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Heavy Ion Collisions
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Major Aims of Experiments on A+A Collisions 

Study the QCD phase diagram: 
!

1.  detect signals of colour deconfinement; 
2.  detect signals of (partial) chiral symmetry restoration; 
3.  locate (tri)critical endpoint(s) of QCD phase diagram.

However,  these are incredibly complicated tasks even for 
such an advanced experimental machines!



Specific and Principal Theoretical Difficulties

Up to now we do not know:

1. What are the analogs of phases in finite volumes

1. Tremendous complexity of A+A collisions

2. Deconfinement phase transition has no well defined 
order parameter in presence of quarks

2. What are the analogs of (tri)critical endpoint  
 in finite volumes

3. Lattice QCD cannot guide us at high baryonic densities 
due to sign problem



Present Status of A+A Collisions

Most promising signals of the onset of deconfinement phase transitions =>

In 2000 CERN claimed indirect evidence for a creation of new matter  

In 2010 RHIC collaborations claimed to have created a quark-gluon  
plasma/liquid  

However, up to now we do not know:

1. whether deconfinement and chiral symmetry restoration are                     
the  same phenomenon or not?

1.

1.                               are they phase transitions (PT)  or cross-overs ?2.

1.                               what are the collision energy thresholds of their onset? 3.



Recently Suggested Signals of QCD Phase 
Transitions 2014-2018

During 2013-2017 our group developed 
                                                a very accurate tool to analyze data

KAB, D. Oliinychenko, A. Sorin, G.Zinovjev, EPJ A  49 (2013)

KAB et al., Europhys. Lett. 104  (2013)

KAB et al., Nucl. Phys. A 970  (2018)

The high quality description of data allowed us  
                               to elucidate new irregularities at CFO from data and  

                                                                            to formulate new signals of two QCD phase transitions

D. Oliinychenko, KAB, A. Sorin, Ukr. J. Phys. 58 (2013)

D. Oliinychenko et al., Ukr. J Phys.  59 (2014)

KAB et al., Phys. Part. Nucl. Lett.  12  (2015)

KAB et al., EPJ A 52  (2016)  No 6

KAB et al., Phys. Part. Nucl. Lett.  15  (2018)

KAB et al., EPJ A 52  (2016)  No 8

Most successful 
version of the 

Hadron Resonance 
Gas Model (HRGM)

First work on evidence of two 
QCD phase transitions



Recently Suggested Signals of QCD Phase 
Transitions 2016

Our results
1-st order PT of Chiral Symmetry Restoration in  

                 hadronic phase occurs at about √s ~ 4.3-4.9 GeV    
!

               and 2-nd order deconfinement PT exists at √s ~ 9 GeV  
                        
!

W. Cassing et al.,, Phys. Rev. C 93, 014902 (2016); 
Phys. Rev. C 94, 044912 (2016). 

!
1-st order PT of ChSR  in hadronic phase 

                 occurs at about √s ~ 4. GeV 
                   and 2-nd order deconfinement PT exists at √s ~ 10 GeV 

  
                              Hard to locate them due to cross-over in  
                              Parton-Hadron-String-Dynamics model! 

Giessen group results
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“RHIC serves the perfect fluid” – Hydrodynamic flow of the QGP∗

Ulrich Heinz

Department of Physics, The Ohio State University, Columbus, OH 43210, USA

Abstract

The bulk of the hot and dense matter created at RHIC behaves like an almost

ideal fluid. I present the evidence for this and also discuss what we can learn

about the transport properties of the quark-gluon plasma (QGP) from the grad-

ual breakdown of ideal fluid dynamic behavior at large transverse momenta,

lower beam energies, larger impact parameters, and forward rapidities.

1 The QCD Equation of State and ideal fluid dynamics

With relativistic heavy-ion collisions one explores the phase diagram of strongly interacting bulk matter

in the regime of high energy density and temperature. Lattice QCD (LQCD) tells us [1] that for zero net

baryon density QCD matter undergoes a phase transition at Tcr = 173 ± 15 MeV from a color-confined

hadron resonance gas (HG) to a color-deconfined quark-gluon plasma (QGP). The critical energy density

ecr ≃ 0.7 GeV/fm3 [1] corresponds roughly to that in the center of a proton. At the phase transition, the

normalized energy density e/T 4 rises rapidly by about an order of magnitude over a narrow temperature

interval ∆T <
∼ 15 − 20 MeV, whereas the pressure p/T 4 (which is proportional to the grand canonical

thermodynamic potential) is continuous and rises more gradually (Fig. 1). Both seem to saturate at about

80-85% of the Stefan-Boltzmann value for an ideal gas of noninteracting quarks and gluons, the energy

density more quickly (at about 1.2Tcr), the pressure more slowly. Above about 2Tcr, the lattice data

follow the Equation of State of an ideal gas of massless particles, e = 3p.

For many years this observation has been interpreted as lattice QCD support for the hypothesis of

a weakly interacting, perturbative QGP. The recent RHIC data taught us that this interpretation was quite

wrong. The first part of the title of this talk, which was lifted from a coffee mug nowadays distributed by

Brookhaven National Laboratory to their guests, alludes to this exciting discovery.

It was recognized over 3 decades ago (see review [2]) that information about the EOS of strongly
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Fig. 1: The normalized energy density e/T 4 (left) and pressure p/T 4 (right) from lattice QCD [1] for 0, 2 and 3

light quark flavors, as well as for 2 light + 1 heavier (strange) quark flavors. Horizontal arrows on the right indicate

the corresponding Stefan-Boltzmann values for a non-interacting quark-gluon gas.

interacting matter can be extracted by studying the collective dynamics of relativistic heavy-ion colli-

sions. This connection is particularly direct in the framework of ideal fluid dynamics which becomes

applicable if the matter formed in the collision approaches local thermal equilibrium. The latter requires

∗Email: heinz@mps.ohio-state.edu. Work supported by the U.S. Department of Energy, grant DE-FG02-01ER41190.
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Why Van der Waals or Hard-core Repulsion EoS?

1.  Hard-core repulsion EoS (= VdWaals without attraction) has the 
same energy per particle as an  ideal gas => there is no problems to 

convert its energy into ideal gas energy

2. Hard-core repulsion does not create  
problems with QGP existence, 

since such repulsion suppresses 
pressure compared to ideal gas EoS

Proof:    if particles stay apart, they do not interact, 
if particles touch each other, potential energy is infinite 

and => such configurations do not contribute into partition 

ideal gas of all hadrons

LQCD data



Why Van der Waals or Hard-core Repulsion EoS?

3. Almost in the whole hadronic phase the mixture of stable hadrons     
and resonances behaves as a mixture 

      of ideal gases with small hard-core radii 
due to approximate cancellation of attraction and repulsion 

terms  
among the quantum second virial coefficients of hadrons

     
R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons. 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Nucl. Phys. A 1992, 546, 718      





Formally, in such a treatment two gases are separated by the wall!

Two component models do not solve the problems! 
Hence we need more sophisticated approach.



move in opposite directions toward the vacuum, leaving high-density matter
at rest behind the shock fronts. The thermodynamic parameters X, p, ⇢B of
this compressed matter

Rankine-Hugoniot-Taub (RHT) adiabat = shock adiabat
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The resonance width is taken into account in thermal densities.
The resonance width is taken into account in thermal densities.

In contrast to many other groups we found that  

We include all resonances in the HRGM with non-zero width, but to compensate the 
double counting of weak attraction we have to add a weak hard-core repulsion! 
!
ADVANTAGE: at ChFO our hadrons have the same properties as in vacuum => 
                                       no additional procedure is required to make them physical!



Data and Fitting Parameters!

111 independent hadronic ratios measured at AGS,  SPS and RHIC energies 

# of published ratios measured at mid-rapidity depends on energy => 	


# of global fit parameters = 4 
R_pi, R_K, R_mesons, R_baryons

# of local fit parameters for each  
collision energy = 3    (no                  ) 
T, mu_B, mu_I3 
Total  # for 14 energies = 42 
!
# of fit parameters with                   is 4 
Total # for 14 energies = 56

γ  factors

γ  factors

p
sNN Nrat �

2
1 �

2
2 �

2
3 �

2
4

(GeV) FO SFO SFO+�S SFO��S

2.7 4 0.62 0.62 0.62 1.3 · 10

�5

3.3 5 0.17 0.08 0.08 3.4 · 10

�9

3.8 5 0.56 0.03 0.03 0.03
4.3 5 0.35 0.26 0.26 0.21
4.9 8 0.55 0.55 0.40 0.40
6.3 9 7.91 2.88 2.45 2.45
7.6 10 17.5 16.6 5.9 5.9
8.8 11 7.9 7.85 7.56 7.56
9.2 5 0.16 0.15 0.03 1.3 · 10

�7

12 10 17.3 11.9 9.57 9.57
17 13 14.7 7.39 7.38 7.38

62.4 5 0.4 0.09 0.03 0.03
130 11 5 4.62 4.32 4.32
200 10 7.4 5.49 5.09 5.09

Sum 111 80.5 58.5 43.72 42.9

Dof N/A 69 55 47 41

Table 1:

pQGP = A0T

4 + A2T

2
µ

2 + A4µ

4 � B| {z }
fitting

= A

L
0 T

4 + A

L
2 T

2
µ

2 + A

L
4 µ

4

| {z }
LQCD

�Beff

Beff(T, µB) = B � (A0 � A

L
0 )T 4 � (A2 � A

L
2 )T 2

µ

2 � A4 � A

L
4 )µ4

�s(
p

s)/�s(
p

s = 4.9) = 7.7/14 , �s(
p

s)/�s(
p

s = 4.9)

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j

2
B = � p�p0

X�X0
, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
and the straight line with the slope j

2
B known as the Raleigh line. To solve

6

# of local fit parameters cannot be larger  
than 4 (for all energies) or larger 
than 5 (for energies above 2.7 GeV) 



NO γ_s is used!



However, until 2013 the situation  with strangeness was unclear:

P. Braun-Munzinger & Co  found that                   is  about 1γ  factors

In 1991 J. Rafelski introduced strangeness fugacity 
!

                                              which quantifies strange charge chemical oversaturation (>1) or	

  

γ  factors

strange charge chemical undersaturation (<1)

Phys. Lett. 62(1991)

F. Becattini  & Co  found that                   is < 1γ  factors

Idea: if s-(anti)quarks are created at QGP stage, then their number should not 
be changed during further evolution since s-(anti)quarks number is small and 
since density decreases => there is no chance for their annihilation!  
Hence, we should observe chemical enhancement of strangeness with γ  > 1s

In 1982 J. Rafelski and B. Müller predicted  that enhancement of strangeness  
production is a signal of deconfinement. 

                 	

  

Phys. Rev. Lett. 48(1982)
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which accounts for 2-nd conservation law



Most Problematic ratios at AGS, SPS, RHIC 
energies within Induced Surface Tension EoS

IST EOS:

�

2
/dof ' 3.92/14 �

2
/dof ' 10.22/12 �

2
/dof ' 6.49/8

�

2
/dof ' 3.29/14 �

2
/dof ' 11.62/12 �

2
/dof ' 8.89/8

�

2
/dof ' 3.29/14 here, while

p
sNN dependences of ⇤/⇡

� and ⇤̄/⇡

� ratios are reproduced here with
�

2
/dof ' 11.62/12 and �

2
/dof ' 8.89/8 respectively. Compared to the fit qualities �

2
/dof ' 10.22/12

for ⇤/⇡

� and �

2
/dof ' 6.49/8 for ⇤̄/⇡

� obtained in [7] the present results are slightly worse, but still
they are rather good. The collision energy dependence of these ratios is shown in Fig. 7.

The other important finding is that the collision energy dependence of the factor �s for the IST EoS
is practically the same as for the HRGM of Ref. [7]. Thus, the factor �s demonstrates a low sensitivity to
the IST EoS, which means that the present model confirms an existence of a strangeness enhancement at
low collision energies, namely the peak of the factor �s is found at

p
sNN = 3.8 GeV as one can see from

Fig. 7.
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Figure 7: The fit results obtained by the IST EoS. Upper left panel:
p

sNN dependence of K

+
/⇡

+.
Upper right panel:

p
sNN dependence of ⇤/⇡

�. Lower left panel:
p

sNN dependence of ⇤̄/⇡

�.
Lower right panel:

p
sNN dependence of the factor �s.
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Conventional one  
component HRGM  
by PBM and Co: 
A. Andronic, PBM, 
J. Stachel NPA (2006), 
 PLB (2009)

�

2
/dof = 21.8/14

�

2
/dof = 79/12

�

2
/dof = 21.8/14

�

2
/dof = 79/12

�

2
/dof = 21.8/14

�

2
/dof = 79/12

�

2
/dof = 21.8/14

�

2
/dof = 79/12

�

2
/dof = 21.8/14

�

2
/dof = 79/12

�

2
/dof = 21.8/14

�

2
/dof = 79/12

Note: RHIC BES I data  
have very large error 
bars and hence, are  
not analyzed!

