META-STABLE STATES IN QUARK-GLUON PLASMA

Mridupawan Deka

BLTP, Joint Institute of Nuclear Reseach, Russia

June 3, 2013

In collaboration with

Sanatan Digal The Institute of Mathematical Sciences, India

> Ananta P. Mishra Physical Research Laboratory, India

Introduction

▶ Lagrangian of a local *SU*(*N*) gauge theory

$$\mathcal{L} = \bar{\psi} \, \mathcal{D} \, \psi + \frac{1}{2} \mathrm{Tr} \, F^2 \tag{1}$$

$$D_{\mu} = \partial_{\mu} - igA_{\mu}, \ F_{\mu\nu} = \frac{1}{-ig} [D_{\mu}, D_{\nu}]$$
(2)

Lagrangian is invariant under local SU(N) gauge transformations, Λ:

$$D_{\mu} \longrightarrow \Lambda^{\dagger} D_{\mu} \Lambda , \ \psi \longrightarrow \Lambda^{\dagger} \psi$$
 (3)

• Λ has the properties:

$$\Lambda^{\dagger}\Lambda = \mathbb{1}, \text{ Det}\Lambda = 1$$
 (4)

Introduction	Z(N) at Finite T	Brief Introduction to Lattice	Meta-stable States in Lattice	Numerical Simulations	Summary

• Consider the transformation:

$$\Lambda_c = e^{i\phi} \mathbb{1} \tag{5}$$

▶ Becomes an element of *SU*(*N*) transformations if

$$\phi = \frac{2\pi j}{N}, \ j \in \{0, 1, \cdots (N-1)\}$$
(6)

Defines a global transformation.

• One immediate application is in the study of finite temperature QCD.

Z(N) Symmetry in Pure Gauge

Euclidean space-time.

- At $T \neq 0$, the imaginary time extent is finite: $0 \rightarrow \tau \Rightarrow 0 \rightarrow \beta' = 1/T$.
- Color fields are periodic in *τ*:

$$A_{\mu}(\vec{x},\beta') = +A_{\mu}(\vec{x},0)$$
 (7)

- Usually, gauge transformations should be periodic.
- However, periodicity is satisfied by a group of non-trivial gauge transformations.

Introduction	Z(N) at Finite T	Brief Introduction to Lattice	Meta-stable States in Lattice	Numerical Simulations	Summary
Definition	Pure Gauge With Fermions				

 Consider the following gauge transformations which are periodic up to Λ_c,

$$\Lambda(\vec{x},\beta') = \Lambda_c \,, \ \Lambda(\vec{x},0) = 1 \tag{8}$$

• Λ_c commutes with *A*'s:

$$A^{\Lambda}(\vec{x},\beta') = \Lambda_c^{\dagger} A_{\mu}(\vec{x},\beta') \Lambda_c = A_{\mu}(\vec{x},\beta') = +A_{\mu}(\vec{x},0)$$
(9)

- Both the action and the boundary conditions are invariant.
- Λ_c = e^{iφ} 1 then defines a global Z(N) symmetry
 [G. 't Hooft, 1978].
- Λ_c form the center of the gauge group SU(N).

Summarv

Polyakov Loop and Z(3) in Pure Gauge

The expectation value of Polyakov Loop is a good order parameter for the confinement-deconfinement phase transition. [A. M. Polyakov, 1978]

$$\langle l(\vec{x}) \rangle = \frac{1}{3} \operatorname{Tr} \mathbf{L}(\vec{x})$$
 (10)

Thermal Wilson line: $\mathbf{L}(\vec{x}) = P \exp \left[ig \int_{0}^{\beta'} A_0(\vec{x}, \tau) d\tau \right]$ (11)

- In the confining phase $(T < T_c), \langle l(\vec{x}) \rangle = 0.$
- In the deconfining phase $(T > T_c), \langle l(\vec{x}) \rangle > 0$.

- Introduction
 Z(N) at Finite T
 Brief Introduction to Lattice
 Meta-stable States in Lattice
 Numerical Simulations
 Summary

 Definition
 Pure Gauge
 With Fermions

 </t
 - ► Under Z(3) transformation, (*l*(*x*)) transforms as a field with charge one

$$\langle l(\vec{x}) \rangle \longrightarrow \Lambda_c \langle l(\vec{x}) \rangle = e^{2\pi i j/3} \langle l(\vec{x}) \rangle$$
 (12)

For $T > T_c$, Z(3) symmetry is broken spontaneously.

- Gives rise to 3 degenerate phases or vacua.
- Separated by domain walls.
- Creation of *Z*(3) bubbles.
- For $T < T_c$, Z(3) symmetry is restored.
- $\langle l(\vec{x}) \rangle$ is an order parameter for studying *Z*(3) symmetry.

Introduction	Z(N) at Finite T	Brief Introduction to Lattice	Meta-stable States in Lattice	Numerical Simulations	Summary
Definition	Pure Gauge With Fermions				

Y. Iwasaki, et. al, 1992.

With Fermions

- Quarks fields are anti-periodic: $\psi(\vec{x}, \beta') = -\psi(\vec{x}, 0)$
- Under Z(N):

$$\psi^{\Lambda}(\vec{x},\beta') = \Lambda^{\dagger}_{c}\psi(\vec{x},\beta') = e^{-i\phi}\psi(\vec{x},\beta') \neq -\psi(\vec{x},0)$$
(13)

- The full theory is not invariant under the Z(N) transformations.
- ► The fermion fields break the Z(N) symmetry explicitly except j = 0.
- Leads to one stable vacua for which $\langle l(\vec{x}) \rangle$ is real (j = 0)

 Introduction
 Z(N) at Finite T
 Brief Introduction to Lattice
 Meta-stable States in Lattice
 Numerical Simulations
 Summary

 Definition
 Pure Gauge
 With Fermions
 States in Lattice
 States in Latti

• Others (Two for *SU*(3)) are (possible) meta-stable states.

