Inhomogeneous phases in the QCD phase diagram

Michael Buballa

TU Darmstadt, Germany

Joint Seminar "Hadron Physics" and "Theory of Hadronic Matter Under Extreme Conditions"
Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, Russia, July 27, 2012

Motivation

- QCD phase diagram :

Motivation

- QCD phase diagram (NICA version):

July 27, 2012 | Michael Buballa | 2

Motivation

- QCD phase diagram :

- question marks:
- critical point
- color superconductors

Motivation

- QCD phase diagram :

- question marks:
- critical point
- color superconductors

Motivation

- QCD phase diagram :

- question marks:
- critical point
- color superconductors
- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ spatially constant

Motivation

- QCD phase diagram :

- question marks:
- critical point
- color superconductors
- frequent assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ spatially constant
- How about inhomogeneous phases?

Are inhomogeneities important?

Are inhomogeneities important?

- one highlight example:

Phase diagram in the NJL-model

- blue solid line: 1st-order when restricting to homogeneous condensates

Are inhomogeneities important?

- one highlight example:

Phase diagram in the NJL-model

- blue solid line: 1st-order when restricting to homogeneous condensates
- orange shaded region: inhomogeneous phase

Are inhomogeneities important?

- one highlight example:

Phase diagram in the NJL-model

- blue solid line: 1st-order when restricting to homogeneous condensates
- orange shaded region: inhomogeneous phase
- critical point disappeared!

Are inhomogeneities important?

- one highlight example:

Phase diagram in the NJL-model

- blue solid line: 1st-order when restricting to homogeneous condensates
- orange shaded region: inhomogeneous phase
- critical point disappeared!
- more details later ...

Inhomogeneous phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- crystalline superconductors (Fulde, Ferrell, Larkin, Ovchinnikov)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- crystalline color superconductors (Alford, Bowers, Rajagopal)
- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Inhomogeneous phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- crystalline superconductors (Fulde, Ferrell, Larkin, Ovchinnikov)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- crystalline color superconductors (Alford, Bowers, Rajagopal)
- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Broniowski et al. (1991)

Inhomogeneous phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- crystalline superconductors (Fulde, Ferrell, Larkin, Ovchinnikov)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- after 2000:

- 1+1 D Gross-Neveu model (Thies et al.)
- crystalline color superconductors Thies, Urlichs (2003) (Alford, Bowers, Rajagopal)
- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Inhomogeneous phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- crystalline superconductors (Fulde, Ferrell, Larkin, Ovchinnikov)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- crystalline color superconductors (Alford, Bowers, Rajagopal)

Alford (2003)

- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Inhomogeneous phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- crystalline superconductors (Fulde, Ferrell, Larkin, Ovchinnikov)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- crystalline color superconductors

Kojo et al. (2011) (Alford, Bowers, Rajagopal)

- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Contents

1. Introduction
2. Inhomogeneous chiral symmetry breaking in the NJL model
3. One-dimensional modulations
4. Two-dimensional modulations
5. Conclusions

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!
- mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \ln \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{x \in\left[0, \frac{1}{T}\right] \times V}\left(\mathcal{L}_{M F}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- effective Hamiltonian (in chiral representation):

$$
\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]=\left(\begin{array}{cc}
-i \vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \cdot \vec{\partial}
\end{array}\right)
$$

- constituent mass functions: $M(\vec{x})=m-2 G[S(\vec{x})+i P(\vec{x})]$

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- effective Hamiltonian (in chiral representation):

$$
\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]=\left(\begin{array}{cc}
-i \vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \cdot \vec{\partial}
\end{array}\right)
$$

- constituent mass functions: $M(\vec{x})=m-2 G[S(\vec{x})+i P(\vec{x})]$
- $\mathcal{H}_{M F}$ hermitean \Rightarrow can (in principle) be diagonalized (eigenvalues E_{λ})
- $\mathcal{H}_{\text {MF }}$ time-independent \Rightarrow Matsubara sum as usual

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\Omega_{M F}(T, \mu ; S, P)=-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(s^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(s^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

- remaining tasks:
- Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$.
- Minimize $\Omega_{M F}$ w.r.t. $M(\vec{x})$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(s^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

- remaining tasks:
- Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$.
- Minimize $\Omega_{M F}$ w.r.t. $M(\vec{x})$
- general case: extremely difficult!