Our IST EOS has 3 or 4  
more fitting parameters  

compared to usual HRGM!

KAB et al., Nucl. Phys.  
A 970  (2018)



Examples of Hadron Multiplicity Ratios 
for IST EoS, Multicomponent and One- 
component Van der Waals EoS (2018)

Blue bars     IST EoS (will be presented in a moment)  
Red bars      Multicomponent Van der Waals EoS 
Green bars  One-component Van der Waals EoS (a la P. Braun-Munzinger et al),

V.V. Sagun et al., Eur. Phys. J. A (2018) 54: 100All EoS use γ  as a fitting parameter!s

One-component Van der Waals EoS always gives the worst results!  



IST EOS Results for LHC energy 

In contrast to J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, J. Phys. Conf. Ser. 509, 
012019 (2014)  (anti)nuclei are NOT included into the fit! 

Radii are taken from the fit of  
AGS, SPS and RHIC data =>  
single parameter Tcfo=150+-7MeV

3.3 Results for ALICE energy

To fit the ALICE data [25, 26, 27, 28, 29, 30, 31] we use a di↵erent strategy. The reason is that the fit
quality is not sensitive to the values of the hard-core radii. In fact, even the HRGM with the point-like
particles provides a reasonable fit quality [10, 33]. Therefore, in order to avoid the unnecessary waste of
CPU time we adopted the new radii found in this work from fitting the AGS, SPS and RHIC data, then,
similarly to [3], we set all values of chemical potentials to zero, but the factor �s is fixed as �s = 1. Thus,
for the ALICE data we come up with a single fitting parameter, namely the CFO temperature which is
found TCFO ' 154± 7 MeV. Within the error bars this result is in agreement with the similar fits [3, 33].
The achieved description of the ALICE data is shown in Fig. 8. The fit quality �

2
2/dof ' 7.7/5 ' 1.54

of the ALICE data is slightly worse than the one found for the combined fit of the AGS, SPS and RHIC
data. From Fig. 8 one can see that the main part of �

2
2 is generated by only two ratios, i.e. p/⇡

+ and
⇤/⇡

+. Therefore, the combined quality of the AGS, SPS, RHIC and ALICE data description achieved in
the present work is

�

2
tot/dof ' 64.8/60 ' 1.08

Although the found CFO temperature for the ALICE data is rather low, but a priori it was not clear
what the upper boundary for this temperature has to be chosen. For example, the authors of Ref. [13]
claimed that they found the second minimum of �

2
/dof for the ALICE data which is located at the

temperature about 274 MeV. Of course, it is hard to believe that at such a high temperature the hadrons
may exist and that at such huge particle densities the inelastic reactions are frozen, but the question
about the high temperature minimum has to be clarified. The present model is perfectly suited for such
a task, since it is valid in the region where the EVM is inapplicable.

To demonstrate this we employ the multicomponent version of the Carnahan-Starling EoS known as
the MCSL EoS [34]. Such an EoS is well known in the theory of simple liquids [35, 36]. Similarly to
its one-component counterpart [20] the MCSL EoS rather accurately reproduces the pressure of hard
spheres until the packing fraction values ⌘  0.35 � 0.4 [34, 36]. As usual, the packing fraction of the

N -component mixture ⌘ ⌘
NP

k=1

4
3⇡R

3
k⇢k is defined via the set of hard-core radii {Rk} and the corresponding

particle densities {⇢k}. In terms of these notations the MCSL pressure [34] can be cast as

p

CS =
6 T

⇡

"
⇠0

1� ⇠3
+

3 ⇠1⇠2

(1� ⇠3)2
+

3 ⇠

3
2

(1� ⇠3)3
� ⇠3⇠

3
2

(1� ⇠3)3

#

, (29)

⇠n =
⇡

6

NX

k=1

⇢k [2 Rk]
n

. (30)

Using the system (29), (30) we can find out the applicability bounds of the IST EoS at high temperatures
by comparing the IST EoS pressure (1) with the MCSL pressure (29) which we calculate for the same set
of particle densities {⇢k} given by Eq. (21). The results for the compressibility Z = p/(⇢ T ) are given in

Fig. 9. Here the total pressure of the system is p, while the total particle density is ⇢ =
NP

k=1
⇢k. From the

left panel of Fig. 9 one can see that the IST EoS provides a 5% deviation from the MSCL EoS at T ' 280
MeV, i.e. in the region where the second minimum of �

2
/dof is observed in the work [13]. But we do not

observe any additional minimum in our model up to T = 600 MeV.
An entirely di↵erent situation is with the EVM. From the right panel of Fig. 9 one can see that

the EVM is not valid at high temperatures: the conventional HRGM with multicomponent hard-core
repulsion provides 5% deviation from the MCSL EoS at T ' 215 MeV, and, hence, such a model cannot
be used at higher temperatures because the HRGM EoS becomes too sti↵ even compared to the hard

13

Combined fit of AGS, SPS, RHIC and LHC data

χ  /dof = 9.1/10 =0.91 ! 2

Light (anti)nuclei are NOT included into fit

In all our fits  (anti)protons 
and (anti)Ξ-s do not show any 

anomaly compared to  
J. Stachel et.al. fit, 

since we have right physics! 
!

=> There is no proton yield 
puzzle in a realistic HRGM!

BUT the puzzle of light (anti)nuclei  remained unresolved!  

V.V. Sagun et al., Eur. Phys. J. A (2018) 54: 100

Compare with J. Stachel et al. fit quality for Tcfo = 156 MeV χ  /dof = 2.4 2  with our one!
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R  , V  and S  are hard-core radius, eigenvolume and eigensurface of hadron of sort kk kk



Higher Virial Coefficients of IST EOS 

=> IST EoS is valid for packing fractions  η < 0.22

 V.V. Sagun, K.A.Bugaev, A.I. Ivanytskyi, et al., Eur. Phys. J. A 54, 100 (2018).
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and allows generalization for multicomponent case
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induced surface tension

Advantages
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for Hard Spheres and Hard Discs 
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new termpressure

induced surface tension j

Introduce own α  for each sort of hard-core radius +j
Add one more equation for a curvature tension =>

Resulting EoS is able to  describe the full gaseous phase of HS, HD 

till the transition to solid state (usually ~10-14 virial coefficients)

induced curvature tension

we put m1 = m2 = 939.8 MeV and �1 = 0.39 fm, �2 = 0.26 fm.

We calculated compressibility Z and ratio Z/ZSHDM and also found

the best-fit parameters on various intervals of packing fraction ⌘. We

considered single ↵ for both constituents and multiple ↵1, ↵2 cases

(Fig. 5.6). Only the plots for some intervals are presented here.

6 HRGM with ISCT

By introducing Induced Curvature Tension coe�cientK (6.50) we gen-

eralize IST EoS. The new dimensionless parameter �k which is similar

to the parameter ↵k, allows us to go beyond the Van der Waals ap-

proximation of hard-core repulsion to high densities. Here �k is also

considered as a constant. A and B values are introduced to evaluate

a contribution of induced surface ⌃ and curvature K tensions more

precisely. Hence the resulting system is as follows:
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27

k

k k

R  , V  ,  S   and C  are hard-core radius,  
!
eigenvolume,  eigensurface and double 
!
perimeter of a hadron of sort k

k kk k

A, B fitting parameters Derived in arXiv:1907.09931 [cond-mat]



ISCT EOS for Hard Discs of 2 sorts 

Z = p / (T n)  compressibility

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12
T  = 50 MeV
m1= m2 = 938.9  MeV
R1= 0.39 fm
R2= 0.26 fm
x1 = 0.25

Z

η

 ZSHDM
  ISCT: α1 = 1.076, α2 = 1.575,

χ2 = 0.05   for η = 0 ÷ 0.7

  ISCT: α1 = 1.557, α2 = 1.157,

χ2 = 0.008 for η = 0 ÷ 0.5

 IST: α1 = 4.736, α2 = 1.539, 

χ2 = 4.48  for η = 0 ÷ 0.5

Solana EoS for HD

packing fraction

concentration  
of 1-st component
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Introducing the curvature tension coe�cient K = pR

2

one can cast the resulting system in the VdW approxi-
mation as
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An apparent generalization of such a system is to re-
place ⌃Sk ! ↵⌃Sk in Eq. for ⌃, but not in Eq. for
curvature K, and KCk ! �KCk in both Eqs. for ⌃ and
for K.
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The coe�cients ↵ & � can be found, for example, from
the 3-rd and 4-th virial expansion coe�cients.

III. DESCRIPTION OF HRGM WITH IST

Let us consider an approach of the multicomponent
hard-core repulsion (named the IST EoS) with the sur-
face tension induced by the inter particle interaction.
Such an EoS was first proposed in Ref. [5] on the basis of
the virial expansion of multicomponent mixture obtained
for the simplified version of statistical multifragmenta-
tion model which has an infinite number of hard-core
radii of nuclear fragments of all sizes. IST EoS is a sys-
tem of coupled equations between the system pressure p

and the induced surface tension coe�cient ⌃:

p = T
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k=1

�k exp
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T
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� sk
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, (39)

⌃ = T
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T
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T

� sk↵

⌃
T

�
. (40)

Here µk is a chemical potential, while �k (9), mk, Lk,
vk and sk denote, respectively, one-particle thermal den-
sity, the mass, hard-core radius, volume and surface of
the k-sort of hadrons. The summations in Eq. (39) are
made over all sorts of hadrons and their antiparticles are
considered as independent constituents.

The system (39)-(40) was obtained heuristically and
was never thoroughly analyzed. As it was shown in pre-
ceding section, such a system can be derived in a self-
consistent way, but our main attention will be paid to
a more general case which includes the equation for the
curvature tension K.

In Eq. (40) the dimensionless parameter ↵ > 1 is
introduced due to the freedom of the Van der Waals
extrapolation to high densities. As it is shown below,
the parameter ↵ accounts for the high density terms of
virial expansion and it allows us to modify the Van der
Waals EoS to a more realistic one. In principle, ↵ can
be a regular function of T and µk, however, for the sake
of simplicity it is fixed to a constant value.

=
P

j vjnj

IV. IST EOS FOR A SINGLE-COMPONENT
GAS OF HARD SPHERES

A. Comparison with Carnahan-Starling EoS

In order to demonstrate the abilities of the IST EoS
we have made numerical comparison of compressibility
factors Z

Z =
p

⇢T

(41)

evaluated from the virial expansion of IST EoS and from
the CS EoS (42) found for a single-component mixture
of gas of hard spheres. The compressibility factor of the
Carnahan-Starling EoS [14] can be cast as

ZCS =
1 + ⌘ + ⌘

2 � ⌘

3

(1� ⌘)3
, ⌘ = ⇢v

1

, (42)

where ⌘ is a packing fraction of a considered system and
v

1

denotes a volume of a single hadron.
CS EoS gives great description of results of Monte

Carlo simulations for virial coe�cients of gas of hard

N.Yakovenko, KAB, L. Bravina, E. Zabrodin, in preparation
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ISCT EOS for Hard Spheres of 2 sorts 

Z = p / (T n)  compressibility
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ISCT EOS for Hard Spheres of many sorts 

ISCT EoS is derived for the mixture of Lorentz contracted 
rigid spheres of nearly massless hadrons to model ChSR 
PT in hadronic phase

KAB, E.G. Nikonov + students,  in preparation

ISCT EoS is planned to be used for the mixture of nuclei and  
hadrons, for the mixture of hadrons, nuclei and QGP bags, 
            both classical and quantum.       

It opens entirely new perspective for modeling multicomponent 

          mixtures, since it is very general       



move in opposite directions toward the vacuum, leaving high-density matter
at rest behind the shock fronts. The thermodynamic parameters X, p, ⇢B of
this compressed matter

Rankine-Hugoniot-Taub (RHT) adiabat = shock adiabat

connects (X0, p0, ⇢B0)| {z }
initial

and (X, p, ⇢B)
| {z }

final

states

⇢

2
BX

2 � ⇢

2
B0X

2
0 = (p � p0) (X + X0)

by conservation laws of energy, momentum and baryonic charge.

X = "+p
⇢2

B
– generalized specific volume

" is energy density, p is pressure, ⇢B is baryonic charge density

j

2
B = � p�p0

X�X0
baryonic current is a straight line in (X � p) plane

Normal properties, if ⌃ ⌘
⇣

@2p
@X2

⌘�1

s/⇢B

> 0 = convex down:

pure phases have normal properties.

Anomalous properties otherwise.
Usually mixed phase is anomalous!

s
⇢B

= const

�

2
/dof = 79/12 �

2
/dof = 21.8/14

This equation follows from the usual hydrodynamic conservation laws of

5

which accounts for 2-nd conservation law



Strangeness Irregularities  

At c.m. energies above 8.8 GeV the strange hadrons 
 are in chemical equilibrium! Why?

