Quark-Gluon Plasma Formation in Heavy Ion Collisions in Holographic Description

Irina Aref'eva

Steklov Mathematical Institute, RAN, Moscow

JINR, Dubna

April 3, 2013

Outlook

- Quark-Gluon Plasma(QGP) in heavy-ions collisions(HIC)
- Holography description of QGP in equilibrium
- Holography description of formation of QGP in HIC <=> Black Holes formation in AdS
- Thermalization time/Dethermalization time
- Non-central collisions in holography description

Quark-Gluon Plasma (QGP): a new state of matter

QGP is a state of matter formed from deconfined quarks, antiquarks, and gluons at high temperature

QCD: asymptotic freedom, quark confinement

Experiments: Heavy Ions collisions produced a medium

HIC are studied in several experiments:

- started in the 1990's at the Brookhaven Alternating Gradient Synchrotron (AGS),
- the CERN Super Proton Synchrotron (SPS)
- the Brookhaven Relativistic Heavy-Ion Collider (RHIC)
- the LHC collider at CERN.

 $\sqrt{s_{_{NN}}} = 4.75 \, GeV$ $\sqrt{s_{_{NN}}} = 17.2 \, GeV$ $\sqrt{s_{_{NN}}} = 200 \, GeV$ $\sqrt{s_{_{NN}}} = 2.76 \, TeV$

Fireball at the LHC is denser, larger and longer lived than at RHIC.

$$\epsilon \sim 10 GeV/fm^3, V \sim 4800 fm^3, \tau_{life} \sim 10 fm/c$$

There are <u>strong experimental evidences</u> that **RHIC** or LHC have created <u>some medium which behaves collectively</u>:

- modification of particle spectra (compared to p+p)
- jet quenching
- high p_T-suppression of hadrons
- elliptic flow
- suppression of quarkonium production

Study of this medium is also related with study of Early Universe

QGP in Heavy Ion Collision and Early Universe

- One of the fundamental questions in physics is: what happens to matter at extreme densities and temperatures as may have existed in the first microseconds after the Big Bang
- The aim of heavy-ion physics is to create such a state of matter in the laboratory.

Evolution of the Early Universe

Evolution of a Heavy Ion Collision

pp collisions vs heavy ions collisions

Jet quenching

Central collision

P. Sorensen, Highlights from Heavy Ion Collisions at RHIC...., 1201.0784[nucl-ex]

I.A., Holographic Description of Heavy Ion Collisions, PoS ICMP2012 (2012) 025

Elliptic flow

Imprints of anisotropies are more essential for small shear viscosity, since usually large viscosity erases stronger irregularity

 $\eta/s \approx 0.03 - 0.15$

The nuclear modification factor

Multiplicity: Landau's/Hologhrapic formula vs experimental data

Landau formula

$$\mathcal{CM} \sim s_{NN}^{1/4}$$

Plot from: ATLAS Collaboration 1108.6027

lattice calculation of QCD thermodynamics $N_f = 3$ S. Borsanyi et al., "The QCD equation of state with dynamical quarks," arXiv:1007.2580

QGP as a strongly coupled fluid

- Conclusion from the RHIC and LHC experiments: appearance of QGP (not a weakly coupled gas of quarks and gluons, but a strongly coupled fluid).
- This makes <u>perturbative methods</u> inapplicable
- The <u>lattice formulation</u> of QCD does not work, since we have to study real-time phenomena.
- This has provided a motivation to try to understand the dynamics of QGP through the **gauge/string duality**

Dual description of QGP as a part of Gauge/string duality

- There is not yet exist a gravity dual construction for QCD.
- Differences between N = 4 SYM and QCD are less significant, when quarks and gluons are in the deconfined phase (because of the conformal symmetry at the quantum level N = 4 SYM theory does not exhibit confinement.)
- Lattice calculations show that QCD exhibits a quasi-conformal behavior at temperatures T >300 MeV and the equation of state can be approximated by E = 3 P (a traceless conformal energy-momentum tensor).
- The above observations, have motivated to use the AdS/CFT correspondence as a tool to get non-perturbative dynamics of QGP.
- There is the considerable success in description of the static QGP.

