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Introduction

Introduction
Models with four-fermion interactions

It is well known that relativistic quantum field models with four-fermion interactions
serve as effective theories for low energy considerations of different real phenomena in
a variety of physical branches:

Meson spectroscopy, neutron star and heavy-ion collision physics are often
investigated in the framework of (3+1)-dimensional 4F theories.

Physics of (quasi)one-dimensional organic Peierls insulators (polyacetylene) is
well described in terms of the (1+1)-dimensional 4F Gross-Neveu (GN) model.

The quasirelativistic treatment of electrons in planar systems like
high-temperature superconductors or in graphene is also possible in terms of
(2+1)-dimensional GN models.

It is important to note that the low-dimensional versions of the 4F theories provide
just a method to describe solid state matter and to check the theoretical mechanism
experimentally.
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Introduction

Introduction
Chiral symmetry breaking vs. superconductivity competition and duality correspondence

In this talk we demonstrate that there exists a dual correspondence between chiral symmetry
breaking phenomenon and superconductivity in the framework of some (2+1)-dimensional
4F theories.

Before now, such a duality correspondence was a well-known feature of only some
(1+1)-dimensional 4F theories:

In 1977 Ojima and Fukuda mentioned that as a result of Pauli–Gürsey symmetry the
chiral phase in (1+1)–dimensional 4F model could be interpreted as a difermion
supercondicting phase. [Prog. Theor. Phys. 57, 1720 (1977)]

In 2003 Thies showed that in addition to the duality between condensates there is also
duality between fermion number-µ and chiral charge-µ5 chemical potentials.
[Phys. Rev. D 68, 047703 (2003)]

In 2014 Ebert et al. investigated chiral symmetry breaking vs. superconductivity
competition taking into account µ, µ5 - chemical potentials and inhomogeneous patterns
for the condensates. The duality correspondence was also investigated in details.
[Phys. Rev. D 90, 045021 (2014)]

It is worth to note that in recent years properties of media with nonzero chiral chemical
potential µ5, i.e. chiral media, attracted considerable interest. In nature, chiral media might
be realized in heavy-ion collisions, compact stars, condensed matter systems, etc.
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The model and its thermodynamical potential

The model and its thermodynamical potential
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The model and its thermodynamical potential Lagrangian of the model

Lagrangian of the model

L = ψ̄k
[
γνi∂ν + µγ0 + µ5γ

0γ5
]
ψk +

G1

N
(4F )ch +

G2

N
(4F )sc, where

(4F )ch =
(
ψ̄kψk

)2
+
(
ψ̄kiγ

5ψk
)2
, (4F )sc =

(
ψTk Cψk

)(
ψ̄jCψ̄

T
j

)
.

Definitions

ψk (k = 1, ..., N) – fundamental multiplet of the O(N)

ψk – four-component (reducible) Dirac spinor

γν (ν = 0, 1, 2) and γ5 – gamma-matrices

C ≡ γ2 – charge conjugation matrix
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The model and its thermodynamical potential Lagrangian of the model

Lagrangian of the model

L = ψ̄k
[
γνi∂ν + µγ0 + µ5γ

0γ5
]
ψk +

G1

N
(4F )ch +

G2

N
(4F )sc, where

(4F )ch =
(
ψ̄kψk

)2
+
(
ψ̄kiγ

5ψk
)2
, (4F )sc =

(
ψTk Cψk

)(
ψ̄jCψ̄

T
j

)
.

Notations

µ – fermion number chemical potential

µ5 – chiral (axial) chemical potential

G1, G2 – coupling constants
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The model and its thermodynamical potential Lagrangian of the model

Lagrangian of the model

L = ψ̄k
[
γνi∂ν + µγ0 + µ5γ

0γ5
]
ψk +

G1

N
(4F )ch +

G2

N
(4F )sc, where

(4F )ch =
(
ψ̄kψk

)2
+
(
ψ̄kiγ

5ψk
)2
, (4F )sc =

(
ψTk Cψk

)(
ψ̄jCψ̄

T
j

)
.