At c.m. energy  below 4.9 GeV strange particles are also  
in chemical equilibrium, while at lower and higher energies 
of collision there is strangeness enhancement. Why?

Explanation of such peculiar behavior was found in 2017. See

KAB et al., Phys. Part. Nucl. Lett.  15  (2018)



Jump of CFO Pressure at  AGS Energies
TCFO

p
s

' 6 ' 5

K.A. Bugaev et al., Phys. Part. Nucl. Lett. 12(2015) [arXiv:1405.3575];	

Ukr. J. Phys. 60 (2015)
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 Trace Anomaly Peaks (Most Recent)

Are these trace anomaly peaks related to each other?   

Figure 17: Upper figure: Contribution of the charm quark to the pressure on the Nt = 8 lattices.
Lower figure: The pressure normalized by T 4 for nf = 2 + 1 + 1 and nf = 2 + 1 flavors on Nt = 8
lattices. The corresponding Stefan-Boltzmann limits are indicated by arrows. The charm to strange
quark mass ratio is Q = 11.85 on this plot.
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Figure 18: The normalized trace anomaly obtained in our study is compared to recent results
from the “hotQCD” collaboration [13, 14].
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Shock Adiabat Model for A+A Collisions

From hydrodynamic point of view  
   this is a problem of  

arbitrary discontinuity decay: 
in normal media there appeared 
two shocks moving outwards

Yu.B. Ivanov, V.N. Russkikh, and V.D. Toneev, 	


Phys. Rev. C 73 (2006) 

H. Stoecker and W. Greiner, Phys. Rep. 137 (1986)
Works reasonably well at these energies. 

A+A central collision at 1< Elab<30 GeV Its hydrodynamic model  



Medium with Normal and Anomalous Properties

Usually pure phases (Hadron Gas, QGP)   
have normal properties

Shock Adiabat in Normal Medium

move in opposite directions toward the vacuum, leaving high-density matter
at rest behind the shock fronts. The thermodynamic parameters X, p, ⇢B of
this compressed matter

Rankine-Hugoniot-Taub (RHT) adiabat = shock adiabat

connects (X0, p0, ⇢B0)| {z }
initial

and (X, p, ⇢B)
| {z }

final

states

⇢2
BX2 � ⇢2

B0X2
0 = (p � p0) (X + X0)

by conservation laws of energy, momentum and baryonic charge.

X = "+p
⇢2

B
– generalized specific volume

" is energy density, p is pressure, ⇢B is baryonic charge density

j2
B = � p�p0

X�X0
baryonic current is a straight line in (X � p) plane

Normal properties, if ⌃ ⌘
⇣

@2p
@X2

⌘�1

s/⇢B

> 0 = convex down:

pure phases have normal properties.

Anomalous properties otherwise.
Usually mixed phase is anomalous!

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j

2
B = � p�p0

X�X0
, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
and the straight line with the slope j

2
B known as the Raleigh line. To solve

Eq. (??) one needs to know the EOS. Within the compression shock model

5

Shock transitions to region 1-4 are unstable and forbidden!   

Shock adiabat example

Region 1-2 is mixed 
phase with anomalous 

properties.

To solve RHT adiabat we need EOS!
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To solve RHT adiabat we need EOS!
Almost in all substances  

with liquid-gas phase transition 
the mixed phase has anomalous properties! 
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To solve RHT adiabat we need EOS!

Then shock transitions to mixed phase 
are unstable and more complicated flows 

are possible.



Since the main part of the system entropy is defined by thermal pions =>  
                                  thermal pions/baryon should have a plateau!
Also the total number of pions per baryons should have a (quasi)plateau!

Highly Correlated Quasi-Plateaus

Thermal pions demonstrate 2 plateaus

Entropy per baryon has wide plateaus 
due to large errors

Quasi-plateau in total number of  
pions per baryon ?
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For realistic EoS at mixed phase entropy per baryon should have a plateau! 



X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is a simplified HRGM discussed above.

other PT?
?



Trace Anomaly Along Shock Adiabat 2016

QGP ?

Mixed  
Phase 

Hadron 
Gas 

We found one-to-one correspondence between these two peaks.

Thus, sharp peak of trace anomaly at c.m. energy 4.9 GeV 
evidences for mixed phase formation. But what is it?

K.A. Bugaev et al., EPJ A (2016)

Is second peak  at c.m. energy 9.2 GeV due to another PT?

?



Related Peaks (2017)  

Trace anomaly peaks and baryonic density 

peaks are related to each other. 

Can we relate them to γ   irregularities? s
Model from V.V. Sagun et al., Eur. Phys. J. A (2018) 54: 100	




Strangeness Irregularities  
At c.m. energies above 8.8 GeV the strange hadrons 
 are in chemical equilibrium due to formation of  
QG bags  with Hagedorn mass spectrum!

Hagedorn mass spectrum 
 is a perfect thermostat and 
a perfect particle reservoir! => Hadrons born from 
such bags will be in a full equilibrium!

L. G. Moretto, K. A. B., J. B. Elliott and L. Phair, Europhys. Lett. 76, 402 (2006)	


M. Beitel, K. Gallmeister and C. Greiner, Phys. Rev. C 90, 045203 (2014)

At c.m. energy  4.9 GeV strange particles are in  
chemical equilibrium due to formation of mixed 
phase, since under CONSTANT PRESSURE  
condition  the mixed phase of 1-st order PT is 
explicit thermostat and explicit particle reservoir!

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?
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in mixed phase 
p = const
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Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

high densities one cannot ignore the hard-core repulsion or the finite (e↵ective) size of



Explicit Thermostats

Example with Explicit Thermostat:

T = T
c
 = 273K

or

0 ≤ T ≤ 273K ?

• Export/import of heat does not change T!

€ 

Z T( ) = dEρ E( )e−E T∫ =
T
0
T

T
0
−T

e
S
0

First take heat dQ=E from 
system with temperature T: 

Then give it to thermostat

Is T   just a parameter? o

According to this logic, thermostat can have ANY T <T  !o

€ 

S = S
0

+
ΔQ

T
= S

0
+
E

T
0

€ 

ρ E( ) = eS = e
S
0

+
E

T
0

Example with Explicit Thermostat:

T = T
c
 = 273K

or

0 ! T ! 273K ?

• Export/import of heat does not change T!

! 

S = S
0

+
"Q

T
= S

0
+
E

T
0

! 

" E( ) = eS = e
S
0

+
E

T
0

! 

Z T( ) = dE" E( )e#E T$ =
T
0
T

T
0
#T

e
S
0

First take heat dQ=E from 
system with temperature T: 
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Is T   just a parameter? o

According to this logic, thermostat can have ANY T <T  !o

32 32

1. At limiting temperature the Hagedorn mass spectrum is a perfect thermostat and 
a perfect particle reservoir since it is a kind of mixed phase! 

L. G. Moretto, K. A. B., J. B. Elliott, L. Phair, Europhys. Lett. 76, 402 (2006)

2. Under a constant external pressure ANY MIXED PHASE is a perfect thermostat  
           and a perfect particle reservoir!          

Pressure = const

Induced Surface Tension EOS for HRGM 

This EoS allows one to go beyond  the Van der Waals approximation!

1. Allows to go beyond  the Van der Waals approximation

2. Number of equations is 2 and  it does not depend on the number 
different hard-core radii!
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Novel Equation of State

Data analysis
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Extrapolation to high densities
Extrapolation to high densities is not unique )
equations for pressure and surface tension can differ

p

T

=

X

i

�i exp

⇣µi � pVi � ⌃Si

T

⌘

⌃

T

=

X

i

Ri�i exp

⇣µi � pVi � ⌃Si

T

⌘
·

not uniqueness
of extrapolationz }| {

exp

⇣
(1� ↵)Si⌃

T

⌘

↵ = const in the simplest case
One component case with ↵ > 1

⌃ = pR exp

⇣
(1�↵)S⌃

T

⌘

p = T� exp

⇣
µ�pVe↵

T

⌘

Ve↵ = V

h
1 + 3 exp

⇣
(1�↵)Si⌃

T

⌘i
) low densities (⌃! 0) : Ve↵ = 4V

high densities (⌃!1) : Ve↵ = V

↵ switches excluded and eigen volume regimes
high order virial coefficients?

A. Ivanytskyi Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii

Introduction
Novel Equation of State

Data analysis
Derivation

Extrapolation to high densities
Extrapolation to high densities is not unique )
equations for pressure and surface tension can differ

p

T

=

X

i

�i exp

⇣µi � pVi � ⌃Si

T

⌘

⌃

T

=

X

i

Ri�i exp

⇣µi � pVi � ⌃Si

T

⌘
·

not uniqueness
of extrapolationz }| {

exp

⇣
(1� ↵)Si⌃

T

⌘

↵ = const in the simplest case
One component case with ↵ > 1

⌃ = pR exp

⇣
(1�↵)S⌃

T

⌘

p = T� exp

⇣
µ�pVe↵

T

⌘

Ve↵ = V

h
1 + 3 exp

⇣
(1�↵)Si⌃

T

⌘i
) low densities (⌃! 0) : Ve↵ = 4V

high densities (⌃!1) : Ve↵ = V

↵ switches excluded and eigen volume regimes
high order virial coefficients?

A. Ivanytskyi Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii

new termpressure

induced surface tension

Advantages

Introduction
Novel Equation of State

Data analysis
Derivation

Extrapolation to high densities
Extrapolation to high densities is not unique )
equations for pressure and surface tension can differ

p

T

=

X

i

�i exp

⇣µi � pVi � ⌃Si

T

⌘

⌃

T

=

X

i

Ri�i exp

⇣µi � pVi � ⌃Si

T

⌘
·

not uniqueness
of extrapolationz }| {

exp

⇣
(1� ↵)Si⌃

T

⌘

↵ = const in the simplest case
One component case with ↵ > 1

⌃ = pR exp

⇣
(1�↵)S⌃

T

⌘

p = T� exp

⇣
µ�pVe↵

T

⌘

Ve↵ = V

h
1 + 3 exp

⇣
(1�↵)Si⌃

T

⌘i
) low densities (⌃! 0) : Ve↵ = 4V

high densities (⌃!1) : Ve↵ = V

↵ switches excluded and eigen volume regimes
high order virial coefficients?

A. Ivanytskyi Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii

V  and S  are  eigenvolume and eigensurface of hadron of sort kk k

Induced Surface Tension EOS (2017) 

1. Allows to go beyond  the Van der Waals approximation

2. Number of equations is 2 and  it does not depend on the number 
different hard-core radii!
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V  and S  are  eigenvolume and eigensurface of hadron of sort kk k

This EoS allows one to go beyond  the Van der Waals approximation!

see V.V. Sagun et al., arXiv:1703.00009 [hep-ph]

=> T = const, µ = const
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1. Hagedorn mass spectrum is a perfect thermostat and a perfect particle reservoir 
 since it is a kind of mixed phase! L. G. Moretto, K. A. B., J. B. Elliott, L. Phair, Europhys. Lett. 76, 402 (2006)

2. Under a constant external pressure ANY MIXED PHASE is a perfect thermostat  
and a perfect particle reservoir!

Pressure = const
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As long as two phases coexist
finite amount

of phases => T = const, µ = const



Besides Quasi-plateaus There Exist Additional Hints for 
2 Phase Transitions

Thermostatic properties of Hagedorn  mass spectrum of QGP bags 
explain strangeness equilibration at √s > 8.8 GeV 

!
!

Thermostatic properties  of  the 1-st order PT mixed phase explain 
strangeness equilibration at 4.3 GeV < √s < 4.9 GeV   

K.A. Bugaev et al., Phys. Part. Nucl. Lett.  15  (2018)

Each peak in trace anomaly δ corresponds to a huge peak  
in  baryonic charge density (they exist at the end of quasi-plateaux) 

Our explanation:

Other models predict deconfinement at √s = 8.7- 9.2 GeV:



Onset of Deconfinement in Other Models 
4

FIG. 1: Collision energy dependence of the neutron relative
density fluctuation ∆n in central Pb+Pb collisions at SPS
energies based on data from Ref. [41].

and the density fluctuation in the produced matter is
thus insignificant. With decreasing incident energy (e.g.,
around

√
sNN = 8.8 GeV), the reaction system may pass

through the CEP and develop the largest density fluctu-
ation. With further decrease in the incident energy (e.g.,
at

√
sNN = 6.3 GeV and 7.6 GeV), the reaction sys-

tem may barely move near the first-order transition line,
so only a relatively small density fluctuation is induced.
When the incident energy is further lowered, the reac-
tion system may miss the first-order transition line and
no quark-hadron phase transition occurs in the collisions,
thus resulting in negligible density fluctuation at the ki-
netic freeze-out. The slightly larger ∆n at

√
sNN = 17.3

GeV than at 12.3 GeV could be due to the larger cen-
trality at

√
sNN = 17.3 GeV which leads to a larger g in

Eq. (9). Therefore, the non-monotonic behavior shown in
Fig. 1 is consistent with the scenario that the CEP may
be reached by the produced QGP during its time evo-
lution in central Pb+Pb collisions around

√
sNN = 8.8

GeV. From the parametrization in Ref. [51] for the chem-
ical freeze-out conditions based on the statistical model
fit to available experimental data, the temperature and
baryon chemical potential at

√
sNN = 8.8 GeV are es-

timated to be T ∼ 144 MeV and µB ∼ 385 MeV. It is
interesting to note that the estimated µB ∼ 385 MeV
for CEP is close to those predicted from the LQCD [6]
and Dyson-Schwinger equation (DSE) [52] as well as that
based on the hadronic bootstrap approach [53]. Also, the
collision energy

√
sNN = 8.8 GeV corresponds to that at

which a peak is seen in the measured K+/π+ ratio by
the NA49 Collaboration [54], which has been interpreted
as a signature for the onset of QGP formation [55] or the
restoration of chiral symmetry [56] in these collisions.

