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Motivation

study QCD phase diagram 
fully non-perturbatively:

functional renormalisation group

applicable for all temperaturescredits: GSI Darmstadt

ultimate goal: computation of physical observables from microscopic dynamics

experiment:
• thermodynamic potential, 
• pressure, 
• entropy, 
• screening masses, etc.
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Outline

taken from: Fischer, Maas, Pawlowski, Annals Phys. 324 (2009).
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we have discussed the equivalence and consistency of the
renormalization procedure for both, DSEs and FRGs.
Moreover, the FRG provides a consistent momentum cut-
off regularization of the corresponding DSE equation via
(44) and thus allows to deduce the modified STIs for the
DSE in the presence of an ultraviolet momentum cut-off,
see [22, 60]. A crucial difference in the present truncation
is the tadpole diagram in the gluon FRG-equation that
depends on the full four-gluon vertex. This incorporates
two-loop contributions of the sunset diagram in the gluon
DSE, see Fig. 3.

VI. COMPARISON WITH LATTICE RESULTS

In the previous two sections we obtained two different
types of solutions for the ghost and gluon propagators in
the DSE and FRG approaches. It is certainly instructive
to compare these results to the ones from lattice calcu-
lations. As became apparent from a number of works in
the past years such a comparison is not unambiguous.
Ideally one strives for a situation where exactly the same
quantities are calculated in the continuum and on the lat-
tice. However, this is currently not the case for a number
of reasons. First, lattice calculations are necessarily done
in a finite volume. It is therefore mandatory to take into
account finite volume effects and zero mode contributions
absent in the infinite volume/continuum limit. Second,
one encounters finite size contributions due to the non-
vanishing lattice spacing. Third, artefacts due to the
gauge fixing procedure are different from the ones in a
continuum formulation.

Before we discuss these issues further let us com-
pare the continuum solutions with the lattice results of
refs. [41, 75] in minimal Landau gauge. In the top dia-
gram of fig. 9 we display the gluon dressing function from
different approaches. At large momenta, where pertur-
bation theory sets in, all results are in excellent agree-
ment with each other. The DSE results as well as the
FRG results in the intermediate regime show only a mild
dependence of the type of solution, i.e. scaling or de-
coupling does not really matter here, as expected. As
compared to the standard DSE results the dressing func-
tion from the functional RG approach is closer to the
lattice data. From the discussion of the last section this
was to be expected, since the FRG truncation included
effects from the gluonic two-loop diagrams neglected in
the DSE-truncation. Note that such contributions can be
either included directly or phenomenologically by modi-
fying the three-gluon interaction in the one-loop diagram
also into the DSE framework, see e.g. [76].

The infrared behavior of the propagator functions for
the gluon, D(p2) = Z(p2)/p2, of both solutions are com-
pared in the second panel of fig. 9. Clearly, the scal-
ing solution comprises an infrared vanishing propaga-
tor, whereas the decoupling solutions are infrared finite.
Changing the boundary condition G−1(0, µ2) from zero
to finite values first leads to a finite but small value for
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FIG. 9: Both type of solutions of sections IV and V compared
to lattice results in minimal Landau gauge from [41, 75].

D(0) with the corresponding gluon propagator still be-
ing non-monotonous. From a certain minimal value of
G−1(0, µ2) on, this behavior changes and the gluon be-
comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.

gluon dressing function

ghost dressing function

16

we have discussed the equivalence and consistency of the
renormalization procedure for both, DSEs and FRGs.
Moreover, the FRG provides a consistent momentum cut-
off regularization of the corresponding DSE equation via
(44) and thus allows to deduce the modified STIs for the
DSE in the presence of an ultraviolet momentum cut-off,
see [22, 60]. A crucial difference in the present truncation
is the tadpole diagram in the gluon FRG-equation that
depends on the full four-gluon vertex. This incorporates
two-loop contributions of the sunset diagram in the gluon
DSE, see Fig. 3.