Review: Solana, Liu, Mateos, Rajagopal, Wiedemann, 1101.0618

"Holographic description of quark-gluon plasma"

• Holographic description of quark-gluon plasma in equilibrium

• Holography description of quark-gluon plasma formation in heavy-ions collisions

Hologhraphic description of QGP

(QGP in equilibruum)

Holography for thermal states

TQFT = QFT with temperature

To compute the Matsubara correlator at finite temperature

$$G^{E}(k_{E}) = \int d^{4}x_{E} \, e^{-ik_{E} \cdot x_{E}} \langle T_{E} \hat{\mathcal{O}}(x_{E}) \hat{\mathcal{O}}(0) \rangle$$

Here T_E denotes Euclidean time ordering Euclidean time coordinate au is periodic, $au \sim au + T^{-1} = e^{S_g[\phi_c(\phi_0)]}$

$$\leq e^{\partial M} >$$

 $\leq S_{g}[\phi_{c}(\phi_{0})]$

$$\phi(\tau, \vec{x}, z), \quad S_g[\phi], \quad \delta S_g[\phi_c] = 0 \quad \phi_c \mid_{\partial M} = \phi_0 \quad \phi_c = \phi_c(\phi_0)$$

$$\begin{array}{c} & & \\ & &$$

g:
$$ds^2 = \frac{R^2}{z^2} \Big(f(z) d\tau^2 + d\mathbf{x}^2 + \frac{dz^2}{f(z)} \Big) + R^2 d\Omega_5^2$$

 $f(z) = 1 - \frac{z^4}{z_H^4} \qquad z_H = (\pi T)^{-1}$

 ${\cal T}$ is the Hawking temperature

 $0 < z < z_H$

Correlators with T⁺0 AdS/CFT

Example. D=2

$$\langle \mathcal{O}(t, \mathbf{x}) \mathcal{O}(t, \mathbf{x}') \rangle_{ren} \sim e^{-\Delta \delta \mathcal{L}}$$

 $\delta \mathcal{L} \equiv \mathcal{L} + 2 \ln(z_0/2)$

Vacuum correlators M=AdS
 $\delta \mathcal{L}_{vacuum}(\ell) = 2 \ln \frac{\ell}{2}$

Temperature M=BHAdS with
$$r_H$$

t $\geq \ell/2$ $\delta \mathcal{L}_{thermal}(\ell) = 2 \ln \frac{\sinh \frac{r_H \ell}{2}}{r_H}$

Bose gas

Hologhraphic Description of Formation of QGP

Hologhraphic thermalization

<u>Thermalization</u> of QFT in Minkowski D-dim spacetime

Black Hole <u>formation</u> in Anti de Sitter (D+1)-dim space-time

Profit:

Studies of BH formation in AdS_{D+1}

Time of thermalization in HIC

Multiplicity in HIC

Formation of BH in AdS. Deformations of AdS metric leading to BH formation

colliding gravitational shock waves

Gubser, Pufu, Yarom, Phys.Rev., 2008 (I) Gubser, Pufu, Yarom, JHEP, 2009 (II) Alvarez-Gaume, C. Gomez, Vera, Tavanfar, Vazquez-Mozo, PRL, 2009 IA, Bagrov, Guseva, Joukowskaya, E.Pozdeeva 2009, 2010,2012 JHEP Kiritsis, Taliotis, 2011 JHEP

• drop of a shell of matter with vanishing rest mass

("null dust"),

infalling shell geometry = Vaidya metric

Danielsson, Keski-Vakkuri , Kruczenski, 1999

Balasubramanian +9. PRL, 2011, Phys.Rev.2011

 sudden perturbations of the metric near the boundary that propagate into the bulk

Chesler, Yaffe, PRL, 2011

Deformations of AdS metric by infalling shell

d+1-dimensional infalling shell geometry is described in Poincar'e coordinates by the Vaidya metric Danielsson, Keski-Vakkuri and Kruczenski

$$ds^{2} = \frac{1}{z^{2}} \left[-\left(1 - m(v)z^{d}\right) dv^{2} - 2dz \, dv + d\mathbf{x}^{2} \right] \qquad \bigstar$$

- \boldsymbol{v} labels ingoing null trajectories
- 1) For constant m(v) = M, the coordinate transformation $dv = dt \frac{dz}{1 M z^d}$ brings \bigstar in the form

$$ds^{2} = \frac{1}{z^{2}} \left[-\left(1 - Mz^{d}\right) dt^{2} + \frac{dz^{2}}{1 - Mz^{d}} + d\mathbf{x}^{2} \right]$$

2) $m(v) = \frac{M}{2} \left(1 + \tanh \frac{v}{v_{0}}\right)$

 \star interpolates between vacuum AdS inside the shell and an AdS black brane

Correlators via Geodesics in AdS/CFT

$$<\mathcal{O}_{\Delta}(\tau_{1},\vec{x}_{1})\mathcal{O}_{\Delta}(\tau_{2},\vec{x}_{2})>=\int \mathcal{DP} \ e^{i\Delta L(\mathcal{P})}$$
$$\mathcal{P}\in M$$
$$(\tau_{1},\vec{x}_{1})\in\partial M$$