Symmetries

Lagrangian is invariant under transformations from the UV (1)× Uγ5(1) group

Fermion number conservation group UV (1) : ψk → exp(iα)ψk

Continuous chiral transformations Uγ5(1) : ψk → exp(iαγ5)ψk

Lagrangian is also invariant under transformations from the internal auxiliary
O(N) group
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The model and its thermodynamical potential Lagrangian of the model

Gamma matrices in the four-dimensional spinor space

Irreducible representation of the SO(2, 1) group

γ̃0 = σ3 =

(
1 0
0 −1

)
, γ̃1 = iσ1 =

(
0 i
i 0

)
, γ̃2 = iσ2 =

(
0 1
−1 0

)
.

Note that the definition of chiral symmetry is slightly unusual in (2+1)-dimensions. The

formal reason is simply that there exists no other 2× 2 matrix anticommuting with the

Dirac matrices γ̃ν which would allow the introduction of a γ5-matrix. The important

concept of chiral symmetries and their breakdown by mass terms can nevertheless be

realized by considering a four-component reducible representation for Dirac fields:

Reducible representation of the SO(2, 1) group

γµ =

(
γ̃µ 0
0 −γ̃µ

)
; ψ(x) =

(
ψ̃1(x)

ψ̃2(x)

)
.

There exist two matrices, γ3 and γ5, which anticommute with all γµ and with themselves:

γ3 = i

(
0 , I
−I , 0

)
, γ5 = −γ0γ1γ2γ3 =

(
0 , I
I , 0

)
.
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The model and its thermodynamical potential Lagrangian of the model

Duality correspondence and Pauli–Gürsey transformation

Pauli–Gürsey transformation of the fields

PG : ψk(x) −→ 1

2
(1− γ5)ψk(x) +

1

2
(1 + γ5)Cψ̄Tk (x).

Taking into account that all spinor fields anticommute with each other, it is easy to
see that under the action of the PG-transformation the 4F structures of the
Lagrangian are converted into themselves:

(4F )ch
PG←→ (4F )sc,

and, moreover, each Lagrangian L(G1, G2;µ, µ5) is transformed into another one
according to the following rule:

L(G1, G2;µ, µ5)
PG←→ L(G2, G1;−µ5,−µ).
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The model and its thermodynamical potential Lagrangian of the model

Semi-bosonized version of the Lagrangian

Let us introduce the semi-bosonized version of the Lagrangian that contains only quadratic

powers of fermionic fields as well as auxiliary bosonic fields σ(x), π(x), ∆(x) and ∆∗(x):

L̃ = ψ̄k
[
γνi∂ν + µγ0 + µ5γ

0γ5 − σ − iγ5π
]
ψk−

− N(σ2 + π2)

4G1
− N∆∗∆

4G2
− ∆∗

2
[ψTk Cψk]− ∆

2
[ψ̄kCψ̄

T
k ], where

Bosonic fields

σ = −2
G1

N
(ψ̄kψk), π = −2

G1

N
(ψ̄kiγ

5ψk);

∆ = −2
G2

N
(ψTk Cψk), ∆∗ = −2

G2

N
(ψ̄kCψ̄

T
k );

σ and π – are real fields

∆ and ∆∗ – are Hermitian conjugated complex fields
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The model and its thermodynamical potential Lagrangian of the model

Properties of the bosonic fields

Under the chiral Uγ5 (1) group the fields ∆,∆∗ are singlets, but the fields σ, π are

transformed in the following way:

Uγ5(1) : σ → cos(2α)σ + sin(2α)π,

π → − sin(2α)σ + cos(2α)π

Clearly, all the fields are also singlets with respect to the auxiliary O(N) group, since the

representations of this group are real. Moreover, with respect to the parity transformation P :

P : ψk(t, x, y)→ iγ5γ1ψk(t,−x, y), k = 1, ..., N,

the fields σ(x), ∆(x) and ∆∗(x) are even quantities, i.e. scalars, but π(x) is a pseudoscalar.

If 〈∆〉 6= 0, then the Abelian fermion number conservation UV (1) symmetry of the
model and parity invariance is spontaneously broken down and the superconducting
phase is realized in the model.