Introduction	Z(N) at Finite T	Brief Introduction to Lattice	Meta-stable States in Lattice	Numerical Simulations	Summary
Definition Pure	Gauge With Fermions				

- One loop effective potential calculation. [Dixit and Ogilvie, 1991]
- ▶ *Z*(3) meta-stable states are expected to appear near *T_c*. [Dixit and Ogilvie, 1991; O. Machtey and B. Svetitsky, 2010]
- They are expected to play important roles both in the context of heavy-ion collision and in the early Universe.
 [J. Ignatius *et. al* 1992; B. Layek *et. al*, 2006; U. S. Gupta *et. al*, 2011]
- It is necessary to do the full QCD calculation from first principles.

Brief Introduction to Lattice

Starts with QCD action in continuum

$$S[\psi,\bar{\psi},A] = \int d^4x \overline{\psi}(\gamma^{\mu}D^{\mu}+m)\psi + \frac{1}{2} \operatorname{Tr} \int d^4x F^{\mu\nu}F_{\mu\nu}$$
(14)

- Euclidean rotation is performed: $t \to -i\tau$. Time extent: $aN_{\tau} = \frac{1}{T}$
- Use of Path Integral formalism. Fermions are represented by Grassman variables.

• Partition Function:
$$Z = \int \mathcal{D}A\mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-S[\psi,\bar{\psi},A]}$$

• A_{μ} 's are replaced by gauge links $\Rightarrow U_{\mu}(x) \equiv e^{igA_{\mu}(x+a\hat{\mu}/2)}$

Covariant derivative:

$$D_{\mu}\psi(x) \rightarrow \frac{1}{2a} \left[U_{\mu}(x)\psi(x+a_{\mu}) - U_{\mu}^{\dagger}(x-a_{\mu})\psi(x-a_{\mu}) \right]$$

• Partition Function:
$$Z = \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-S} = \int \mathcal{D}U[\det M]e^{-S_g}$$

- Coupling constant: $\beta = 2N_c/g^2$. Lattice spacing decreases with increasing β .
- Pure Gauge: det M = 1

Polyakov Loop:
$$\langle l(\vec{x}) \rangle = \frac{1}{N_c} \operatorname{Tr} \left[\prod_{\tau=0}^{N_\tau} U_4(\vec{x},\tau) \right]$$

Translational invariance:
$$L = \frac{1}{V} \sum_{\vec{x}} l(\vec{x}).$$

Observing Meta-stable States in Lattice

- The initial configuration can not arbitrary.
- Perform a pure gauge calculation on a lattice near the critical temperature (β = β_c = 5.6925). [G. Boyd, *et al*, 1995]

Numerical Parameters and Studies

> Select one configuration each for the the following cases:

- Re $L \ll 0$ and Im $L \gg 0$, i.e. $\theta \simeq 2\pi/3$.
- Re $L \ll 0$ and Im $L \ll 0$, i.e. $\theta \simeq -2\pi/3$.
- Re $L \gg 0$ and Im $L \sim 0$, i.e. $\theta = 0$.
- Alternatively, use an initial configuration with all the temporal links on a fixed time slice set to $e^{\pm i2\pi/3}\mathbb{1}$.
- MILC code is used.
- Various Lattice sizes: $V = 16^3, 24^3, 32^3$ and $N_{\tau} = 4, 6$.
- $am_{u,d} = 0.01; 5.2 \le \beta \le 6.0; N_f = 2, 3.$
- Each gauge configuration after 10 trajectories has been analyzed.
- For each β , we have collected 3000 gauge configurations.

June 3, 2013 (17 of 25)

Introduction	Z(N) at Finite T	Brief Introduction to Lattice	Meta-stable States in Lattice	Numerical Simulations	Summary

Determining Temperature

 $\beta_m \simeq 5.80.$

• Use β -function to determine the corresponding temperature. Calibration formula of the MILC collaboration [T. Blum, *et. al*, 1995] at T = 0:

$$am_{\rho} = 0.72 - 2.25(\beta - 5.45) + 1.75(\beta - 5.45)^{2} + 7.75 am_{q} + 10.01 am_{q}(\beta - 5.45) - 20.08 (am_{q})^{2}$$
(15)

However, $5.2 < \beta < 5.6$ in the above β -function study.

• Assumption is that the corresponding temperature is will not change drastically.

• Using $m_{\rho} = 770$ MeV from experiments, we find $T_m \simeq 750$ MeV.

Summarv

Summary

- We find that the meta-stable states start to appear after $T_m = 750$ MeV.
- Far away from T_c as contrary to previous studies.
- No Z(N) domain structure below T_m .
- More rigorous studies with higher statistics are necessary.
- β -function study has to be extended to the relevant range.

Introduction	Z(N) at Finite T	Brief Introduction to Lattice	Meta-stable States in Lattice	Numerical Simulations	Summary

Thank you!!