Periodic structures

- crystal with a unit cell spanned by vectors $\vec{a}_{i}, i=1,2,3$
\rightarrow periodic mass function: $M\left(\vec{x}+\vec{a}_{i}\right)=M(\vec{x})$

Periodic structures

- crystal with a unit cell spanned by vectors $\vec{a}_{i}, i=1,2,3$
\rightarrow periodic mass function: $M\left(\vec{x}+\vec{a}_{i}\right)=M(\vec{x})$
- Fourier decomposition: $\quad M(\vec{x})=\sum_{\vec{q}_{k}} M_{\vec{q}_{k}} e^{i \vec{q}_{k} \cdot \vec{x}}$
- reciprocal lattice: $\frac{\vec{q}_{k} \cdot \vec{a}_{i}}{2 \pi} \in \mathbb{Z}$

Periodic structures

- crystal with a unit cell spanned by vectors $\vec{a}_{i}, i=1,2,3$
\rightarrow periodic mass function: $M\left(\vec{x}+\vec{a}_{i}\right)=M(\vec{x})$
- Fourier decomposition: $\quad M(\vec{x})=\sum_{\vec{q}_{k}} M_{\vec{q}_{k}} e^{i \vec{q}_{k} \cdot \vec{x}}$
- reciprocal lattice: $\frac{\vec{q}_{k} \cdot \vec{a}_{i}}{2 \pi} \in \mathbb{Z}$
- mean-field Hamiltonian in momentum space:

$$
\mathcal{H}_{\vec{p}_{m}, \vec{p}_{n}}=\left(\begin{array}{cc}
-\vec{\sigma} \cdot \vec{p}_{m} \delta_{\vec{p}_{m}, \vec{p}_{n}} & \sum_{\vec{q}_{k}} M_{\vec{q}_{k}} \delta_{\vec{p}_{m}, \vec{p}_{n}+\vec{q}_{k}} \\
\sum_{\vec{q}_{k}} M_{\vec{q}_{k}}^{*} \delta_{\vec{p}_{m}, \vec{p}_{n}-\vec{q}_{k}} & \vec{\sigma} \cdot \vec{p}_{m} \delta_{\vec{p}_{m}, \vec{p}_{n}}
\end{array}\right)
$$

- different momenta coupled by $M_{\vec{q}_{k}} \Rightarrow \mathcal{H}$ is nondiagonal in momentum space!
- \vec{q}_{k} discrete $\Rightarrow \mathcal{H}$ is still block diagonal

Periodic structures: minimum free energy

- general procedure:

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\overrightarrow{q_{k}}\right\}$

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\overrightarrow{q k}}$

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\vec{q}}$
- diagonalize $\mathcal{H}_{M F} \rightarrow \Omega_{M F}$

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\overrightarrow{q k}}$
- diagonalize $\mathcal{H}_{M F} \rightarrow \Omega_{M F}$
- minimize $\Omega_{M F}$ w.r.t. $M_{\overrightarrow{q_{k}}}$

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\vec{q}}$
- diagonalize $\mathcal{H}_{M F} \rightarrow \Omega_{M F}$
- minimize $\Omega_{M F}$ w.r.t. $M_{\overrightarrow{q_{k}}}$
- minimize $\Omega_{M F}$ w.r.t. $\left\{\vec{a}_{i}\right\}$

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\overrightarrow{q k}}$
- diagonalize $\mathcal{H}_{M F} \rightarrow \Omega_{\text {MF }}$
- minimize $\Omega_{M F}$ w.r.t. $M_{\overrightarrow{q_{k}}}$
- minimize $\Omega_{M F}$ w.r.t. $\left\{\vec{a}_{i}\right\}$
\rightarrow still very hard!

