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Introduction PNJL Model Equation of state

Target

Better understanding of the strong interaction.

Thermodynamical (equation of state) and dynamical (cross

sections) studies, to build a transport theory describing the

hadronisation process.

Study of the phase diagram of QCD.

To go to �nite µ, e�ective models are necessary

PNJL provides such an approach including a �rst order phase

transition for the chiral condensate.
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QGP and phase diagram

Two phases predicted for QCD matter :

Hadronic phase :

Quarks and gluons are bound into hadrons

This is nuclear matter, we can observe it experimentally

QGP phase :

Quarks and gluons are free in the medium

We don't directly observe this phase experimentally
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Theoretical study of QCD matter

QCD lagrangian : life is tough

LQCD = iδij ψ̄
i
k γµ∂µψj

k + gs ψ̄i
k γµλa

ijA
a
µψj

k −mk ψ̄i
k ψj

k −
1
4
F a

µνF
aµν

Perturbative approach pQCD

Need of a small coupling constant = large momentum transfer.

Not usable around hadronization process yet.

Lattice approach lQCD

Static study which does not work at �nite chemical potential yet.
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Basis of the model

Polyakov- extended
Nambu-Jona-Lasinio (PNJL) Model
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Basis of the model

E�ective model

Works only in a special domain of energy but allows �nite chemical

potential studies.

Contact interaction

Static approximation : no gluons propagating the interaction

Frozen gluons

1
p2−ε2g

= − 1
ε2g

if p << ε2g
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Basis of the model

Nambu-Jona-Lasinio (NJL) Lagrangian

LNJL = δij ψ
i
k(iγ

µ∂µ −m)ψj
k + G (ψ

i
k λij ψ

j
k)

2 + 't Hooft term

Symmetries

Chiral symmetry SUL(3)⊗ SUR(3)

Color symmetry SUc(3)

Flavour symmetry SUf (3)

Problem

Center symmetry is missing

Con�nement is not described

Free parameters

m0
q = 0.0055GeV

m0
s = 0.134GeV

Λ = 0.569GeV

G = 2.3
Λ2GeV

−2

K = 11
Λ5GeV

−5
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PNJL model

Polyakov loop

Con�nement is taken into consideration using an e�ective potential

U(φ, φ̄,T ), function of the Polyakov loop φ.

Polyakov extended NJL Lagrangian

LPNJL = ψk(i/∂µ −m)ψk + G (ψk λi ψk)
2 + 't Hooft− U(φ, φ̄,T )

U(φ,φ̄,T )
T 4 = − b2(T )

2
φ̄φ− b3

6
(φ̄3 + φ3) + b4

4
(φ̄φ)2

with the parameters : b2(T ) = a0 + a1(
T0
T ) + a2(

T0
T )2 + a3(

T0
T )3

a0 a1 a2 a3 b3 b4 T0

6.75 -1.95 2.625 -7.44 0.75 7.5 270 MeV
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PNJL model

Still no gluons in the interaction

U(φ, φ̄,T ) is a static gluon �eld corresponding to the 1
4
F a

µνF
aµν term

in the QCD lagrangian.

The parameters are determined by �tting with the PYM of lQCD.

U(φ,φ̄,T )
T 4 = − b2(T )

2
φ̄φ− b3

6
(φ̄3 + φ3) + b4

4
(φ̄φ)2

with the parameters : b2(T ) = a0 + a1(
T0
T ) + a2(

T0
T )2 + a3(

T0
T )3

a0 a1 a2 a3 b3 b4 T0

6.75 -1.95 2.625 -7.44 0.75 7.5 270 MeV
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PNJL model

Modi�ed quarks distributions :

f +φ (Ei − µi ) =
(φ+2φ̄ exp(

−Ei−µi
T )) exp(− Ei−µi

T )+exp(−3 Ei−µi
T )

1+3(φ+φ̄ exp(− Ei−µi
T )) exp(− Ei−µi

T )+exp(−3 Ei−µi
T )

For φ = φ̄ = 0, �poor man's nucleon� : EN = 3E , µN = 3µ

Leads to quarks suppression below Tc .

Hung-Ming Tsai and Berndt Müller 2009, J. Phys. G : Nucl. Part. Phys. 36 075101

Hadrons and hadronic matter in chiral quarks model, David Blaschke, Dubna 2011
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PNJL model

T0, critical temperature of center symmetry breaking.

Below T0 ,the Polyakov loop is 0. The center symmetry is not

broken. The quarks are con�ned.