Although the present study is based on the simple for-
mulas in Eq. (4) and Eq. (5), the non-monotonic behav-
ior in the relative neutron density fluctuation extracted

from the measured yield ratio Op-d-t will still be present
if the more accurate formula in Eq.(1) is used. This is
because the latter will increase the value of g in Eq.(9)
by less than 50%, for which the peak of ∆n remains at√
sNN = 8.8 GeV. Even assuming that the value of g

increases linearly with decreasing
√
sNN , such a non-

monotonic behavior is still seen.
In summary, with a newly derived analytical coales-

cence formula for cluster production in heavy-ion colli-
sions, we have demonstrated that information on the rela-
tive density fluctuation of neutrons (∆n = ⟨(δn)2⟩/⟨n⟩2)
at the kinetic freeze-out can be determined from the yield
ratio Op-d-t = N3HNp/N2

d . From measured yields of light
nuclei at SPS energies by the NA49 Collaboration, we
have extracted the collision energy dependence of ∆n
and found that the ∆n exhibits a non-monotonic behav-
ior with a peak at

√
sNN = 8.8 GeV, suggesting that the

CEP in the QCD phase diagram may have been reached
in these collisions with its temperature and baryon chem-
ical potential estimated to be TCEP ∼ 144 MeV and
µCEP
B ∼ 385 MeV, respectively. Although this circum-

stantial evidence is quite interesting and striking, our
study is based on a simplified theoretical model and one
set of experimental data. To establish our approach as
a viable tool in the search of the QCD critical endpoint
requires further investigations from experiments, such as
the BES program at RHIC in this energy range with high
luminosity beams as well as detectors of excellent particle
identification and large acceptance, and theoretical mod-
eling of nucleus production and its connection to baryon
density fluctuations.
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Light nuclei fluctuations are  
enhanced at c.m. energy 8.8 GeV 
=> CEP is located nearby!

JAJATI K. NAYAK, SARMISTHA BANIK, AND JAN-E ALAM PHYSICAL REVIEW C 82, 024914 (2010)
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FIG. 7. Total K+ and K− production rates with temperature at
center-of-mass energy equal to 7.6 GeV and 200 GeV.

R+ beyond √
sNN = 7.6 GeV showing “hornlike” structure

happens only when an initial partonic phase is considered.
Such a nonmonotonic behavior of R+ can be understood as due
to larger entropy productions from the release of large color
degrees of freedom (resulting in more pions yield) compared
to strangeness beyond energy 7.6 GeV.

In Fig. 9, the variations of R− with √
sNN is displayed. R−

has a lower value compared to R+ at lower energies since
K− get absorbed in the baryonic medium. At higher energies
K− is closer to K+ because the production of K+ and K−

is similar in a baryon-free medium, which may be realized at
higher collision energies.

In Fig. 10 the R+ is depicted as a function of √
sNN for other

scenarios (III, IV, and V). On the one hand, when the strange
quarks and kaons are formed in complete equilibrium but
their secondary productions are neglected during the evolution
(scenario III) then the data is well reproduced. On the other
hand, in scenario IV when the system is formed in equilibrium
(as in scenario III) but the productions of strange quarks and
kaons are switched on through secondary processes then the
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FIG. 8. K+/π+ ratio for different center-of-mass energies. Sce-
nario I represents the pure initial hadronic scenario for all center-of-
mass energies. Scenario II represents the calculation with hadronic
initial conditions for low

√
sNN and partonic initial conditions for

higher
√

sNN . See the text for details.
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FIG. 9. K−/π− ratio for different center-of-mass energies. Sce-
nario I represents the pure initial hadronic scenario for all center-of-
mass energies. Scenario II represents the calculation with hadronic
initial conditions for low

√
sNN and partonic initial conditions for

higher
√

sNN . See the text for details.

data is slightly overestimated at high √
sNN . However, we have

seen that the data are also reproduced well in scenario II as
discussed. This indicates that the deficiency of strangeness
below its equilibrium value as considered in scenario II is
compensated by the secondary productions. In scenario V
we assumed that vanishing initial strangeness and observed
that the production of strangeness throughout the evolution is
not sufficient to reproduce the data. The productions from
secondary processes are small but not entirely negligible
(scenario V). In Fig. 11 the R− has been displayed as a function
of √

sNN . A trend similar to the results shown in Fig. 10 is
observed. The data are overestimated for the intermediate
√
sNN in scenario IV, reproduced well in scenario III, and

underestimated for scenario V.
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FIG. 10. (Color online) K+/π+ ratio for different center-of-mass
energies. Scenario III assumes complete equilibrium of strange quarks
and hadrons. The production through secondary processes have been
ignored. Scenario IV is the same as scenario III with secondary
productions processes on and scenario V represents zero strangeness
initially but secondary productions are switched on.
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J. K. Nayak, S. Banik, Jan-e Alam, PRC 82, 024914 (2010)

pure hadronic

deconfinement 
starts at 8.7 GeV

Strangeness Horn and other 
strange particles ratios can 
be explained, if the onset of 
deconfinement begins at  
c.m. energy 8.7 GeV!Counting for thermodynamic, 

hydrodynamic and fluctuation 
signals we conclude that  
3CEP may exists at 8.8-9.2 GeV  

K.A. Bugaev et al., Phys. Part. Nucl. Lett. 15, 
210 (2018), arXiv:1709.05419 [hep-ph]



If There Are 2 Phase Transitions, then

1. What kind of phase exists at √s = 4.9-9.2 GeV? 

2. Can we get any info about its properties? 
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)

p =
h

(anti)baryons
z }| {
2CBT

ABch
⇣µ

T

⌘
e�

mB
T +

mesonsz }| {
CMTAMe�

mM
T

i
e�

pVH
T

pQGP = A0T
4 + A2T

2
µ

2 + A4µ
4 �B| {z }

fitting

= A

L
0 T

4 + A

L
2 T

2
µ

2 + A

L
4 µ

4

| {z }
LQCD

�Beff

Beff (T, µB) = B � (A0 �A

L
0 )T 4 � (A2 �A

L
2 )T 2

µ

2 �A4 �A

L
4 )µ4
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energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j
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, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
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where mN is the mean nucleon mass. A typical example for the shock adiabat
is shown in Fig. 3. As one can see from this figure the shock adiabat in the
pure hadronic and QGP phases exhibits the typical (concave) behavior for
a normal medium, while the mixed-phase (the region A1B) in Fig. 3 has a
convex shape which is typical for matter with anomalous properties. Until
now there is no complete understanding why in a phase-transition or cross-
over region matter exhibits anomalous thermodynamic properties. In pure
gaseous or liquid phases the interaction between the constituents at short
distances is repulsive and, hence, at high densities the adiabatic compress-
ibility of matter �
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usually decreases for increasing pressure, i.e.,
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@2p
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⌘�1
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= ⌃ > 0. In the mixed-phase there appears another possibility
to compress matter: by converting the less dense phase into the more dense
one. As it was found for several EOS with a first-order phase transition be-
tween hadronic gas and QGP, the phase transformation leads to an increase of
the compressibility in the mixed-phase at higher pressures, i.e., to anomalous
thermodynamic properties. The hadronic phase of the aforementioned EOS
was described by the Walecka model [29] and by a few of its more realistic
phenomenological generalizations [18, 30, 25]. The appearance of anomalous
thermodynamic properties for a fast cross-over can be understood similarly,
if one formally considers the cross-over states as a kind of mixed-phase (but
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New 
phase 

It corresponds to massless particles with strong  
attraction generated  by the vacuum pressure B  
                            (B was not fitted, but was chosen to correspond to lattice QCD!) 

Then one can find  an  effective #dof  from   A  ! 0

 For massless particles 

21

such a model not only represents the mass-integrated spectrum of all hadrons, but also

it rather accurately reproduces the chemical FO densities of mesons ⇢M and baryons ⇢B

and the ratios s/⇢B and s/⇢M for chemical FO temperatures below 155 MeV [59]. The

parameters of the center of the shock adiabat were fixed as: p0 = 0, ⇢0 = 0.159 fm�3 and

"0 = 126.5 MeV fm�3.

The QGP EOS is motivated by the MIT-Bag model [58]
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where the constants

A0 ' 2.53 · 10�5 MeV�3fm�3

A2 ' 1.51 · 10�6 MeV�3fm�3
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B ' 9488 MeV fm�3
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were found by fitting the s/⇢B chemical FO data for Elab < 50 GeV with s/⇢B values

along the RHT adiabat and by keeping the pseudocritical temperature value at zero baryonic

density close to 150 MeV, in agreement with lattice QCD data [60].

Note that the above values of the coe�cients A0, A2 and A4 di↵er from the values

A

L
0 , A

L
2 and A

L
4 obtained within lattice QCD [60] at vanishing baryonic chemical potential,

but this di↵erence can be attributed to the T and µB dependence of the bag pressure
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but with coe�cients A

L
0 , A

L
2 and A

L
4 . The obtained result for Beff(T, µB) is in line with

the requirements of the finite-width model [61, 62] of quark gluon bags.

Using the above EOS we calculated the phase diagram and constructed the RHT adia-

bat inside all phases. As usual, the phase transition was found from the Gibbs criterion,

pH(T, µB) = pQ(T, µB). The resulting RHT adiabat describes the s/⇢B chemical FO

data well (see Fig. 11). The most remarkable finding is the appearance of a peak in the
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 It`s a huge number for QGP! 

K.A. Bugaev et al., Phys. Part. Nucl. Lett. 15, 
210 (2018), arXiv:1709.05419 [hep-ph]
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well (see Fig. 11). The most remarkable finding is the appearance of a peak in the trace

anomaly, which exists exactly at the boundary of the mixed phase and the QGP (see upper

panel of Fig. 12). Comparing the trace-anomaly peak at chemical FO (see Fig. 5) and that

on the RHT adiabat shown in Fig. 12, one can conclude that the respective collision energies



Possible Interpretations 

1. The phase emerging at √s = 4.9-9.2 GeV has no Hagedorn mass 
spectrum, since strange hadrons are not in chemical equilibrium. 

2.   1800 of massless dof  may evidence either about chiral symmetry    
       restoration in hadronic sector.

3.   Or 1800 of massless dof  may evidence about tetra-quarks with massive   
      strange quark!?                       see Refs. in R.D. Pisarski, 1606.04111 [hep-ph] 

4.   Or 1800 of massless dof  may evidence about quarkyonic phase!?   
                          A. Andronic et. al, Nucl. Phys. A 837, 65 (2010)

5.   1800 of massless dof  may evidence about something else…  
                          



Evidence for Chiral Symmetry Restoration?

Suggestions for RHIC BESII, NICA and FAIR: 
 measure p_T spectra and apparent temperature of Kaons and  

(anti)Λ hyperons at 4.3-6.3  GeV with high accuracy and  
small collision energy steps!

There are KINKs in apparent temperature of  K+ and K- at 4.3-6.3  GeV  

apparent temperature= 
inverse slope of p_T spectra 

at p_T —> 0: 
depends on FO temperature 

and mean transversal velocity
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K−Figure 4. The collision energy dependence of the inverse slope parameter of K

+ mesons. The two topmost AGS
points (triangles) demonstrate the irregular behavior which may be related to the CSR PT. This plot is taken from
Ref. [4].

a coincidence, but on the other hand this can be also a manifestation of the CSR. For the transverse
momentum spectra of particles of mass m

k

which have the mean transverse hydrodynamic velocity v
T

and temperature T one can get the formula [42]

T

⇤
k

(p

T

! 0) =
T

1 � 1
2 v

2
T

(m
k

/T � 1)
⇡ T +

1
2

m

k

v2
T

, (12)

where p

T

is the transverse momentum of particle. Since it is hard to imagine that an increase of
collision energy can lead to a decrease of the hadronization temperature T or to a decrease of the
mean transverse hydrodynamic velocity v

T

, then the only possible cause of the decrease of T

⇤
k

for K

+

mesons is that their mass is reduced. It is interesting that NA49 Collaboration also reported a similar
change of the inverse slope parameter of K

� mesons, but at a slightly higher collision energy intervalp
s

NN

= 4.9 � 6.3 GeV (see the left panel of Fig. 5 in [5]). Therefore, in order to verify or to disprove
our hypothesis it would be necessary to measure the inverse slope parameter of K

± mesons (or their
transverse masses) with high precision in the collision energy range

p
s

NN

= 4.3 � 6.3 GeV.