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\vec{q}}$
- diagonalize $\mathcal{H}_{M F} \rightarrow \Omega_{\text {MF }}$
- minimize $\Omega_{M F}$ w.r.t. $M_{\overrightarrow{q_{k}}}$
- minimize $\Omega_{M F}$ w.r.t. $\left\{\vec{a}_{i}\right\}$
\rightarrow still very hard!
\rightarrow further simplifications necessary

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{x})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{C D W}$ can be diagonalized analytically

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{X})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{C D W}$ can be diagonalized analytically
- important observation: [D. Nickel, PRD (2009)]

The general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{x})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{C D W}$ can be diagonalized analytically
- important observation:
[D. Nickel, PRD (2009)]
The general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case
- $1+1 \mathrm{D}$ solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu)$ (chiral limit), $\operatorname{sn}(\xi \mid \nu):$ Jacobi elliptic functions

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{x})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{C D W}$ can be diagonalized analytically
- important observation: [D. Nickel, PRD (2009)]

The general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case

- $1+1 \mathrm{D}$ solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu)$ (chiral limit), $\operatorname{sn}(\xi \mid \nu):$ Jacobi elliptic functions
- remaining task:
- minimize w.r.t. 2 parameters: Δ, ν
- (almost) as simple as CDW, but more powerful
- $m \neq 0$: 3 parameters

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

- 1st-order line completely covered by the inhomogeneous phase!
- all phase boundaries 2nd order
- critical point coincides with Lifshitz point (NJL specific)

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=310 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions, cf. bag model!

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions, cf. bag mode!!

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions, cf. bag model!

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

TECHNISCHE

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions, cf. bag model!

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions, cf. bag model!
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions, cf. bag model!
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

normalized density ($\mu=340 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions, cf. bag model!
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

normalized density ($\mu=345 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions, cf. bag model!
- Density gets smoothened with increasing μ and T.

Free energy difference

[D. Nickel, PRD (2009)]

- homogeneous chirally broken
- solitons
- chiral density wave:
$M_{C D W}(z)=\Delta e^{i q z}$
- soliton phase favored, when it exists
- $\delta \Omega_{\text {soliton }} \approx 2 \delta \Omega_{C D W} \Rightarrow$ CDW never favored

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional vector term: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}$

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional vector term: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}$
- additional mean field:
- $\bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- $\left\langle\bar{\psi} \gamma^{3} \psi\right\rangle$ possible for inhomogeneous phases, but neglected

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional vector term: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}$
- additional mean field:
- $\bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- $\left\langle\bar{\psi} \gamma^{3} \psi\right\rangle$ possible for inhomogeneous phases, but neglected
- mean-field Hamiltonian:

$$
\mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})
$$

- $\tilde{\mu}(\vec{x})=\mu-2 G_{v} n(\vec{x}) \quad$ "shifted chemical potential"

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional vector term: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}$
- additional mean field:
- $\bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- $\left\langle\bar{\psi} \gamma^{3} \psi\right\rangle$ possible for inhomogeneous phases, but neglected
- mean-field Hamiltonian:

$$
\mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})
$$

- $\tilde{\mu}(\vec{x})=\mu-2 G_{v} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional vector term: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}$
- additional mean field:
- $\bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- $\left\langle\bar{\psi} \gamma^{3} \psi\right\rangle$ possible for inhomogeneous phases, but neglected
- mean-field Hamiltonian: $\quad \mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})$
- $\tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.
- questionable in the inhomogeneous phase at low μ and T
- ok near the restored phase (including the Lifshitz point)