If 〈σ〉 6= 0 then the continuous Uγ5 (1) chiral symmetry of the model is spontaneously

broken.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Effective action

The effective action Seff(σ, π,∆,∆∗) of the considered model is expressed by means
of the path integral over fermion fields:

exp(iSeff(σ, π,∆,∆∗)) =

∫ N∏
l=1

[dψ̄l][dψl] exp
(
i

∫
L̃ d3x

)
,

where

Seff(σ, π,∆,∆∗) = −
∫
d3x

[
N

4G1
(σ2 + π2) +

N

4G2
∆∆∗

]
+ S̃eff , and

e(iS̃eff ) =

∫
[dψ̄l][dψl]e

{
i
∫ [

ψ̄(γν i∂ν+µγ0+µ5γ
0γ5−σ−iγ5π)ψ−∆∗

2
(ψTCψ)−∆

2
(ψ̄Cψ̄T )

]
d3x

}

Henceforth we omit the index k from quark fields.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Effective action

The effective action Seff(σ, π,∆,∆∗) of the considered model is expressed by means
of the path integral over fermion fields:

exp(iSeff(σ, π,∆,∆∗)) =

∫ N∏
l=1

[dψ̄l][dψl] exp
(
i

∫
L̃ d3x

)
,

The ground state expectation values 〈σ〉, 〈∆〉, etc. of the composite bosonic fields are
determined by the saddle point equations:

δSeff

δσ
= 0,

δSeff

δπ
= 0,

δSeff

δ∆
= 0,

δSeff

δ∆∗
= 0.

Notations for simplicity:

〈σ〉 ≡M, 〈π〉 ≡ π, 〈∆〉 ≡ ∆, 〈∆∗〉 ≡ ∆∗.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Thermodynamic potential (TDP)

In the leading order of the large-N expansion TDP is defined by the following
expression: ∫

d3xΩ(M,π,∆,∆∗) = − 1

N
Seff{σ, π,∆,∆∗}

∣∣∣
σ=〈σ〉,∆=〈∆〉,...

The TDP is invariant with respect to chiral Uγ5(1) symmetry group. So, it depends
on the quantities M and π through the combination M2 + π2. Moreover, without
loss of generality, one can suppose that 〈π〉 ≡ π = 0. Thus, to find the other ground
state expectation values 〈σ〉 etc., it is enough to study the global minimum point of
the TDP Ω(M,∆,∆∗):

Ω(M,∆,∆∗) ≡ Ω(M,π,∆,∆∗)
∣∣∣
π=0
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Calculation of the TDP

Taking into account all simplifications, we have the following form for the TDP:

∫
d3xΩ(M,∆,∆∗) =

∫
d3x

(
M2

4G1
+

∆∆∗

4G2

)
+

+
i

N
ln

(∫
[dψ̄l][dψl] exp

(
i

∫
d3x
[
ψ̄Dψ −∆

2
(ψTCψ)− ∆∗

2
(ψ̄Cψ̄T )

]))
,

where D = γρi∂ρ + µγ0 + µγ0γ5 −M .

To proceed further, let us point out that without loss of generality the quantities
∆,∆∗ might be considered as real ones. So, in what follows we will suppose that
∆ = ∆∗ ≡ ∆, where ∆ now is already a real quantity.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Calculation of the TDP

After path integration we have for the TDP the following expression:

Ω(M,∆) =
M2

4G1
+

∆2

4G2
+
i

2

∑
η=±

∫
d3p

(2π)3
lnPη(p0), where

Pη(p0) = a+ ηbp0 − 2cp2
0 + p4

0, and

a = (µ2
5 − µ2 +M2 −∆2)2 − 2|~p|(µ2

5 + µ2 −M2 −∆2) + |~p|4

b = 8µµ5|~p|, c = µ2
5 + |~p|2 + µ2 +M2 + ∆2.

It is clear that the TDP is an even function of each of the quantities µ, µ5, M , and
∆, i.e. without loss of generality we can consider in the following only µ ≥ 0, µ5 ≥ 0,
M ≥ 0, and ∆ ≥ 0 values of these quantities.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Calculation of the TDP

Also, as a consequence of the Pauli–Gürsey transformation of the spinor fields, the
TDP is invariant with respect to the so-called duality transformation:

D : G1 ←→ G2, M ←→ ∆, µ←→ µ5

According to the general theorem of algebra, the polynomial Pη(p0) can be presented
in the form:

Pη(p0) ≡ (p0 − pη01)(p0 − pη02)(p0 − pη03)(p0 − pη04), where

pη01, pη02, pη03 and pη04 are the roots of this polynomial. In particular at ∆ = 0

(
pη01, p

η
02

)∣∣∣
∆=0

= ηµ±
√
M2 + (µ5 − |~p|)2, and(

pη03, p
η
04

)∣∣∣
∆=0

= −ηµ±
√
M2 + (µ5 + |~p|)2.