4 Conclusions

From the discussions above one can unambiguously conclude that the IST EoS is perfectly suited to
determine the hard-core radii of all hadrons from the hadronic multiplicities which will be measured
in the future experiments on RHIC, NICA and FAIR. We hope that these experiments will help to
verify the new signals of the CSR PT and the deconfinement PT outlined here, and to experimentally
locate the tricritical endpoint of the QCD phase diagram.
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Dense Matter and SQM 

Such a linear mass dependence of T ⇥ is supported by the data for hadron spectra at

small pT . However, for pT ⌥ m the hydrodynamical transverse flow leads to the mass-

independent blue-shifted ‘temperature’:

T ⇥
high�pT

= Tkin ·
�

1 + vT
1� vT

. (42)

Note that a simple exponential fit Eq. (40) neither works for light �-mesons, T ⇥
low�pT

(�) <
T ⇥
high�pT

(�), nor for heavy (anti-)protons and (anti-)lambdas, T ⇥
low�pT

(p,⇥) >
T ⇥
high�pT

(p,⇥) (see e.g., Refs. [34, 35]).

Kaons are the best suited among measured hadron species for observing the e⇤ect
of the modification of the EoS due to the onset of deconfinement in hadron transverse

momentum spectra. The arguments are the following. First, the kaon mT–spectra are

only weakly a⇤ected by hadron re-scattering and resonance decays during the post-

hydrodynamic hadron cascade at SPS and RHIC energies [34]. Second, a simple one

parameter exponential fit Eq. (40) is quite accurate for kaons in central A+A collisions

at all energies. This simplifies the analysis of the experimental data. Third, high quality

data on mT -spectra of K+ and K� mesons in central Pb+Pb (Au+Au) collisions are

available over the full range of relevant energies.
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Figure 13: Energy dependence of the inverse slope parameter T ⇥ of the transverse mass

spectra of K+ (left) and K� mesons (right) measured at mid-rapidity in central Pb+Pb

and Au+Au collisions. The K± slope parameters are compared to those from p + p
reactions (open circles). The compilation of data is from Ref. [5].
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KINKs due to ChSR?

K.A. Bugaev et al.,  arXiv:1801.08605 [nucl-th]

Simple (naive?) explanation: 
1.  FO temperature cannot 

       decrease, if √s increases. 
        2.  mean transversal velocity !
       cannot decrease, if √s increases. 
      => mass of Kaons gets lower 
        due to ChSRestoration!?

M. Gazdzicki, M.I. Gorenstein and K.A. Bugaev, Phys. Lett. B 567 (2003) 
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additional kaon potentials might modify this picture at
low energies. In particular, the attractive potential for
K− in the hadronic phase should improve our calcula-
tions at ELab = 8AGeV producing a softening of the
spectra. We will report on the effect of hadronic poten-
tials in a forthcoming study.

D. Strange particle abundances and ratios

In this subsection we study the excitation function of
the particle ratios K+/π+, K−/π− and (Λ + Σ0)/π at
midrapidity from 5% central Au+Au collisions. In Fig.
13 we show the calculations for the following three scenar-
ios: the default PHSD without CSR (blue dotted line),
PHSD including CSR with NL3 and NL1 as parame-
ter sets for the nuclear EoS from the non-linear σ − ω
model (red solid and green dashed lines, respectively).
The shaded area displays the uncertainties of our calcu-
lations from the two scenarios for the nuclear EoS since
the results from the parameter set NL2 are always in
between those from NL1 and NL3 (cf. table II). As al-
ready described in Ref. [11], the inclusion of CSR in
PHSD is responsible for the strong strangeness enhance-
ment at AGS and low SPS energies. The experimental
observations of the ratios K+/π+ and (Λ + Σ0)/π show
the well-known ”horn” structure, which is reproduced
by the PHSD calculations with CSR. In fact, CSR gives
rise to a steep increase of these ratios at energies lower
than

√
sNN ≈ 7GeV, while the drop at larger energies

is associated to the appearance of a deconfined partonic
medium. As anticipated by the considerations in Sec.
III C, the NL1 parameter set produces a sharper peak
both in the K+/π+ and in the (Λ + Σ0)/π excitation
functions with a ≈ 10% maximum increase with respect
to the NL3 result that had been reported in Ref. [11]. We
point out that even adopting different parametrizations
for the σ−ω model, we recover the same ”horn” feature.
This supports the reliability of the CSR mechanism as
implemented in the PHSD model.
At AGS energies, the energy dependencies of the ra-

tios K+/π+ and (Λ+Σ0)/π are closely connected, since
K+ and Λ (or Σ0) are mostly produced in pairs due to
strangeness conservation. On the other hand, the exci-
tation function of the K−/π− ratio does not show any
peak, but it smoothly increases as a function of

√
sNN .

In fact, especially at AGS energies, the antikaon pro-
duction differs substantially from the production of K+

and Λ, which occurs dominantly via string formation. In
fact, the antikaons are produced mainly via secondary
meson-baryon interactions by flavor exchange and their
production is suppressed with respect to the Λ hyper-
ons that carry most of the strange quarks. This is the
reason why the inclusion of chiral symmetry restoration
provides a substantial enhancement of the K+/π+ and
(Λ + Σ0)/π excitation functions and a smaller change
on the K−/π− ratio. We also notice that there is no
sizeable difference between the NL1 and NL3 results for
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FIG. 13. (Color online) The ratios K+/π+, K−/π− and (Λ+
Σ0)/π at midrapidity from 5% central Au+Au collisions as
a function of the invariant energy

√
sNN up to the top SPS

energy in comparison to the experimental data from [56, 61,
64]. The coding of the lines is the same as in Fig. 8. The
grey shaded area represents the results from PHSD including
CSR taking into account the uncertainty from the parameters
of the σ − ω-model for the EoS.

the K−/π− ratio. At top SPS energies the strangeness
is produced predominantly by the hadronization of par-
tonic degrees-of-freedom, thus our results for all the ra-
tios do not show an appreciable sensitivity to the nuclear
EoS and the calculations with and without CSR tend to
merge at

√
sNN ≈ 20GeV.
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additional kaon potentials might modify this picture at
low energies. In particular, the attractive potential for
K− in the hadronic phase should improve our calcula-
tions at ELab = 8AGeV producing a softening of the
spectra. We will report on the effect of hadronic poten-
tials in a forthcoming study.

D. Strange particle abundances and ratios

In this subsection we study the excitation function of
the particle ratios K+/π+, K−/π− and (Λ + Σ0)/π at
midrapidity from 5% central Au+Au collisions. In Fig.
13 we show the calculations for the following three scenar-
ios: the default PHSD without CSR (blue dotted line),
PHSD including CSR with NL3 and NL1 as parame-
ter sets for the nuclear EoS from the non-linear σ − ω
model (red solid and green dashed lines, respectively).
The shaded area displays the uncertainties of our calcu-
lations from the two scenarios for the nuclear EoS since
the results from the parameter set NL2 are always in
between those from NL1 and NL3 (cf. table II). As al-
ready described in Ref. [11], the inclusion of CSR in
PHSD is responsible for the strong strangeness enhance-
ment at AGS and low SPS energies. The experimental
observations of the ratios K+/π+ and (Λ + Σ0)/π show
the well-known ”horn” structure, which is reproduced
by the PHSD calculations with CSR. In fact, CSR gives
rise to a steep increase of these ratios at energies lower
than

√
sNN ≈ 7GeV, while the drop at larger energies

is associated to the appearance of a deconfined partonic
medium. As anticipated by the considerations in Sec.
III C, the NL1 parameter set produces a sharper peak
both in the K+/π+ and in the (Λ + Σ0)/π excitation
functions with a ≈ 10% maximum increase with respect
to the NL3 result that had been reported in Ref. [11]. We
point out that even adopting different parametrizations
for the σ−ω model, we recover the same ”horn” feature.
This supports the reliability of the CSR mechanism as
implemented in the PHSD model.
At AGS energies, the energy dependencies of the ra-

tios K+/π+ and (Λ+Σ0)/π are closely connected, since
K+ and Λ (or Σ0) are mostly produced in pairs due to
strangeness conservation. On the other hand, the exci-
tation function of the K−/π− ratio does not show any
peak, but it smoothly increases as a function of

√
sNN .

In fact, especially at AGS energies, the antikaon pro-
duction differs substantially from the production of K+

and Λ, which occurs dominantly via string formation. In
fact, the antikaons are produced mainly via secondary
meson-baryon interactions by flavor exchange and their
production is suppressed with respect to the Λ hyper-
ons that carry most of the strange quarks. This is the
reason why the inclusion of chiral symmetry restoration
provides a substantial enhancement of the K+/π+ and
(Λ + Σ0)/π excitation functions and a smaller change
on the K−/π− ratio. We also notice that there is no
sizeable difference between the NL1 and NL3 results for
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Σ0)/π at midrapidity from 5% central Au+Au collisions as
a function of the invariant energy

√
sNN up to the top SPS

energy in comparison to the experimental data from [56, 61,
64]. The coding of the lines is the same as in Fig. 8. The
grey shaded area represents the results from PHSD including
CSR taking into account the uncertainty from the parameters
of the σ − ω-model for the EoS.

the K−/π− ratio. At top SPS energies the strangeness
is produced predominantly by the hadronization of par-
tonic degrees-of-freedom, thus our results for all the ra-
tios do not show an appreciable sensitivity to the nuclear
EoS and the calculations with and without CSR tend to
merge at

√
sNN ≈ 20GeV.

1-st order PT of Chiral Symmetry Restoration in  
hadronic phase occurs at about √s ~ 4. GeV    

!
               and 2-nd order deconfinement PT exists at √s ~ 9 GeV  
                         Hard to locate them due to cross-over in A+A! 

!
W. Cassing et al.,, Phys. Rev. C 93, 014902 (2016); 

Phys. Rev. C 94, 044912 (2016). 
!
!
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additional kaon potentials might modify this picture at
low energies. In particular, the attractive potential for
K− in the hadronic phase should improve our calcula-
tions at ELab = 8AGeV producing a softening of the
spectra. We will report on the effect of hadronic poten-
tials in a forthcoming study.
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ios: the default PHSD without CSR (blue dotted line),
PHSD including CSR with NL3 and NL1 as parame-
ter sets for the nuclear EoS from the non-linear σ − ω
model (red solid and green dashed lines, respectively).
The shaded area displays the uncertainties of our calcu-
lations from the two scenarios for the nuclear EoS since
the results from the parameter set NL2 are always in
between those from NL1 and NL3 (cf. table II). As al-
ready described in Ref. [11], the inclusion of CSR in
PHSD is responsible for the strong strangeness enhance-
ment at AGS and low SPS energies. The experimental
observations of the ratios K+/π+ and (Λ + Σ0)/π show
the well-known ”horn” structure, which is reproduced
by the PHSD calculations with CSR. In fact, CSR gives
rise to a steep increase of these ratios at energies lower
than

√
sNN ≈ 7GeV, while the drop at larger energies

is associated to the appearance of a deconfined partonic
medium. As anticipated by the considerations in Sec.
III C, the NL1 parameter set produces a sharper peak
both in the K+/π+ and in the (Λ + Σ0)/π excitation
functions with a ≈ 10% maximum increase with respect
to the NL3 result that had been reported in Ref. [11]. We
point out that even adopting different parametrizations
for the σ−ω model, we recover the same ”horn” feature.
This supports the reliability of the CSR mechanism as
implemented in the PHSD model.
At AGS energies, the energy dependencies of the ra-

tios K+/π+ and (Λ+Σ0)/π are closely connected, since
K+ and Λ (or Σ0) are mostly produced in pairs due to
strangeness conservation. On the other hand, the exci-
tation function of the K−/π− ratio does not show any
peak, but it smoothly increases as a function of

√
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In fact, especially at AGS energies, the antikaon pro-
duction differs substantially from the production of K+

and Λ, which occurs dominantly via string formation. In
fact, the antikaons are produced mainly via secondary
meson-baryon interactions by flavor exchange and their
production is suppressed with respect to the Λ hyper-
ons that carry most of the strange quarks. This is the
reason why the inclusion of chiral symmetry restoration
provides a substantial enhancement of the K+/π+ and
(Λ + Σ0)/π excitation functions and a smaller change
on the K−/π− ratio. We also notice that there is no
sizeable difference between the NL1 and NL3 results for

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

          

K
+ /π

+

a)
A+A 0-5% central |y|<0.5

★

w/o CSR
NL3
NL1

AGS (E895-E896)
SPS (NA49)

RHIC (STAR)

★

RHIC (BES)

 0

 0.03

 0.06

 0.09

 0.12

 0.15

          

K
- /π

-

★

A+A 0-5% central |y|<0.5
b)

AGS (E895-E896)
SPS (NA49)

RHIC (STAR)

★

RHIC (BES)

 0

 0.02

 0.04

 0.06

2 4 6 8 10 12 14 16 18 20

(Λ
+Σ

0 )/π

√sNN [GeV]

A+A 0-5% central |y|<0.5

c) AGS (E877)
SPS (NA49)

FIG. 13. (Color online) The ratios K+/π+, K−/π− and (Λ+
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energy in comparison to the experimental data from [56, 61,
64]. The coding of the lines is the same as in Fig. 8. The
grey shaded area represents the results from PHSD including
CSR taking into account the uncertainty from the parameters
of the σ − ω-model for the EoS.

the K−/π− ratio. At top SPS energies the strangeness
is produced predominantly by the hadronization of par-
tonic degrees-of-freedom, thus our results for all the ra-
tios do not show an appreciable sensitivity to the nuclear
EoS and the calculations with and without CSR tend to
merge at

√
sNN ≈ 20GeV.