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional vector term: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}$
- additional mean field:
- $\bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- $\left\langle\bar{\psi} \gamma^{3} \psi\right\rangle$ possible for inhomogeneous phases, but neglected
- mean-field Hamiltonian: $\quad \mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})$
- $\tilde{\mu}(\vec{x})=\mu-2 G_{v} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.
- questionable in the inhomogeneous phase at low μ and T
- ok near the restored phase (including the Lifshitz point)
- advantage: known analytic solutions can still be used

Including vector interactions

[S. Carignano, D. Nickel, M.B., PRD (2010)]

- additional vector term: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}$
- additional mean field:
- $\bar{\psi} \gamma^{\mu} \psi \rightarrow\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle \equiv n(\vec{x}) \delta^{\mu 0} \quad$ (density!)
- $\left\langle\bar{\psi} \gamma^{3} \psi\right\rangle$ possible for inhomogeneous phases, but neglected
- mean-field Hamiltonian: $\quad \mathcal{H}_{M F}-\mu=\left.\mathcal{H}_{M F}\right|_{G_{V}=0}-\tilde{\mu}(\vec{x})$
- $\tilde{\mu}(\vec{x})=\mu-2 G_{v} n(\vec{x}) \quad$ "shifted chemical potential"
- further approximation: $n(\vec{x}) \rightarrow\langle n\rangle=$ const. $\Rightarrow \tilde{\mu}=$ const.
- questionable in the inhomogeneous phase at low μ and T
- ok near the restored phase (including the Lifshitz point)
- advantage: known analytic solutions can still be used
- additional parameter: $\tilde{\mu}$, fixed by constraint $\frac{\partial \Omega_{M F}}{\partial \tilde{\mu}}=0$

Phase diagram

TECHNISCHE UNIVERSITÄT DARMSTADT

- homogeneous phases: strong G_{V}-dependence of the critical point

Phase diagram

- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

Phase diagram

$T-\langle\eta\rangle$ phase diagram:

- independent of G_{v} !
- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

Two-dimensional modulations

Two-dimensional modulations

- consider two shapes:
- square lattice ("egg carton")

$$
M(x, y)=M \cos (Q x) \cos (Q y)
$$

- hexagonal lattice

$$
M(x, y)=\frac{M}{3}\left[2 \cos (Q x) \cos \left(\frac{1}{\sqrt{3}} Q y\right)+\cos \left(\frac{2}{\sqrt{3}} Q y\right)\right]
$$

- minimize both cases numerically w.r.t. M and Q

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

- 2D not favored in this regime

Two-dimensional modulations: results

[S. Carignano, M.B., arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

- 2D not favored in this regime
- more Fourier components:
$M(x, y)=\sum_{n=1}^{3} M_{n} \cos (n Q x) \cos (n Q y)$
no effect!

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:

$$
M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)
$$

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:
$M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)$
- free energy:

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:
$M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)$
- free energy:

\Rightarrow "egg carton" local minimum

Two-dimensional modulations: further results

[S. Carignano, M.B., arXiv:1203.5343]

- rectangular lattice:
$M(x, y)=M \cos \left(Q_{x} x\right) \cos \left(Q_{y} y\right)$
- free energy:

\Rightarrow "egg carton" local minimum
- higher chemical potentials

- $450 \mathrm{MeV}<\mu<900 \mathrm{MeV}$: egg carton favored
- $\mu>900 \mathrm{MeV}$: hexagon favored

Conclusions

- Inhomogeneous phases must be considered!

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one- and two-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- competition with color superconductivity must be taken into account

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one- and two-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- competition with color superconductivity must be taken into account
- experimental signatures?

Conclusions

- Inhomogeneous phases must be considered!
- NJL model with one- and two-dimensional modulations of $\langle\bar{q} q\rangle$:
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- number susceptibility always finite (for $G_{v}>0$)
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- competition with color superconductivity must be taken into account
- experimental signatures?
- to be worked out ...

Collaborators

Stefano Carignano (TU Darmstadt)

Daniel Nowakowski (TU Darmstadt)