To obtain the roots at M = 0 one should simply substitute M → ∆ and µ→ µ5.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Calculation of the TDP

The fourth-order polynomial with similar coefficients a, b, c was studied in our
previous paper [Phys.Rev. D90 (2014), 045021], where it was shown that all its roots
pη0i (i = 1, ..., 4) are real quantities. The roots pη0i are the energies of quasiparticle or
quasiantiparticle excitations of the system.

It is possible to integrate TDP over p0 and present it in the following form:

Unrenormalized TDP

Ωun(M,∆) =
M2

4G1
+

∆2

4G2
− 1

4

∑
η=±

∫
d2p

(2π)2

(
|pη01|+ |p

η
02|+ |p

η
03|+ |p

η
04|
)
.

The TDP is an ultraviolet divergent quantity, so one should renormalize it, using a
special dependence of the bare quantities, such as the bare coupling constants
G1 ≡ G1(Λ) and G2 ≡ G2(Λ) on the cutoff parameter Λ (Λ restricts the integration
region in the divergent integrals, |~p| < Λ).
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Renormalization of the TDP in the vacuum case: µ = 0, µ5 = 0

At µ = 0 and µ5 = 0 TDP (which is usually called effective potential) looks like:

V un(M,∆) =
M2

4G1
+

∆2

4G2
−
∫

d2p

(2π)2

(√
|~p|2 + (M + ∆)2 +

√
|~p|2 + (M −∆)2

)
.

It is useful to take into account the following asymptotic expansion at |~p| → ∞:

√
|~p|2 + (M + ∆)2 +

√
|~p|2 + (M −∆)2 = 2|~p|+ (M2 + ∆2)

|~p| +O
(
1/|~p|3

)
.

Using the asymptotic expansion and integrating the effective potential over p1 and p2

term-by-term one can show that:

V reg(M,∆) = M2

[
1

4G1
− 2Λ ln(1 +

√
2)

π2

]
+

∆2

[
1

4G2
− 2Λ ln(1 +

√
2)

π2

]
− 2Λ3(

√
2 + ln(1 +

√
2))

3π2
+O(Λ0),
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Renormalization of the TDP in the vacuum case: µ = 0, µ5 = 0

Clearly, to cancel ultraviolet divergency the bare couples should have the following
form:

1

4G1
≡ 1

4G1(Λ)
=

2Λ ln(1 +
√

2)

π2
+

1

2πg1
,

1

4G2
≡ 1

4G2(Λ)
=

2Λ ln(1 +
√

2)

π2
+

1

2πg2
, where

g1,2 are finite and Λ-independent model parameters with dimensionality of inverse
mass. Since bare couplings G1 and G2 do not depend on a normalization point, the
same property is also valid for g1,2.

After calculating the finite term O(Λ0) and taking the limit Λ→∞, we have for the
renormalized effective potential V ren(M,∆) the following expression:

V ren(M,∆) ≡ Ωren(M,∆)
∣∣
µ=0,µ5=0

=
M2

2πg1
+

∆2

2πg2
+

(M + ∆)3

6π
+
|M −∆|3

6π
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Renormalization of the TDP in the general case

Using the same method, after tedious but straightforward calculations, the TDP
(reduced on the M-axis) can be presented in the following form:

F1(M) ≡ Ωren(M,∆ = 0).