Induced Surface Tension EOS (2017) 

1. Allows to go beyond  the Van der Waals approximation

2. Number of equations is 2 and  it does not depend on the number 
different hard-core radii!
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new termpressure

induced surface tension

Advantages
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V  and S  are  eigenvolume and eigensurface of hadron of sort kk k

 EoS beyond  the Van der Waals approximation
V.V. Sagun et al., arXiv:1703.00009 [hep-ph]



Alternative Approach = Meta-analysis of  
data description by Event Generators

Idea is to analyze Event Generators without QGP formation (HG) 
and with QGP formation (QGP), 

!
compare them and find out  

 which group describes the data better at what energies! 
!

If we find the equal quality of description, then it maybe  
a phase transition region

Newest Signal of QGP Formation
Idea: at high energies QGP QDD must be better than HG QDD, 

at low energies vice versa! 
Then equal QDD of two kinds of models is about mixed phase threshold

Meta-analysis gives 2 regions of intersection: 
1-st mixed phase at c.m. energies 4.3-4.9 GeV 

2-nd mixed phase (?) at c.m. energies 10-13.5 GeV 
BOTH CAN BE CHECKED at NICA and FAIR!
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Analyzed codes are:



Comparison of Hadronic and QGP  
event generators of HIC

4

The main object of our meta-anlysis is the mean deviation squared of the quantity Amodel,h of the model

M from the data Adata,h per number of the data points nd for a given particle type h

h�2/nihA
����
M

=
1
nd

ndX

k=1

"
Adata,h

k � Amodel,h
k

�Adata,h
k

#2 ����
M

, (1)

where �Adata,h
k is an experimental error of the experimental quantity Adata,h

k and the summation in Eq.

(1) runs over all data point at given collision energy. To get the most complete picture of the A+A

collision process dynamics, we have to compare the available data on the transverse mass (mT ) distributions

A = 1
mT

d2N(mT ,y)
dmT dy , the longitudinal rapidity (y) distributions A = dN(y)

dy and the hadronic yields (Y)

measured at midrapidity A = dN(y=0)
dy or/and the total one, i.e. measured within 4⇡ solid angle, since right

these observables are traditionally believed to be sensitive to the equation of state properties [19].

Based on the theory of measurements [20], we consider the set of quantities h�2/nihA
����
M

as the results of

the meta-measurements of the same meta-quantity, i.e. the QDD of {Adata,h
k } data, with the di↵erent meta-

devices, i.e. models {M}, with the hadronic probe h. The whole set of quantities h�2/nihA
����
M

allows one

to find the mean value h�2/niM properly averaged over the experimental data and over models belonging

to the same class, i.e. M=HG or M=QGP, and over all hadronic species. Using the averaged values

for two classes of models h�2/niHG and h�2/niQGP , we could find the regions of their preferential and

their comparable description of the experiments. The latter case could provide us with the most probable

collision energy range of the hadron-QGP mixed phase threshold. Unfortunately, the published articles

usually do not provide one with the quantities h�2/nihA
����
M

. An exception is the article [21], in which one

can find the desired values for the mT spectra of ⇤-hyperons for 4 rapidity intervals measured in Au+Au

collisions at highest AGS energy. Therefore, using the modern software we calculated the set of quantities

h�2/nihA
����
M

and their errors �h�2/nihA
����
M

from the published papers.

The theoretical models taken for the present analysis belong to two groups:

• The used HG models are as follows: ARC [22], RQMD2.1(2.3) [23], HSD [24, 25], UrQMD1.3(2.0,

2.1, 2.3) [26], statistical hadronization model (SHM) [27] and AGSHIJET N* [28, 29]. These models

do not include the QGP formation in the process of A+A collisions. The results of the HG models

were taken from the following publications: ARC [21, 29], RQMD2.1(2.3) [21, 30], HSD [25, 31],

UrQMD1.3(2.0, 2.1, 2.3) [31, 32], SHM [32, 33] and AGSHIJET N* [29]. Further details on what

data at what energies were analyzed are presented in Tables I and III-XI.

• The used QGP models are as follows: Quark Combination (QuarkComb) model [34], 3-fluid

dynamics (3FD) model [35–37], PHSD model [38, 39] and Core-Corona model [40, 41]. These

generators explicitly assume the QGP formation in A+A collisions. The results of the QGP models

Mean deviation squared per data point of 
observable A, for hadron h, by model M 9

p
sNN = 4.87 GeV

mT -distribution rapidity distribution Yields

h�2/ni = 1.26± 0.34 2.353± 0.626 4.3± 1.2
⇣

dN
dy

��
y=0

& 4⇡
⌘

K± set 1 HSD & UrQMD2.0 QuarkComb. model HSD & UrQMD1.3(2.1)

Fig.7, Ref. [31] Fig.5 Ref. [34] Fig.1, 2 Ref. [31]

h�2/ni = 1.23± 0.22

K± set 2 3 versions of HSD & UrQMD2.1 N/A N/A

Figs. 8, 10, 12 Ref. [31]

h�2/ni = 1.15± 0.65 7.65± 5.53

K+ 3FD N/A 3FD

Fig.1, Ref. [37] Fig.9, Ref. [36]

h�2/ni = 1.51± 0.74 0.15± 0.775

K� 3FD N/A 3FD

Fig.1, Ref. [37] Fig.9, Ref. [36]

h�2/ni = 2.54± 0.01, 1.07± 0.002 2.75± 1.66, 5.74± 2.1 2.6± 1.3
⇣

dN
dy

��
y=0

& 4⇡
⌘

⇤ set 1 ARC,RQMD2.1 ARC,RQMD2.1 HSD & UrQMD1.3(2.1)

Fig. 2 Ref. [21] Fig. 4 Ref. [21] Fig. 1 Ref. [31]

h�2/ni = 3.65± 0.6, 2.4± 0.55 4.67± 1.155

⇤ set 2 mT +y:RQMD2.3(cascade), QuarkComb. model N/A

RQMD2.3(mean-field)

Figs. 5, 7 Ref. [30] Fig. 5 Ref. [34]

h�2/ni = 3.46± 3.72, 3.01± 3.5

� N/A N/A SHM, UrQMD

Fig. 17 Ref. [32]

TABLE I: The QDD provided by HG and QGP models. The 1-st column indicates the particle species, the 2-nd

one shows results for the quality of mT spectra description, the 3-rd one shows results for the quality of yL spectra

description, while the 4-th one gives results for the QDD of yields at the collision energy
p

sNN = 4.87 GeV. In

some rows there are two values of h�2/ni which correspond to the models and references shown below in the same

column. For more details see the text.

K± set 1 in Table I for details)

h�2/niK+

yL

����
QuarkComb

= 4.47± 1.22

h�2/niK�yL

����
QuarkComb

= 0.236± 0.28

9
>>=

>>;
) h�2/niK±yL

����
QuarkComb

= 2.353± 0.63 . (13)

The weighted averaging gives us a di↵erent result h�2/niK±yL

����
QuarkComb

= 0.448 ± 0.273, which within error

bars is more close to the value of negative kaons in (13).

Quality of Data Description = QDD

Error of QDD

5

were taken from the following publications: QuarkComb model [34], 3FD model [36, 37], PHSD

model [39] and Core-Corona model [42]. More details on the analyzed data and energies can be

found in Tables I and III-XI.

A short description of these models along with the criteria of their selection can be found in

the Appendix.

Our meta-analysis requires the well-defined errors for the quantities h�2/nihA
����
M

. They were defined

according to the rule of indirect measurements [20] as
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k
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3
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1
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⌘ 2
p

nd

s

h�2/nihA
����
M

, (2)

where in deriving the second equality above we calculated the partial derivatives using Eq. (1) and then

applied Eq. (1) once more.

In order to thoroughly estimate a correspondence between the experimental data and their model

description it is necessary to have very detailed experimental data which cover rather wide kinematic region

and include many hadronic species. In practice, however, the available experimental information is rather

limited and, additionally, its comparison with theoretical models in many cases is done not for all available

data, but for certain sets only. Therefore, first of all we restricted our probes to the strange particles which

include charged kaons K±, K0
s and � mesons, and also ⇤(+⌃0), ⇤̄, ⌅± and ⌦± hyperons. This choice was

dictated by the fact that strange particles are the “clean” probes, since they are created at primary/hard

collisions. As it was mentioned in the Introduction, several existing “signals” of deconfinement transition

are based on the characteristics of K-mesons [8–10], hence it was natural to consider the strange particles

first.

Then for a given probe h and an observable A we calculated the average of h�2/nihA
����
M

over the models

of the same class as

h�2/nihA
����
!M

=
NMX

M=1

!(M) h�2/nihA
����
M

, (3)

where the symbol M defines the class of models, i.e. M 2 {HG;QGP}, which are averaged with the

weights !(M). Here NM is the number of used theoretical models.

In order to verify the stability of our findings we employed two ways of averaging in (3). First of them

Meta-analysis of QDD for  6 HG models  
and for 4 QGP models:

1. scan of data and theoretical curves  
for strange hadrons

2. average QDD over observables and  
same kind of models

3. average QDD over hadrons and  
compare models

V. A. Kizka, V. S. Trubnikov, K. A. Bugaev and D. R. Oliinychenko,arXiv:1504.06483 [hep-ph].



Newest Signal of QGP Formation
Idea: at high energies QGP QDD must be better than HG QDD, 

at low energies vice versa! 
Then equal QDD of two kinds of models is about mixed phase threshold

Meta-analysis gives 2 regions of intersection: 
1-st mixed phase at c.m. energies 4.3-4.9 GeV 

2-nd mixed phase (?) at c.m. energies 9.5-13.5 GeV 
BOTH CAN BE CHECKED at NICA and FAIR!
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Possible Interpretation 

probably means that trajectory goes  
near critical (left) or 3critical (right) endpoint 

Appearance of 2-nd intersection at c.m. energies 9.5-13.5 GeV

Evolution of possible «initial» states with collision energy 

13

At the collision energies
p

sNN = 4.2 GeV ,
p

sNN = 4.87 GeV and
p

sNN = 12.3 GeV one finds

h�2/niaa{h}
aa{A}

����
aaHG

= h�2/niaa{h}
aa{A}

����
aaQGP

. (19)

In the collision energy ranges 4.87 GeV <
p

sNN < 12.3 GeV and 12.3 GeV <
p

sNN < 17.3 GeV the QGP

models describe the data essentially better. Therefore, the arithmetic averaging meta-analysis suggests

that at energies below 4.2 GeV there is hadron phase, while in the region 4.2 GeV  p
sNN  4.87 GeV

there is hadron-QGP mixed phase, while at higher energies there exists QGP. Such a picture is well fit into

the recent findings of the generalized shock adiabat model [15, 16]. However, the most interesting question

is how should we interpret the coincidence of two sets of results at the collision energy
p

sNN = 12.3 GeV?

FIG. 5: Schematic pictures of possible locations of the initial states of matter formed in A+A collisions are shown on

the plane of baryonic density and pressure. Each point on these trajectories (dashed curves) corresponds to a single

collision energy value. Left panel: As it is argued in the text the possible initial states correspond to the trajectories

AD or BD as it follows from KTBO-plot 1 for the case of critical endpoint. The trajectory CD is located far from

the mixed phase region and, hence, it cannot generate the second region in which the QDDs of HG and QGP models

are equally good. Right panel: In case of the tricritical endpoint the second region in which the QDDs of HG and

QGP models are equally good may, alternatively, appear due to the second phase transition.