VI. COMPARISON WITH LATTICE RESULTS

In the previous two sections we obtained two different
types of solutions for the ghost and gluon propagators in
the DSE and FRG approaches. It is certainly instructive
to compare these results to the ones from lattice calcu-
lations. As became apparent from a number of works in
the past years such a comparison is not unambiguous.
Ideally one strives for a situation where exactly the same
quantities are calculated in the continuum and on the lat-
tice. However, this is currently not the case for a number
of reasons. First, lattice calculations are necessarily done
in a finite volume. It is therefore mandatory to take into
account finite volume effects and zero mode contributions
absent in the infinite volume/continuum limit. Second,
one encounters finite size contributions due to the non-
vanishing lattice spacing. Third, artefacts due to the
gauge fixing procedure are different from the ones in a
continuum formulation.

Before we discuss these issues further let us com-
pare the continuum solutions with the lattice results of
refs. [41, 75] in minimal Landau gauge. In the top dia-
gram of fig. 9 we display the gluon dressing function from
different approaches. At large momenta, where pertur-
bation theory sets in, all results are in excellent agree-
ment with each other. The DSE results as well as the
FRG results in the intermediate regime show only a mild
dependence of the type of solution, i.e. scaling or de-
coupling does not really matter here, as expected. As
compared to the standard DSE results the dressing func-
tion from the functional RG approach is closer to the
lattice data. From the discussion of the last section this
was to be expected, since the FRG truncation included
effects from the gluonic two-loop diagrams neglected in
the DSE-truncation. Note that such contributions can be
either included directly or phenomenologically by modi-
fying the three-gluon interaction in the one-loop diagram
also into the DSE framework, see e.g. [76].

The infrared behavior of the propagator functions for
the gluon, D(p2) = Z(p2)/p2, of both solutions are com-
pared in the second panel of fig. 9. Clearly, the scal-
ing solution comprises an infrared vanishing propaga-
tor, whereas the decoupling solutions are infrared finite.
Changing the boundary condition G−1(0, µ2) from zero
to finite values first leads to a finite but small value for

0 1 2 3 4 5
p [GeV]

0

1

2

Z(
p2 )

Bowman (2004)
Sternbeck (2006)
scaling (DSE)
decoupling (DSE)
scaling (FRG)
decoupling (FRG)

0 1 2 3
p [GeV]

0

1

2

3

4

5

6

7

8

Z(
p2 )/p

2  [G
eV

-2
]

Bowman (2004)
Sternbeck (2006)
scaling (DSE)
decoupling (DSE)
scaling (FRG)
decoupling (FRG)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
p [GeV]

2

4

6

8

10

12

14

G
(p

2 )

Sternbeck (2006)
scaling (DSE)
decoupling (DSE)
scaling (FRG)
decoupling (FRG)

FIG. 9: Both type of solutions of sections IV and V compared
to lattice results in minimal Landau gauge from [41, 75].

D(0) with the corresponding gluon propagator still be-
ing non-monotonous. From a certain minimal value of
G−1(0, µ2) on, this behavior changes and the gluon be-
comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.

JINR, Dubna, 2011Leonard Fister, U. Heidelberg



Yang-Mills action:

Landau gauge: 

Yang-Mills Theory - Basics

Da
µ� = �ab⇥µ + gfabcAc

µ

F a
µ� = �µA

a
� � ��A

a
µ � gfabcAb

µA
c
�

effective action

covariant derivative:

field-strength tensor:

�[A, c̄, c]

Z[J, �, �̄] � eW [J,�,�̄] =

Z
DADc̄Dc e�S[A,c̄,c]+

R
(J·A+�̄·c�c̄·�)

�[A, c̄, c] = sup
J,�,�̄

✓Z
(J ·A+ �̄ · c� c̄ · �) � W [J, �, �̄]

◆

SYM =

Z
d4x

✓
�1

4
F a
µ�F

a
µ� +

1

2�
(⇥µA

a
µ)

2 + c̄a⇥µD
ab
µ cb

◆

⇠ ! 0
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Functional Renormalisation Group (FRG)

�k=�=Sbare

�=�k=0
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Functional Renormalisation Group (FRG)
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suppression of infrared fluctuation via a modification of the propagator

Rêk2

R
† êH2k2L

k2
p20

1 propagator

k-dependent

Gk['] =
1

�(2)
k ['] +Rk(p)

SYM ! SYM +
1

2

Z

p
Aa

µR
ab
k,µ⌫(p)A

b
⌫ +

Z

p
c̄aRab

k (p, k)cb



Flow Equation (for Yang-Mills Theory)

Wetterich, Phys. Lett. B301 (1993) 90-94.