To obtain TDP reduced to ∆-axis, one should simply substitute M → ∆, µ↔ µ5:

F2(∆) ≡ Ωren(M = 0,∆) = F1(∆)
∣∣∣
g1→g2,µ↔µ5
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Numerical calculations
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Numerical calculations Vacuum case: µ = 0, µ5 = 0

Numerical calculations of the model (Vacuum case: µ = 0, µ5 = 0)
The (g1, g2)-phase portrait:

At g1,2 < 0 the line l is defined by the relation l ≡ {(g1, g2) : g1 = g2}.
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Numerical calculations Selfdual case: g1 = g2

Numerical investigation of the model (Self-dual case: g1 = g2)
The (µ, µ5)-phase portraits at fixed coupling constants:

g1 = g2 ≡ g > 0 g1 = g2 ≡ g < 0

The notations I, II and III mean the symmetric, the chiral symmetry breaking
(CSB) and the superconducting (SC) phases, respectively. T denotes a triple point.
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Numerical calculations General case: g1 6= g2

Numerical investigation of the model (General case)
The (µ, µ5)-phase portraits at fixed coupling constants:

g1 > 0 and g2 = 0.2g1 g1 < 0 and g2 = −2g1

The notations I, II and III mean the symmetric, the chiral symmetry breaking
(CSB) and the superconducting (SC) phases, respectively.
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Discussions/Summary Alternative model symmetric under U
γ3 (1) - group

Alternative model symmetric under Uγ3(1) - group

Each of the matrices γ5 and γ3 = γ0γ1γ2γ5 can be selected as a generator for the
corresponding Uγ3(1) and Uγ5(1) chiral group of spinor field transformations.

Alternatively, it is possible to construct a 4F model symmetric under Uγ3(1)
continuous chiral transformations, ψ(x)→ exp(iαγ3)ψ(x):

L = ψ̄k
[
γνi∂ν + µγ0 + µ5γ

0γ3
]
ψk +

G1

N
(4F )ch +

G2

N
(4F )SC , where

(4F )ch =
(
ψ̄kψk

)2
+
(
ψ̄kiγ

3ψk
)2
, (4F )sc =

(
ψTk C̃ψk

)(
ψ̄jC̃ψ̄

T
j

)
.

Here C̃ = iCγ3γ5 and µ is the usual particle number chemical potential. Since this
Lagrangian is invariant under Uγ3(1), there exist a corresponding conserved density

of chiral charge n3 =
∑N
k=1 ψ̄kγ

0γ3ψk as well as its thermodynamically conjugate
quantity, the chiral (or axial) chemical potential µ3.
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Alternative model symmetric under Uγ3(1) - group

Using the modified Pauli–Gürsey transformation of spinor fields:

P̃G : ψk(x) −→
1

2
(1− γ3)ψk(x) +

1

2
(1 + γ3)C̃ψ̄Tk (x),

one can easily show that there is similar duality:

(4F )ch
P̃G←→ (4F )SC and Lγ3 (G1, G2;µ, µ3)

P̃G←→ Lγ3 (G2, G1;−µ3,−µ).

We have shown that the TDP for the alternative model has the following form:

Ωγ3 (M,∆) = Ωγ5 (M,∆)
∣∣∣
µ5→µ3

.

It is clear that the TDP Ωγ3 (M,∆) is invariant under the following dual transformation:

G1 ←→ G2, M ←→ ∆, µ←→ µ3.

To find phase portraits of the model, it is sufficient to perform the replacement µ5 → µ3.
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Discussions/Summary 4F theory in (1+1) dimensions

Numerical calculations of the NJL model in (1+1) dimensions
Results from PRD90 (2014), 045051 (D.Ebert et al.)

In 2014 we investigated a very similar problem in (1+1)-dimensions. But there we
implied that both condensates (chiral and superconducting) have a spatial wave-like
dependence. Here are two characteristic phase portraits, comparable to
(2+1)-dimensional case:

Selfdual case: g1 = g2 (homogeneous case) gCSB > gSC (homogeneous case)
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Discussions/Summary Conclusions

Conclusions

Duality correspondence between CSB and SC demonstrated for
(2+1)-dimensional 4F models

For comparison and illustrations, a variety of phase portraits in the (µ, µ5)- and
(g1, g2) planes is shown

Selfdual (at µ = µ5 or at g1 = g2) phase diagrams which transform into
themselves under the duality mapping

Non-selfdual phase portraits

The growth of the chiral chemical potential µ5 promotes the chiral symmetry
breaking, whereas particle number chemical potential µ induces
superconductivity in the system.
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