At first glance it seems that at the collision energy
p

sNN = 12.3 GeV the QGP states created by the

corresponding generators touch the phase boundary with hadron phase. However, one must remember that

both curves depicted in Fig. 4 have, in fact, finite width defined by the error bars. Taking into account

an overlap of the curves with finite error bars, one immediately concludes that the overlap region is rather

wide on collision energy scale, namely it ranges from
p

sNN ' 10 GeV to
p

sNN ' 13.5 GeV. Recalling that

the collision energy width of the mixed phase at low values of
p

sNN is below 1 GeV, one may guess that

4.3 GeV
4.9 GeV

11.75+-2.25 GeV

4.3 GeV
4.9 GeV

11.75+-2.25 GeV

1 Phase Transition 2 Phase Transitions



Possible Interpretation 

probably means that trajectory goes  
near critical (left) or 3critical (right) endpoint 

Appearance of 2-nd intersection at c.m. energies 9.5-13.5 GeV

Evolution of possible «initial» states with collision energy 

To ultimately resolve this problem we need HIC data at 4.5-13.5 GeV
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Conclusions
1. High quality description of the chemical FO data allowed  

us to find few novel irregularities  at c.m. energies   
4.3-4.9 GeV (pressure, entropy density jumps e.t.c.)

2. HRG model with multicomponent repulsion allowed us to  
         find the correlated (quasi)plateaus at c.m. energies 3.8-4.9 GeV 

which were predicted many years ago.   
!

       3.The second set of plateaus and irregularities may be a signal of    
         another phase transition! Then the QCD diagram 3CEP may exist  

at the vicinity of c.m. energies 8.8-9.2 GeV.

4. Generalized shock adiabat model allowed us to  describe entropy 
per baryon at chemical FO and determine the parameters of the 

EOS of new phase from the data.

5. Hopefully, RHIC, FAIR, NICA and J-PARC experiments    
 will allow us to make more definite conclusions



Thank You for  
Your Attention!

Table 1. The summary of possible PT signals. The column II gives short description of the
signal, while the columns III and IV indicate its location, status and references.

No and Type Signal C.-m. energy
√
s (GeV) C.-m. energy

√
s (GeV)

Status Status
1. Hydrodynamic Highly correlated Seen at Seen at

quasi-plateaus in ent- 3.8-4.9 GeV [4, 5]. 7.6-9.2 GeV [4, 5].
ropy/baryon, ther- Explained by the shock

mal pion number/ba- adiabat model [4, 5].
ryon and total pion Require an explanation.

number/baryon. Sug-
gested in [11, 12].

2. Thermodynamic Minimum of the In the one component
chemical freeze-out HRGM it is seen

volume VCFO . at 4.3-4.9 GeV [13]. Not seen.
In the multicomponent

HRGM it is seen
at 4.9 GeV [14].

Explained by the shock
adiabat model [4, 5].

3. Hydrodynamic Minimum of the Seen at 4.9 GeV [4]. Seen at 9.2 GeV [4].
generalized specific Explained by the shock
volume X = ϵ+p

ρ2
b

at adiabat model [4, 5]. Require an explanation

chemical freeze-out.
4. Thermodynamic Peak of the trace Strong peak is seen Small peak is seen

anomaly δ = ϵ−3p
T4 . at 4.9 GeV [5]. at 9.2 GeV [5].

Is generated
by the δ peak Require an explanation

on the shock adiabat
at high density end of
the mixed phase [5].

5. Thermodynamic Peak of the bary- Strong peak is seen Strong peak is seen
onic density ρb. at 4.9 GeV [10]. at 9.2 GeV [10].

Is explained
by min{VCFO} [14]. Require an explanation

6. Thermodynamic Apparent chemical γs = 1 is seen γs = 1 is seen at
√
s

equilibrium of at 4.9 GeV [10]. ≥ 8.8 GeV [10, 13].
strange charge. Explained by ther- Explained by ther-

mostatic properties mostatic properties
of mixed phase of QG bags with

at p = const [10]. Hagedorn mass
spectrum [10].

7. Fluctuational Enhancement of Seen at 8.8 GeV [9].
(statistical fluctuations N/A Can be explained by
mechanics) CEP [9] or 3CEP

formation [10].
8. Microscopic Strangeness Horn Seen at 7.6 GeV. Can

(K+/π+ ratio) N/A be explained by the on-
set of deconfinement at

[15]/above [8] 8.7 GeV.

at these energies of collision was first formulated in [4, 5, 6]. In the works [7, 8] a very good
description of the large massive of experimental data on nuclear collisions was first achieved
with the Parton-Hadron-Sring-Dynamics (PHSD) model by assuming an existence of CSR PT
at about

√
sNN ≃ 4 GeV in a hadronic phase and a deconfinement one at

√
sNN ≃ 9− 10 GeV.

For a summary of two QCD	

PT signals see 	

K.A. Bugaev et al.,  	

arXiv:1801.08605 [nucl-th]	

and references therein



Thank You for Your Attention!



In 1982 J. Rafelski and B. Müller predicted  that enhancement of strangeness  
production is a signal of deconfinement. 

                 	

  

Phys. Rev. Lett. 48(1982)

We observe 3 regimes: at c.m. energies 4.3 GeV and ~8 GeV  
slope of experimental data drastically changes! 

Combining Rafelsky & Muller idea  
with our result that mixed phase  

appears at 4.3 GeV we explain 
this finding:  

Below 4.3 GeV  Lambdas appear in 
N+N collisions

Above 4.3 GeV and below ~8 GeV 
formation of QGP produces  

additional s (anti)s quark pairs

Above ~8 GeV there is saturation due to small baryonic chemical potential



What To Measure at FAIR & NICA ?

We predicted  JUMPS of these ratios at 4.3 GeV due to 1-st order PT and 
!

CHANGE OF their SLOPES at ~ 9-12 GeV due to 2-nd order PT 
(or weak 1-st order PT?)

To locate the energy of SLOPE CHANGE  we need MORE data at 7-13 GeV



ALICE Data on Snowballs in Hell:	

Is Tcfo of Nuclei Same as of Hadrons?

 1. all loosely bound nuclei  are frozen together with hadrons =>

 2. all loosely bound nuclei  are frozen separately from hadrons =>
KAB et al., Europhys. Lett. 104  (2013)
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Remarkable improvement of  
the fit quality! 
  
But why are the (anti)nuclei 
frozen at so high temperature? 
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 For all nuclei  of A nucleons  the hard-core radius is 0.365 ∛A fm

KAB et al., arXiv:1812.02509v1 [hep-ph]



ALICE Data on Snowballs in Hell:	

Why Are They Thermalized?

Hagedorn mass spectrum of QGP bags  
is a perfect thermostat and 
a perfect particle reservoir! =>  
Hadrons born from such bags will be in a full equilibrium!
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Similarly to the ordinary gases, in the hadronic or nuclear systems the source of

hard-core repulsion is connected to the Pauli blocking e↵ect between the interacting

fermionic constituents existing interior the composite particles (see, for instance, [2]).

This e↵ect appears due to the requirement of antisymmetrization of the wave function

of all fermionic constituents existing in the system and at very high densities it may

lead to the Mott e↵ect, i.e. to a dissociation of composite particles or even the clusters

of particles into their constituents [2]. Therefore, it is evident that at su�ciently

high densities one cannot ignore the hard-core repulsion or the finite (e↵ective) size of

L. G. Moretto, K. A. B., J. B. Elliott and L. Phair, Europhys. Lett. 76, 402 (2006)	


M. Beitel, K. Gallmeister and C. Greiner, Phys. Rev. C 90, 045203 (2014)

Moreover, the analysis of micro canonical partition function of a 
system containing of 1 Hagedorn bag  and  N Boltzmann particles 
shows that at the end of mass spectrum (where it terminates) the 
temperature depends on the mass of particle and the mass of QGP 
bag:  a few heavier particles will be hotter than many light ones!  

L. G. Moretto, K. A. B., J. B. Elliott and L. Phair, Europhys. Lett. 76, 402 (2006)	
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It was suggested in          M. Gazdzicki, Z. Phys. C 66 (1995).  
 

It was suggested in           M. Gazdzicki and M.I. Gorenstein,         
                                            Acta  Phys. Polon. B 30 (1999)   
 

It was suggested in           M. Gazdzicki, M.I. Gorenstein and       
                                            K.A. Bugaev, Phys. Lett. B 567 (2003)  
 

F is Fermi variable ~ s^1/4 

Claim that onset of deconfinement 
is at c.m. energy 7.6 GeV

I suggested to write that it is a mixed 
phase at c.m. energy 7.6GeV

analog of  caloric curve!



Problems of Statistical Model of Early Stage 

It «predicted Strangeness Horn», but 

1. it has phase transition at temperatures above 200 MeV 
this contradicts to lattice QCD at 0 baryonic density

2. the high density phase has wrong number of degrees of     
freedom compared to QCD  (too few!)

 M. Gazdzicki and M.I. Gorenstein,   Acta  Phys. Polon. B 30 (1999)   

=> from two false statements one get deduce the true one

Nevertheless, due to inability to reproduce the Strangeness Horn 
many researchers believed that this is a signal of some  

non-hadronic physics



Z model has stable RHT adiabat, 
which leads to quasi plateau!

Generalized Shock Adiabat Model
In case of unstable shock transitions more complicated flows appear:  

1 GeV  Elab  30 GeV

)

)shock 01 + compression simple wave

In each point of simple wave

move in opposite directions toward the vacuum, leaving high-density matter
at rest behind the shock fronts. The thermodynamic parameters X, p, ⇢B of
this compressed matter

Rankine-Hugoniot-Taub (RHT) adiabat = shock adiabat

connects (X0, p0, ⇢B0)| {z }
initial

and (X, p, ⇢B)
| {z }

final

states

⇢2
BX2 � ⇢2

B0X2
0 = (p � p0) (X + X0)

by conservation laws of energy, momentum and baryonic charge.

X = "+p
⇢2

B
– generalized specific volume

" is energy density, p is pressure, ⇢B is baryonic charge density

j2
B = � p�p0

X�X0
baryonic current is a straight line in (X � p) plane

Normal properties, if ⌃ ⌘
⇣

@2p
@X2

⌘�1

s/⇢B

> 0 = convex down:

pure phases have normal properties.

Anomalous properties otherwise.
Usually mixed phase is anomalous!

s
⇢B

= const

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable

5

If during expansion entropy conserves,  
then unstable parts lead to entropy plateau!

Remarkably 



Details on Highly Correlated Quasi-Plateaus
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Other Minima  at  AGS Energies

D.R. Oliinychenko, K.A. Bugaev and A.S. Sorin,  
Ukr. J. Phys. 58, (2013) 

 X is generalized specific volume
Is second X peak due to other PT?

min V at ChFO min X at ChFOSAME energy!

K.A. Bugaev et al., EPJ A (2016)

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?

X = "+p
⇢2
B

Unstable Transitions to Mixed Phase

QGP   EOS is  MIT  bag  model with coefficients been fitted  
with condition T_c = 150 MeV at vanishing baryonic density!

HadronGas EOS is simplified HRGM discussed above.

other PT?

In this work we gave  
a proof that min X 

at boundary between  
QGP? and mixed phase 

generates min X at ChFO 
which leads to min V 

of ChFO!

min X at shock adiabat!