�t�k[A, c̄, c] =
1

2
Tr

⇢
1

�(2)[A, c̄, c] +Rk
�tRk

�
� �tCk

@t = k @k
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∂tΓ[A, c̄, c] =
−

1
2

−

Flow Equation (for Yang-Mills Theory)

Wetterich, Phys. Lett. B301 (1993) 90-94.

�t�k[A, c̄, c] =
1

2
Tr

⇢
1

�(2)[A, c̄, c] +Rk
�tRk

�
� �tCk

full propagator regulator

@t = k @k
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Yang-Mills Propagators

obtained from generating flow equation via functional derivation wrt the in-/out-going fields

∂t
−1

= +

∂t
−1

= −
−1/2 +

+−1/2
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Yang-Mills Propagators

∂t
−1

= +

∂t
−1

= −
−1/2 +

+−1/2
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resummation:  insert Dyson-Schwinger equations for 

�(4)
c̄cc̄c, �(4)

c̄A2c

... this is equivalent to taking a derivative of the DSE



Dyson-Schwinger Approximation for the Ghost

∂t
−1

= ++

−1
= −

The flow equation is the differential form 
of the Dyson-Schwinger equation. 

DSE:

total derivative wrt scale k

@t�
(3)
c̄Ac,k

Use:    

G[']
⇣
@t

⇣
�(2)
k ['] +Rk

⌘⌘
G[']



Truncation

∂t = 2 + + +2
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The non-triviality of the ghost-gluon vertex is crucial at finite temperature.

∂t
−1

= +

∂t
−1

= −
−1/2

+



Yang-Mills Propagators - Parametrisation

gluon propagator

ghost propagator

zero temperature:

Dab
gh(p) = �G(p)

p2
�ab

Dab
gl,µ�(p

2) = �µ�(p)
Z(p2)

p2
�ab

transversal projector in 4d

µ ⌫p

a b

ba

p
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Yang-Mills Propagators - Parametrisation

gluon propagator

ghost propagator

finite temperature (Matsubara formalism):

gluon propagator

ghost propagator

zero temperature:

p0 = 2�Tnp , np . . . Matsubara modes

Dab
gh(p) = �G(p)

p2
�ab

transversal projector
in 3d subspace

longitudinal projector
in 3d subspace

Dab
gl,µ�(p

2
0, ⇥p

2) = �abPT
µ�

ZT (p20, ⇥p
2)

p20 + ⇥p 2 + �abPL
µ�

ZL(p20, ⇥p
2)

p20 + ⇥p 2

Dab
gl,µ�(p

2) = �µ�(p)
Z(p2)

p2
�ab

transversal projector in 4d

µ ⌫p

a b

ba

p
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Ghost-Gluon-Vertex  -  Parametrisation

normalisation in the infrared: Zc̄Ac(0) = 1

p

µ

q

r

choose symmetric point: p2 = q2 = r2 = P 2

Zc̄Ac(r; p, q) ! Zc̄Ac(P )

identify momentum scale 
with renormalisation group scale k

�(3)

c̄Ac(r; p, q) = ig
0

qµ| {z }
class. vertex

Zc̄Ac(r; p, q)
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•            limit trivially satisfied
• truncations for (1) and (2) may differ
• only the difference is sensitive to truncations

Litim, Pawlowski, arXiv: hep-th/9901063.
Litim, Pawlowski, JHEP 11 (2006) 026.

