π

∫ ∞

0

ImRds. (15)

Comparing (15) with (11) we arrive at the anomaly sum rule for the
singlet current:

1

π

∫ ∞

0

ImF3ds =
C0Nc

2π2
+ N(0, q2)− 1

π

∫ ∞

0

ImR(s, q2)ds, (16)



ASR and meson contributions

Saturating the l.h.s. of (16) with resonances according to global
quark-hadron duality, we write out the first resonances’ contributions
explicitly, while the higher states are absorbed by the integral with a
lower limit s0,

Σf 0
MFMγ(q2) +

1

π

∫ ∞

s0

ImF3ds =
C0Nc

2π2
+N(0, q2)− 1

π

∫ ∞

0

ImR(s, q2)ds,

(17)
where∫

d4xe ikx〈M(p)|T{Jµ(x)Jν(0)}|0〉 = e2εµνρσk
ρqσFMγ(q2) , (18)

〈0|J(a)
α5 (0)|M(p)〉 = ipαf

a
M . (19)

I ”Continuum threshold”s0(q2) [KOT’11],[Oganesian,Pimikov,Stefanis,Teryaev’15].
s0 & 1 GeV2.

I If one saturates with resonances the last term in the ASR: the
glueball-like states.



Low-energy theorem

The matrix element 〈0|GG̃ (p)|γ(k)γ(q)〉 ?

I No rigorous calculation from the QCD.

I Possible to estimate it in the limit pµ = 0. [Shifman’88].

We consider the case of two real photons (q2 = k2 = 0). Supposing that
there are no massless particles in the singlet channel in the chiral limit
(i.e. no admixture of the η):

lim
p→0

pµ〈0|Jµ5(p)|γγ〉 = 0,

〈0|∂µJµ5|γγ〉 = 0.

Using the explicit expression for the divergence of axial current in the
chiral limit (put mq = 0), one can relate the matrix elements of

〈0|GG̃ |γγ〉 and 〈0|F F̃ |γγ〉 in the considered limits.

I Mixing: η spoils the theorem!



Low-energy theorem for mixing states

Take into account mixing.

J
(x)
µ5 = aJ

(0)
µ5 + bJ

(8)
µ5 , 〈0|J

(x)
µ5 |η〉 = 0. (20)

J
(x)
µ5 = b(J

(8)
µ5 −

f 8
η

f 0
η

J
(0)
µ5 ), (21)

〈0|J(i)
µ5(0)|M(p)〉 = ipµf

i
M . (22)

The current (21) gives no massless poles in the matrix element

〈0|J(x)
µ5 |γγ〉 even in the chiral limit, and therefore

lim
p→0
〈0|∂µJ(x)

µ5 (p)|γγ〉 = 0. (23)

In the chiral limit, at pµ = 0:

〈0|
√

3αs

4π
GG̃ |γγ〉 =

Nc

f 8
η

(f 0
η C

(8) − f 8
η C

(0))〈0|αe

2π
F F̃ |γγ〉. (24)

N(0, 0, 0) =
Nc

2π2f 8
η

(f 0
η C

(8) − f 8
η C

(0)). (25)



Hadron contributions and analysis of the ASR

Σf 0
MFMγ(q2) +

1

π

∫ ∞

s0

ImF3ds =
C0Nc

2π2
+ N(0, q2)− 1

π

∫ ∞

0

ImR(s, q2)ds

The first hadron contributions to the ASR: η and η′. For real photons,
the transition form factors determine the 2-photon decay amplitudes AM

(M = η, η′):

AM ≡ FMγ(0) =

√
64πΓM→2γ

e4m3
M

. (26)

The ASR for the octet channel [KOT’12] for real photons:

f 8
η Aη + f 8

η′Aη′ =
1

2π2
NcC

(8). (27)



The ASR in the singlet channel:

f 0
η Aη + f 0

η′Aη′ =
1

2π2
NcC0 + B0 + B1, (28)

where

B0 ≡ N(0, 0, 0), B1 ≡ −
1

π

∫ ∞

0

ImR(s)ds − 1

π

∫ ∞

s0

ImF3ds. (29)

I The B0 term stands for a subtraction constant in the dispersion
representation of gluon anomaly;

I The B1 term consists of two parts: spectral representation of gluon
anomaly and the integral covering higher resonances. The latter is
proportional to α2

s : F3 is described by a triangle graph (no αs

corrections) plus diagrams with additional boxes (∝ α2
s for the first

box term). The α2
s suppression of the box graph contribution is due

to s > s0 & 1 GeV2.

I In the case of both real photons in the chiral limit the triangle
amplitude is zero (∝ q2). So, B1 is represented by the integral with
the lower limit s0 ∼ 1 GeV2 and is suppressed at least as α2

s on the
scale of 1 GeV2.