Above T0, the Polyakov loop is not zero. The center symmetry is

broken. The quarks are decon�ned.
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Mesons

Quark-antiquark bound states

In NJL, degrees of freedom are quarks. Mesons need to be build from

quark-antiquarks bound states

q

q̄

meson

q

q̄

Propagator of the mesons

iU(k2) = Γ −ig2
m

k2−m2 Γ

Mesons masses

The mass is given by the poles : m = k
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Mesons

Equation of Bethe-Salpeter

iU(k2) = Γ 2ig2
m

1−2g2
mΠ(k2)

Γ

1

Mesons masses

By analogy, the mass is given by the poles :

1− 2G 2Π(k2 = m2) = 0

...
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Mesons

Polarisation function

Π(p2) = −TNc ∑n

∫
d3p
(2π)3

Tr(iγ5S(p)iγ5S(p − k))

mf , µf , (iωn,~p)

m′f , µ′f , (iωn − iνn,~p −~k)

ΠPs
ff ′ (k0,

~k) = − Nc
4π2 [A(mf , µf ,T ) + A(m′f , µ− f ′,T )

+[(mf −mf ′)
2 − (k0 + µf − µf ′)

2 +~k2]B0(~k ,mf , µf ,m
′
f , µ′f , k0)]

Pole

1− 2G 2Π(k) = 0
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Mesons

Limitations of the model

Gluons don't participate in the interaction : low energy

approximation.

4-point interactions are non renormalizable : need of a cut-o�.

In fact, PNJL simply consider gluons as a static background �eld

creating a pressure on the medium.

We cannot expect this model to work beyond T > 2.5Tc where

transverse gluons are expected to contribute signi�cantly.



16/37

Introduction PNJL Model Equation of state

Equation of State
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Grand potential

Partition function

As always in statistical physics, we need the partition function :

Z = Tr [exp−β(H − µN)] = exp(−βΩ)

Grand potential

The grand potential is calculated from the partition function.

Ω = −2
∫ Λ
0

d3p
(2π)3

Ep

++ 2T
∫ ∞
0
(ln[1+ exp(−β(Ep − µ))] + ln[1+ exp(−β(Ep + µ))]

+2G ∑k < ψ̄k ψk >2 −4KΠi < ψ̄k ψj > +UPNJL)

Non interactive fermion gas + PNJL mean �eld
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Grand potential

P/T 4

T(GeV)
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Grand potential
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1

Nc
expansion

Don't forget mesons !

Below TMott , mesons are lighter than their constituants. They are

stable, present in the medium and contribute to the pressure.

Mesonic �uctuations

To add mesons, we need to go beyond the mean �eld

approximation, to the next to leading order in the 1
Nc

expansion and

consider ring diagrams.

Σ ...

E. Quack and S. P. Klevansk, Phys rev C, V49, nb6 (1994)



21/37

Introduction PNJL Model Equation of state

1

Nc
expansion

`t Hooft scaling : g ψ̄Aµψ→ gNc ψ̄
Aµ

Nc
ψ with gNc = cst

g2lNk
c ≡ (gNc)2lNc

k−2l

k is the number of fermion lines and l is the number of interaction

lines.

iSΣ(p) = iS(p)( O(1)O(Nc) + O((gNc)
2)O(1) +

O((gNc)
2)O(

1

Nc
) + O((gNc)

4)O(
1

Nc
) + ...)

Σ ...
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1

Nc
expansion

Beth-Uhlenbeck approach

We want the grand potential associated to this last diagram.

Evaluating the Matsubara sum :

Ω(0)
M =

gM
2

∫
d3p
(2π)3

∫ ∞
0

dω
(
1+ 1

exp(β(ω−µM ))−1 +
1

exp(β(ω+µM ))−1

)
× ln

[
1−2K Π(ω−µM+iε,p)
1−2K Π(ω−µM−iε,p)

]
Beth and Uhlenbeck :

Express the 2nd virial coe�cient of the Kamerlingh-Onnes

equation of state for non ideal gas in terms of two body

scattering phase shift.
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1

Nc
expansion

The same analogy can be done here.

The amplitude of the exchanged meson appears in the expression of

the S-Matrix for quark-antiquark scattering channel.

S(E ,~p) = exp(2iδ(E ,~p)))

Where δ is :

δ(E ,~p) = − 1
2i ln

[
1−2G Π(ω−µM−iε,~p)
1−2G Π(ω−µM+iε,~p)

]
Poles of the amplitude of the exchanged mesons.