Flow Equation for Thermal Fluctuations 

at non-vanishing temperature:       quantum and thermal fluctuations

(1) calculate quantum fluctuations at zero temperature
(2) project onto thermal fluctuations and add to (1)

idea:

thermal flow:

advantages:

⇥�k,T = �k,T � �k,T=0
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Flow Equation for Thermal Fluctuations 

technique (1) take zero-temperature propagator                  as input
(2) evolve initial condition from 
(3) evolve propagator at finite temperature 

�(2)
k=0,T=0

ad (2):

ad (3): 

�(2)
k=⇤ = �(2)

k=0| {z }
input

+

Z ⇤

0

dk0

k0
@t0�

(2)
k0,T=0

�(2)
k,T = �(2)

k=⇤ +

Z k

⇤

dk0

k0
@t0�

(2)
k0,T

UV input for temperature calculation

k ! ⇤ : �(2)
k=⇤,T=0
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Flow at T=0 vs T>0

�T=0

�⇤

�T

✓
T

�
⌧ 1

◆

k⇡2�T
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Solving the Flow Equation at T=0

�T=0

�⇤

✓
T

�
⌧ 1

◆

k⇡2�T
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Solving the Flow Equation at T>0

�T=0

�⇤

�T

✓
T

�
⌧ 1

◆

k⇡2�T
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Ghost-Gluon Vertex
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Ghost-Gluon Vertex
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FIG. 2: The normalized transverse part 1 + A (left panel) and the normalized longitudinal part

B (right panel) of the ghost-gluon vertex for D = 4 in various kinematical regions.
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FIG. 3: Same as Fig. 2 for D = 3.

where ∆ = q2k2− (q ·k)2 is a Gram determinant. The deviations of the transverse part from
tree-level are clearly less than 20%. This is true for all momenta allowed by momentum
conservation [31]. In addition, also the longitudinal part, B(k2; q2, p2), is smaller than 0.2
for almost all momenta and finite everywhere.

Thus, our results indicate that the full self-consistent solution will likely be very close to
the tree-level form. A crucial further test is provided, if the non-trivial form (8) is used as
input on the r.h.s. of the the equation for the ghost-gluon vertex.4 Several observations can
be inferred from Fig. 4. First, also in this case deviations from tree-level are small, except
for those kinematical regions where an infrared singularity is enforced by the ansatz (8).
Second, and even more important, the calculated vertex function A is much closer to the
tree-level case than the input. A systematic study of possible input vertex choices yields the
same result [31]. Furthermore, for D = 3 the results are very similar to the D = 4 ones [31].

Finally, we want to compare our results to recent lattice results [24] in Fig. 5. These

4 The 3-gluon vertex is taken bare. Recent investigations showed that the self-consistently determined

infrared divergence of the 3-gluon vertex does not change the result presented here [33].

6

W. Schleifenbaum, A. Maas, J. Wambach, R. Alkofer, Phys. Rev. D72 (2005) 014017.

| {z }
⇠Zc̄Ac
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was dropped



Ghost-Gluon Vertex
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Ghost-Gluon Vertex
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Ghost-Gluon Vertex
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∂t
−1

= +

∂t
−1

= −
−1/2

+

∂t = 2 + + +2
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The non-triviality is crucial at finite temperature.
A vanishing ghost-gluon vertex stops the ghost-flow.

Stabilisation of Ghost-Sector



∂t
−1

= +

∂t
−1

= −
−1/2

+

Stabilisation of Ghost-Sector

∂t = 2 + + +2
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0

0

The non-triviality is crucial at finite temperature.
A vanishing ghost-gluon vertex stops the ghost-flow.



Numerics
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initial condition:   Iteration

�T=0

�⇤

✓
T

�
⌧ 1

◆
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(n)
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k=0,i +

Z k

0

dk0

k0
Flow

(n)
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�

(n)
k,i ,Flow

(n)
i

⌘

finite temperature:   Evolution

�

(n)
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= �

(n)
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ki�1 � ki
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Flow
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Propagators
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Longitudinal Gluon-Propagator
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Longitudinal Gluon-Propagator
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Transverse Gluon-Propagator
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Ghost-Propagator
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Ghost Wave-Function Renormalisation
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Lattice Results

No. X A. Maas: Describing gluons at zero and finite temperature 2

p [GeV]

0
0.5

1
1.5

2
2.5

cT/T0 0.5 1 1.5 2

]
-2

(p
) [

G
eV

TD

0

1

2

3

4

5

Temperature dependence: Transverse propagator

0.5

p [GeV]