Combining ASRs for the octet and singlet channels, we obtain the
2-photon decay amplitudes:

Aη =
1

∆

(
Nc

2π2
(C (8)f 0

η′ − C (0)f 8
η′)− (B0 + B1)f 8

η′

)
, (30)

Aη′ =
1

∆

(
Nc

2π2
(C (0)f 8

η − C (8)f 0
η ) + (B0 + B1)f 8

η

)
, (31)

where ∆ = f 8
η f

0
η′ − f 8

η′ f
0
η .

Making use of the result of the LET for B0:

Aη =
NcC

(8)

2π2f 8
η

−
B1f

8
η′

∆
, (32)

Aη′ =
B1f

8
η

∆
. (33)

Note, that low energy theorem leads to the cancellation of the photon
anomaly term with subtraction part of gluon anomaly B0 in (31), so the
amplitude η′ → γγ (in the chiral limit) is entirely determined by B1, i.e.,
predominantly by the spectral part of the gluon anomaly.



Numerical analysis

Gluon anomaly term contributions for different sets of meson decay
constants

(
f 8
η f 8

η′
f 0
η f 0

η′

)
1
fπ

B0 × 102 B1 × 102 (B0 + B1) × 102

[KOT’12], free analysis

(
1.11 −0.42
0.16 1.04

)
-5.55 4.91 -0.64

[KOT’12], OS mix. sch.

(
0.85 −0.22
0.20 0.81

)
-5.36 3.84 -1.53

[KOT’12], QF mix. sch.

(
1.38 −0.63
0.18 1.35

)
-5.58 6.39 0.81

[Escribano,Frere’05], free analysis

(
1.39 −0.59

0.054 1.29

)
-5.77 5.86 0.095

[Feldmann,Kroll’98], QF mix. sch.

(
1.17 −0.46
0.19 1.15

)
-5.51 5.47 -0.047

I The contribution of gluon anomaly and higher order resonances
(expressed by B0 + B1 term) to the 2-photon decay amplitudes
appears to be rather small numerically in comparison with the
contribution of electromagnetic anomaly (1/2π2)NcC

(0) ' 0.058.

I B0 and B1 enter the ASR with different signs and almost cancel
each other, giving only a small total contribution to the two-photon
decay widths of the η and η′.



η/η′ ratio in heavy ion collisions

〈0 | GG̃ | η(η′)〉 enter J/Ψ decays:

RJ/Ψ =
Γ(J/Ψ→ η′γ)

Γ(J/Ψ→ ηγ)
=

∣∣∣∣∣ 〈0 | GG̃ | η′〉
〈0 | GG̃ | η〉

∣∣∣∣∣
2(

pη′

pη

)3

, (34)

pη(η′) = MJ/Ψ(1−m2
η(η′)/M

2
J/Ψ)/2. [Novikov et al. ’80]

Can be evaluated in terms of the decay constants:

RJ/Ψ =

(
f 8
η′ +
√

2f 0
η′

f 8
η +
√

2f 0
η

)2(
mη′

mη

)4(
pη′

pη

)3

. (35)

RJ/Ψ = 4.67± 0.15,

(
pη′

pη

)3

∼ 0.81

(used as an additional constraint in [KOT’12])
Similarly, ratio of production of η/η′ from gluons (CGC) in HIC: no
kinematical factor.



η/η′ ratio in heavy ion collisions

Possible sources of GG̃ :
– rotating gluon-dominated plasma [Torrieri’18, ”η′ Production in
Nucleus-Nucleus collisions as a probe of chiral dynamics”, suggested
η′/π0 as a probe – we use η/η′],
– self-dual fields [Nedelko et al.]
– inclusive process (GG̃ )2 ∼ G 4.

Multihadron production in HIC – universal thermal pattern with
T ∼ 160− 170 MeV for hadron abundances and transverse momentum
spectra → Less η′ than η.
Direct gluonic production should dominate at larger transverse
momentum. We expect growth of the ratio η′/η at larger transverse
momentum. Detailed calculations are still required.



Conclusions

I Employing the dispersive approach to axial anomaly in the singlet
current, we obtained the sum rule with photon and gluon anomaly
contributions.

I The contributions of gluon and electromagnetic parts of axial
anomaly in the η(η′)→ γγ decays have been evaluated using the
ASR for the singlet axial current.

I LET was generalized for the mixing states and the estimation for
the subtraction constant of the gluon anomaly contribution in the
dispersive form of axial anomaly was obtained.

I In HIC, the abundance ratio η′/η is expected to grow at larger
transverse momentum.
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