X

P



Effective Number of Degrees of Freedom I 

Details of Hadronic and QGP EOS
)

p =
h

(anti)baryons
z }| {
2CBT

ABch
⇣µ

T

⌘
e�

mB
T +

mesonsz }| {
CMTAMe�

mM
T

i
e�

pVH
T

pQGP = A0T
4 + A2T

2
µ

2 + A4µ
4 �B| {z }

fitting

= A

L
0 T

4 + A

L
2 T

2
µ

2 + A

L
4 µ

4

| {z }
LQCD

�Beff

Beff (T, µB) = B � (A0 �A

L
0 )T 4 � (A2 �A

L
2 )T 2

µ

2 �A4 �A

L
4 )µ4

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j

2
B = � p�p0

X�X0
, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
and the straight line with the slope j

2
B known as the Raleigh line. To solve

Eq. (??) one needs to know the EOS. Within the compression shock model
the laboratory energy per nucleon is

Elab = 2mN

(" + p0)("0 + p)
(" + p)("0 + p0)

� 1
�

, (1)

where mN is the mean nucleon mass. A typical example for the shock adiabat
is shown in Fig. 3. As one can see from this figure the shock adiabat in the
pure hadronic and QGP phases exhibits the typical (concave) behavior for
a normal medium, while the mixed-phase (the region A1B) in Fig. 3 has a
convex shape which is typical for matter with anomalous properties. Until
now there is no complete understanding why in a phase-transition or cross-
over region matter exhibits anomalous thermodynamic properties. In pure
gaseous or liquid phases the interaction between the constituents at short
distances is repulsive and, hence, at high densities the adiabatic compress-
ibility of matter �

⇣
@X
@p

⌘

s/⇢B

usually decreases for increasing pressure, i.e.,
⇣

@2p
@X2

⌘�1

s/⇢B

= ⌃ > 0. In the mixed-phase there appears another possibility
to compress matter: by converting the less dense phase into the more dense
one. As it was found for several EOS with a first-order phase transition be-
tween hadronic gas and QGP, the phase transformation leads to an increase of
the compressibility in the mixed-phase at higher pressures, i.e., to anomalous
thermodynamic properties. The hadronic phase of the aforementioned EOS
was described by the Walecka model [29] and by a few of its more realistic
phenomenological generalizations [18, 30, 25]. The appearance of anomalous
thermodynamic properties for a fast cross-over can be understood similarly,
if one formally considers the cross-over states as a kind of mixed-phase (but
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One look at this EoS:

Details of Hadronic and QGP EOS
)
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0 )T 4 � (A2 �A
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2 )T 2
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L
4 )µ4

This equation follows from the usual hydrodynamic conservation laws of
energy, momentum, and baryonic charge across the shock front. The variable
X is convenient, since with its help the conserved baryonic current can be
expressed as j

2
B = � p�p0

X�X0
, i.e., in the X � p plane the state existing behind

the shock front is given by the intersection point of the RHT adiabat (??)
and the straight line with the slope j

2
B known as the Raleigh line. To solve

Eq. (??) one needs to know the EOS. Within the compression shock model
the laboratory energy per nucleon is

Elab = 2mN

(" + p0)("0 + p)
(" + p)("0 + p0)

� 1
�

, (1)

where mN is the mean nucleon mass. A typical example for the shock adiabat
is shown in Fig. 3. As one can see from this figure the shock adiabat in the
pure hadronic and QGP phases exhibits the typical (concave) behavior for
a normal medium, while the mixed-phase (the region A1B) in Fig. 3 has a
convex shape which is typical for matter with anomalous properties. Until
now there is no complete understanding why in a phase-transition or cross-
over region matter exhibits anomalous thermodynamic properties. In pure
gaseous or liquid phases the interaction between the constituents at short
distances is repulsive and, hence, at high densities the adiabatic compress-
ibility of matter �

⇣
@X
@p

⌘

s/⇢B

usually decreases for increasing pressure, i.e.,
⇣

@2p
@X2

⌘�1

s/⇢B

= ⌃ > 0. In the mixed-phase there appears another possibility
to compress matter: by converting the less dense phase into the more dense
one. As it was found for several EOS with a first-order phase transition be-
tween hadronic gas and QGP, the phase transformation leads to an increase of
the compressibility in the mixed-phase at higher pressures, i.e., to anomalous
thermodynamic properties. The hadronic phase of the aforementioned EOS
was described by the Walecka model [29] and by a few of its more realistic
phenomenological generalizations [18, 30, 25]. The appearance of anomalous
thermodynamic properties for a fast cross-over can be understood similarly,
if one formally considers the cross-over states as a kind of mixed-phase (but
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In our fit of entropy per baryon along the shock adiabat we used the QGP EoS

K.A. Bugaev et al., Eur. Phys. J. A (2016) 52: 175

21

such a model not only represents the mass-integrated spectrum of all hadrons, but also

it rather accurately reproduces the chemical FO densities of mesons ⇢M and baryons ⇢B

and the ratios s/⇢B and s/⇢M for chemical FO temperatures below 155 MeV [59]. The

parameters of the center of the shock adiabat were fixed as: p0 = 0, ⇢0 = 0.159 fm�3 and

"0 = 126.5 MeV fm�3.

The QGP EOS is motivated by the MIT-Bag model [58]

pQ = A0T
4 + A2T

2
µ

2 + A4µ
4 �B , (8)

where the constants

A0 ' 2.53 · 10�5 MeV�3fm�3

A2 ' 1.51 · 10�6 MeV�3fm�3

A4 ' 1.001 · 10�9 MeV�3fm�3

B ' 9488 MeV fm�3

were found by fitting the s/⇢B chemical FO data for Elab < 50 GeV with s/⇢B values

along the RHT adiabat and by keeping the pseudocritical temperature value at zero baryonic

density close to 150 MeV, in agreement with lattice QCD data [60].

Note that the above values of the coe�cients A0, A2 and A4 di↵er from the values A

L
0 , A

L
2

and A

L
4 obtained within lattice QCD [60] at vanishing baryonic chemical potential, but this

di↵erence can be attributed to the T and µB dependence of the bag pressure

Beff (T, µB) = B � (A0 � A

L
0 )T 4 � (A2 � A

L
2 )T 2

µ

2

� (A4 � A

L
4 )µ4

, (9)

which identically generates the QGP pressure (8) pQ = A

L
0 T

4 + A

L
2 T

2
µ

2 + A

L
4 µ

4 � Beff ,

but with coe�cients A

L
0 , A

L
2 and A

L
4 . The obtained result for Beff (T, µB) is in line with the

requirements of the finite-width model [61, 62] of quark gluon bags.

Using the above EOS we calculated the phase diagram and constructed the RHT adia-

bat inside all phases. As usual, the phase transition was found from the Gibbs criterion,

pH(T, µB) = pQ(T, µB). The resulting RHT adiabat describes the s/⇢B chemical FO data

well (see Fig. 11). The most remarkable finding is the appearance of a peak in the trace

anomaly, which exists exactly at the boundary of the mixed phase and the QGP (see upper

panel of Fig. 12). Comparing the trace-anomaly peak at chemical FO (see Fig. 5) and that

on the RHT adiabat shown in Fig. 12, one can conclude that the respective collision energies



4

FIG. 1: Collision energy dependence of the neutron relative
density fluctuation ∆n in central Pb+Pb collisions at SPS
energies based on data from Ref. [41].

and the density fluctuation in the produced matter is
thus insignificant. With decreasing incident energy (e.g.,
around

√
sNN = 8.8 GeV), the reaction system may pass

through the CEP and develop the largest density fluctu-
ation. With further decrease in the incident energy (e.g.,
at

√
sNN = 6.3 GeV and 7.6 GeV), the reaction sys-

tem may barely move near the first-order transition line,
so only a relatively small density fluctuation is induced.
When the incident energy is further lowered, the reac-
tion system may miss the first-order transition line and
no quark-hadron phase transition occurs in the collisions,
thus resulting in negligible density fluctuation at the ki-
netic freeze-out. The slightly larger ∆n at

√
sNN = 17.3

GeV than at 12.3 GeV could be due to the larger cen-
trality at

√
sNN = 17.3 GeV which leads to a larger g in

Eq. (9). Therefore, the non-monotonic behavior shown in
Fig. 1 is consistent with the scenario that the CEP may
be reached by the produced QGP during its time evo-
lution in central Pb+Pb collisions around

√
sNN = 8.8

GeV. From the parametrization in Ref. [51] for the chem-
ical freeze-out conditions based on the statistical model
fit to available experimental data, the temperature and
baryon chemical potential at

√
sNN = 8.8 GeV are es-

timated to be T ∼ 144 MeV and µB ∼ 385 MeV. It is
interesting to note that the estimated µB ∼ 385 MeV
for CEP is close to those predicted from the LQCD [6]
and Dyson-Schwinger equation (DSE) [52] as well as that
based on the hadronic bootstrap approach [53]. Also, the
collision energy

√
sNN = 8.8 GeV corresponds to that at

which a peak is seen in the measured K+/π+ ratio by
the NA49 Collaboration [54], which has been interpreted
as a signature for the onset of QGP formation [55] or the
restoration of chiral symmetry [56] in these collisions.

Although the present study is based on the simple for-
mulas in Eq. (4) and Eq. (5), the non-monotonic behav-
ior in the relative neutron density fluctuation extracted

from the measured yield ratio Op-d-t will still be present
if the more accurate formula in Eq.(1) is used. This is
because the latter will increase the value of g in Eq.(9)
by less than 50%, for which the peak of ∆n remains at√
sNN = 8.8 GeV. Even assuming that the value of g

increases linearly with decreasing
√
sNN , such a non-

monotonic behavior is still seen.
In summary, with a newly derived analytical coales-

cence formula for cluster production in heavy-ion colli-
sions, we have demonstrated that information on the rela-
tive density fluctuation of neutrons (∆n = ⟨(δn)2⟩/⟨n⟩2)
at the kinetic freeze-out can be determined from the yield
ratio Op-d-t = N3HNp/N2

d . From measured yields of light
nuclei at SPS energies by the NA49 Collaboration, we
have extracted the collision energy dependence of ∆n
and found that the ∆n exhibits a non-monotonic behav-
ior with a peak at

√
sNN = 8.8 GeV, suggesting that the

CEP in the QCD phase diagram may have been reached
in these collisions with its temperature and baryon chem-
ical potential estimated to be TCEP ∼ 144 MeV and
µCEP
B ∼ 385 MeV, respectively. Although this circum-

stantial evidence is quite interesting and striking, our
study is based on a simplified theoretical model and one
set of experimental data. To establish our approach as
a viable tool in the search of the QCD critical endpoint
requires further investigations from experiments, such as
the BES program at RHIC in this energy range with high
luminosity beams as well as detectors of excellent particle
identification and large acceptance, and theoretical mod-
eling of nucleus production and its connection to baryon
density fluctuations.
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Light nuclei fluctuations are  
enhanced at c.m. energy 8.8 GeV 
=> CEP is located nearby!

JAJATI K. NAYAK, SARMISTHA BANIK, AND JAN-E ALAM PHYSICAL REVIEW C 82, 024914 (2010)
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FIG. 7. Total K+ and K− production rates with temperature at
center-of-mass energy equal to 7.6 GeV and 200 GeV.

R+ beyond √
sNN = 7.6 GeV showing “hornlike” structure

happens only when an initial partonic phase is considered.
Such a nonmonotonic behavior of R+ can be understood as due
to larger entropy productions from the release of large color
degrees of freedom (resulting in more pions yield) compared
to strangeness beyond energy 7.6 GeV.

In Fig. 9, the variations of R− with √
sNN is displayed. R−

has a lower value compared to R+ at lower energies since
K− get absorbed in the baryonic medium. At higher energies
K− is closer to K+ because the production of K+ and K−

is similar in a baryon-free medium, which may be realized at
higher collision energies.

In Fig. 10 the R+ is depicted as a function of √
sNN for other

scenarios (III, IV, and V). On the one hand, when the strange
quarks and kaons are formed in complete equilibrium but
their secondary productions are neglected during the evolution
(scenario III) then the data is well reproduced. On the other
hand, in scenario IV when the system is formed in equilibrium
(as in scenario III) but the productions of strange quarks and
kaons are switched on through secondary processes then the
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FIG. 8. K+/π+ ratio for different center-of-mass energies. Sce-
nario I represents the pure initial hadronic scenario for all center-of-
mass energies. Scenario II represents the calculation with hadronic
initial conditions for low

√
sNN and partonic initial conditions for

higher
√

sNN . See the text for details.
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FIG. 9. K−/π− ratio for different center-of-mass energies. Sce-
nario I represents the pure initial hadronic scenario for all center-of-
mass energies. Scenario II represents the calculation with hadronic
initial conditions for low

√
sNN and partonic initial conditions for

higher
√

sNN . See the text for details.

data is slightly overestimated at high √
sNN . However, we have

seen that the data are also reproduced well in scenario II as
discussed. This indicates that the deficiency of strangeness
below its equilibrium value as considered in scenario II is
compensated by the secondary productions. In scenario V
we assumed that vanishing initial strangeness and observed
that the production of strangeness throughout the evolution is
not sufficient to reproduce the data. The productions from
secondary processes are small but not entirely negligible
(scenario V). In Fig. 11 the R− has been displayed as a function
of √

sNN . A trend similar to the results shown in Fig. 10 is
observed. The data are overestimated for the intermediate
√
sNN in scenario IV, reproduced well in scenario III, and

underestimated for scenario V.
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FIG. 10. (Color online) K+/π+ ratio for different center-of-mass
energies. Scenario III assumes complete equilibrium of strange quarks
and hadrons. The production through secondary processes have been
ignored. Scenario IV is the same as scenario III with secondary
productions processes on and scenario V represents zero strangeness
initially but secondary productions are switched on.
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pure hadronic

deconfinement 
starts at 8.7 GeV

Strangeness Horn and other 
strange particles ratios can 
be explained, if the onset of 
deconfinement begins at  
c.m. energy 8.7 GeV!Counting for thermodynamic, 

hydrodynamic and fluctuation 
signals we conclude that  
3CEP may exists at 8.8-9.2 GeV  

Onset of Deconfinement in Other Models 