0
0.5

1
1.5

2
2.5c

T/T

0
0.5

1
1.5

2

]
-2

(p
) [

G
eV

LD
0

10

20

Temperature dependence: Longitudinal propagator

p [GeV]

0.5
1

1.5
2

2.5c
T/T

0
0.5

1
1.5

2

]
-2

(p
) [

G
eV

LD

0

10

20

30

Longitudinal propagator for SU(3)

0.5 cT/T
0 0.5 1 1.5 2

 [G
eV

]
-1

/2
(0

)
LD

0

0.5

1

SU(2)

SU(3)

)MeV-1cT/T(0.2+0.9 

Electric screening mass

Fig. 1. Top left panel: Transverse gluon propagator DT for SU(2) as a function of temperature and momentum.

Top right panel: Longitudinal gluon propagator DL for SU(2) as a function of temperature and momentum.

Bottom left panel: Longitudinal gluon propagator DL for SU(3) as a function of temperature and momentum.

Bottom right panel: Electric screening mass for SU(2) and SU(3) together with a fit of the high-temperature

domain. Volumes are between (3.5 fm)4 at zero temperature and (9.4 fm)4 at the highest temperature, with

a ranging between 0.2 and 0.16 fm. Details will be available elsewhere[10].

This also applies to gluons polarized longitudi-
nally w. r. t. the heat-bath, as they belong already
perturbatively to a BRST quartet[5]. Their propa-
gator is dominated at low momenta by an electric
screening mass[5, 7]. It emerges because the longitu-
dinally polarized gluon ceases almost completely to
interact ultra-softly, in contrast to the transversely
polarized one[8]. Therefore, it is only influenced by
interactions with hard modes, which provide a screen-
ing mass on the order of the temperature.

Both facts together imply that gluons are confined
at all temperatures. But this is not in contradiction to
a Stefan-Boltzmann-like behavior of thermodynamic
quantities, as the latter are dominated by hard inter-
actions, and the confining interactions are thermody-
namically sub-leading at large temperatures[6, 8].

However, it is not yet possible to determine the
temperature-behavior of the screening mass using
functional methods[5], but see[4]. For this purpose
here lattice gauge theory is used∗. The results, using

∗Here actually a decoupling-type gauge is employed, but the difference at presently accessible volumes and discretizations for
the gluon propagator are yet negligible[2].

A. Maas, arXiv: 0911.0348 [hep-lat].
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Bornyakov, Mitrjushkin, arXiv: 1103.0442 [hep-lat].
Aouane, Bornyakov, Ilgenfritz, Mitrjushkin, Mueller-Preussker, Sternbeck, 
    arXiv: 1108.1735 [hep-lat].
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Pressure

the thermal pressure is the effective action evaluated on the EoM,
normalisation to zero in the vacuum

projection onto physical subspace:

• one chromoelectric   mode
• one chromomagnetic mode

pk
�
Ā
�
= ���k,T (Ā) = � (�k,T � �k,T=0)
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Pressure from Other Methods

Andersen, Strickland, Su, 
Phys. Rev. Lett. 104 (2010).
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Pressure without Polyakov Loop
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Summary / Outlook

have seen: 

motivation:     Yang-Mills propagators and thermodynamics, QCD

idea:              introduce thermal flow equation and add to zero temperature part

flow at finite temperature

zero temperature result („input“)

(purely) thermal flow

outlook:

J. Braun, H. Gies, J. M. Pawlowski, Phys. Lett. B684 (2010) 262-267.
J. Braun, L. Haas, F. Marhauser, J. M. Pawlowski, Phys. Rev. Lett. 106 (2011) 022002.

•  thermodynamic quantities
•  couple to full QCD calculation 

•  ghost-gluon vertex
mild variation, suppressed with temperature

•  temperature-dependent, non-perturbative propagators 
chromoelectric and chromomagnetic propagators suppressed

•  first results for pressure
drop-off for low temperatures, Polyakov loop and T-dep. propagators crucial
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for propagators
for pressure

�(2)
k,T = �(2)

k,0 +��(2)
k,T


