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Quark EOS

Comparition to current EOS! 2
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Quark EOS

three points to improve

@ more general density functional for self-energies with vector
and scalar density dependencies

@ HTL only applicable for T > 2T, so not for the
phase-transition

o to high masses suppress the quark sector.
e was compensated for T-axes, but leads to way to high
transition densities at T =0 (8ng)

@ orientation on astrophysical constraints (e.g. two solar mass
neutron stars)

@ improvements in the low temperature / high density regime
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density functional approach with tdyn consistency

@ start with approach for grand canonical potential density
w=—-U-— Zg,/ {TI [1+ & =#)/T] 4 Tin[1 + el& +mi

@ with the quasiparticle/antilparticle energy

Eo R (mi— SRV,

one can introduce an effective mass M; = m— S and an
effective chemical potential fi; = u; — V; with self-energies

@ rearrangement contributions U, m ER ensure consistency
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density functional approach with tdyn consistency

derivation of rearrangement

@ to preserve thermodynamical consistency the definition of the
particle density

n-—ap—g./ d3 1
oo (7)1 4 o(WPP—Mi=ji)/ T

must be ensured by an appropriate set of rearrangement
contributions

o this leads us to the differential equation

ou Z{ OAE | OEF  9Am; S@ij}
= n

opi o Vo T om o



Phase transition

density functional approach with tdyn consistency

derivation of rearrangement

@ one solution,provided by Stefan Typel (but slightly altered), is
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density functional approach with tdyn consistency

derivation of rearrangement

@ one solution,provided by Stefan Typel (but slightly altered), is
OAE; LOAm;
an Z nj on;
OAE, N
_Z g 8n +Z g on?
U= Z n; ER Z n? m

@ now we are coming to an concrete example




Phase transition

Stringflip modell

@ confinement potential with effects of pauli quenching3*
Am;=—CI- ()3 — D9 (n*)"13  AE = a%n + bin®

with the density dependent DY = D9(n®).

3G. Ropke, D. Blaschke and H. Schulz, Phys. Rev. D 34 (1986) 3499.
Yukalov, Yukalova, Physica A 243 (1997) 382-414



Phase transition

Stringflip modell

@ confinement potential with effects of pauli quenching3*
Am;=—CI- ()3 — D9 (n*)"13  AE = a%n + bin®

with the density dependent DY = D9(n®).
@ The rearrangement contributions
Ef = (a%+3b%n%) n = ER
mlt = <_(—;(n5)_2/3 n %(HS)_A,/:& _p. (nS)—1/3> o R
U=nER — p°mt?
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Phase transition

resulting eos

pressure over baryon chemical potential
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resulting eos

neutron star eos

Phase transition
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resulting eos

neutron star configurations
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resulting eos

symmetric matter
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Outlook

what to do next?

@ systematic calculation and analysis of the current eos’
@ implement all temperature effects (antiparticles, pions . ..)

@ development of more systematic approach of phasetransition
via cluster virial expansion

@ thank you for your attention!
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Phase transition

bare models

hNJL Chiral Transition
n02 = 0.08 ; n04 = 5.0symmetric
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Phase transition

including bag constant

hNJL Chiral Transition
n02 = 0.08 ; n04 = 5.0symmetric
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Phase transition

over density
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Phase transition

phase diagram

hNJL DD2 phase diagram with bag constants
symn,=0.08 und n,=5.0
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