Hüfner J. and al ann phys, 234, 225-244 (1994)

Blashke D. and al, arXiv :1305.3907v3 (2014)

Torres Rincon J., Aichelin J., Phys rev C, 96, 0425205 (2017)

Pole

1− 2G 2Π(k) = 0
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Mesonic grand potential

Mesonic grand potential

ΩM = - gM

8π3

∫
dpp2

∫
ds√
s+p2

[
1

exp(β(
√

s+p2−µ)−1)
+ 1

exp(β(
√

s+p2+µ)−1)

]
δM

Phase shift : the physics

The phase shift depends on the mesons masses

δM = −Arg [1− 2KM ΠM ]
Kaon Pion
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E�ective temperature

Traditional PNJL - Before

One of the parameter is T0 = 270MeV , the critical temperature for

con�nement.

This is the pure Yang-Mills critical temperature.

Quarks are here too ! - Better

Slight change in the critical temperature. We use the reduced

temperature to quantify it.

T eff = T−Tc
Tc
→ T eff

YM ' 0.57T eff
rs

This rescale the critical temperature to T0 = 190MeV

Not enough ! - Our personnal touch

In addition to this rescaling we consider that the parameter T0

depends on the temperature : T0(T ).

https ://arxiv.org/abs/1302.1993, Haas and al.
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Equation of state at zero µ

We reproduce lattice results ! ! !

We have an e�ective model based on a lagrangian that shares QCD

symmetry and match lattice results.

This is an e�ective theory, no sign problem, we can expand to �nite

chemical potential.

PRELIMINARY https ://arxiv.org/abs/1407.6387v2, HotQCD Collaboration
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Equation of state at zero µ

Mesonic contributions to the pressure

As expected, Mesons contribute only

at low temperature.

Critical temperature

Minimum of speed of

sound : localisation of the

cross over region.
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At �nite µ

Lattice at �nite µ

Lattice can handle Taylor expansion around zero chemical potential.
Tc (µB )
Tc (0)

= 1− κ
(

µB

Tc (µB )

)2
+ ...

The κ coe�cient is the second order derivative of our function :

κ =
∂2

Tc (µB )
Tc (0)

∂µ2B

∣∣∣∣∣
µB=0

�On the critical line of 2+1 �avor

QCD� Cea, Cosmai,Papa

Our critical temperature

At µB = 0, we get the critical temperature : Tc = 198MeV

Our coe�cient

The corresponding κ coe�cient is : κ = 0.018
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At �nite µ

Finite µ

Results before the �rst

order transition.

The transition gets

sharper though.

Mesons are vanishing.
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At �nite µ

To determine the critical chemical potential, we �rst

computing the two solutions for bare and dressed quarks mass.

The solutions does not match, meaning that we have a �rst

order transition
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At �nite µ

To determine precisely the value of µcrit , we use the same process

but for the grand potential.

Critical chemical potential

The value obtained is 0.425 GeV for T=0.
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At �nite µ

Conclusion :

PNJL : e�ective model to study the phase diagram at �nite µ.

PNJL + T0(T) + Pressure beyond mean �eld (mesons)

=

X Lattice equation of state at µ = 0.

X Lattice equation of state at µ ' 0.

1st order phase transition not available yet (but soon !).

X But the transition gets sharper when µ increases.

X First order transition localized at µ = 0.425 GeV at T = 0.
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At �nite µ

What's next ?

Pressure beyond mean �eld, but chiral condensate calculated
in mean �eld. E. Quack and S. P. Klevansk, Phys rev C, V49, nb6 (1994)

O(10%) and 16% for the masses

Expand results at higher µ, beyond the phase transition.

Localize the Critical End Point CEP.

Apply our equation of state to Neutron Star.
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At �nite µ

Thank you for your attention ! !
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Appendix

Sign problem

Partition function : Z =
∫

DUDψ̄Dψ exp(−S)
With the action :

S =
∫
d4x ψ̄(γν(∂ν + iAν) + µγ4 +m)ψ =

∫
d4x ψ̄Mψ

µ appears as an A4 imaginary quadrivector and :

M = γν∂ν + iγνAν + µγ4 +m

We then have :

M†(µ) = M(−µ∗)

The action is now complex. It can be seen using the

hermiticity of the γ5 matrix. M hermiticity valide at µ = 0 and

but not for �nite µ.
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Appendix

UA(1) anomaly

Classical action invariant → symmetry.

Quantum action not invariant → symmetry broken.

Symmetry broken by quantum �uctuation : Anomalies !
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Appendix

S matrix

S(p,E ) = exp(2iδ(~p,E ))) = FJ (~k,E
∗)

FJ (~k,E )

The zeroes of the Jost function are the poles of the S-matrix.

S-matrix has a pole at k = +iκ : Bound states have

exponentially decaying solutions.

Poles in the lower half plane can be written as k = -iκ + γ

γ= 0, resonances

γ = 0, antibound or virtual states.
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