$$(\tau_1, \vec{x}_1) \in \partial M$$

$$L(\mathcal{P}) = \int (-g_{\mu\nu} \dot{X}^{\mu} \dot{X}^{\nu})^{1/2}$$

$$(\tau_2, \vec{x}_2) \in \partial M$$

Vacuum correlators: M=AdS

Temperatute: M=BHAdS

Thermalization with Vadya AdS

Equal-time correlators

Evaporation vs thermalization

No thermalization for large \mathcal{V}

t_{dethermalization} /t_{thermalization}

$$\tau_{therm} = \int_{J}^{\infty} \frac{dr}{r^2 (1 - \frac{M}{r^d})}$$

$$\ell = 2J \int_{J}^{\infty} \frac{dr}{r^2 \sqrt{(r^2 - J^2)(1 - \frac{M}{r^d})}}.$$

$$\frac{\tau_{ther}}{\tau_{dether}} = F(m^2, d) \qquad F(m^2, d) = \frac{\int_1^\infty \frac{d\rho}{\rho^2 (1 - \frac{m^2}{\rho^d})}}{2\int_1^\infty \frac{d\rho}{\rho^2 \sqrt{(\rho^2 - 1)(1 - \frac{m^2}{\rho^d})}}}$$

t_{dethermalization} /t_{thermalization}

$$\frac{\tau_{ther}}{\tau_{dether}} = F(m^2, d)$$

$$0.78 < \frac{\tau_{ther}}{\tau_{det}} < 1$$

$$0.78 < \frac{\tau_{ther}}{\tau_{det}} < 1$$

Data:

 $\tau_{ther}/\tau_{det} \sim 0.1 - 0.05$

Data:
$$\tau_{ther} \sim 1 \text{ fm/c}$$

Balasubramanian +9,PRL, 2011,Phys.Rev.2011

thermal scale $l \sim \hbar/T$ $T \sim 300 - 400 MeV$ $\tau_{therm} \sim 0.3 \text{fm/c},$

 $l \sim 2 \, \mathrm{fm}$ I.A., I.Volovich, 1211.6041

 $r_{Pb} \approx 7 \text{ fm}$ can pack 208 (A=208 for Pb) balls with radius $r_n = {}^3 \sqrt{\frac{\eta_K}{208}} r_{Pb} \approx 1.07 \text{ fm}$ $l \sim r_n$

 η_K is the Kepler number $\eta_K = \pi/\sqrt{18} \approx 0.74$

t_{dethermalization} /t_{thermalization}

Data: $\tau_{ther}/\tau_{det} \sim 0.1 - 0.05$

$$l_{det} \sim 2r_{Pb} \sim 14 \text{ fm.}$$
 $l_{therm} \sim 2 fm$

 $\tau_{det} \sim 7 \mathrm{fm/c}$

$$\frac{\tau_{ther}}{\tau_{det}} = \frac{\tau_{ther}}{0.5 \cdot l_{ther}} \cdot \frac{l_{ther}}{l_{det}} = 0.39 \cdot \frac{2}{14} \approx 0.056$$

Thermalization Time and Centricity

In progress with A.Koshelev, A.Bagrov Kerr-ADS-BH

Non-centricity

 $ds^{2} = -(N^{\perp}(r))^{2}dt^{2} + \frac{1}{(N^{\perp}(r))^{2}}dr^{2} + r^{2}(N^{\phi}(r)dt + d\phi)^{2}$

$$N^{\perp} = \left(-M + \left(\frac{r}{l}\right)^2 + \frac{a^2}{r^2}\right)^{1/2}, \ N^{\phi}(r) = -\frac{a}{r^2}$$

Kerr-ADS-BH Geometry

$$\beta_{1,2} = \frac{l^2 M}{2} \left(1 \pm \sqrt{1 - \frac{4a^2}{l^2 M^2}} \right)$$

Geodesics

_

$$t(r) = t_0 - \frac{\mathcal{E}l^3}{2} I_{\pm}|_{\alpha = -\frac{\mathcal{J}a}{\mathcal{E}}}, \quad \phi(r) = \phi_0 + \frac{\mathcal{J}l}{2} I_{\pm}|_{\alpha = \frac{\mathcal{E}a + \mathcal{J}M}{\mathcal{J}/l^2}}$$

$$-I_{+} = \frac{1}{(\beta_{1} - \beta_{2})} \left[\frac{\alpha - \beta_{1}}{\sqrt{B_{1}}} \ln(X_{1} - \operatorname{sign}(x - \beta_{1})\sqrt{X_{1}^{2} - (\gamma_{1} - \gamma_{2})^{2}}) - \frac{\alpha - \beta_{2}}{\sqrt{B_{2}}} \ln(X_{2} - \operatorname{sign}(x - \beta_{2})\sqrt{X_{2}^{2} - (\gamma_{1} - \gamma_{2})^{2}}) \right] + C = I_{-} + C$$

$$X_{i} = (2\beta_{i} - \gamma_{1} - \gamma_{2}) + \frac{2B_{2}}{x - \beta_{i}} \qquad \gamma_{1} + \gamma_{2} = Ml^{2} - l^{2}\mathcal{E}^{2} - +J^{2}$$
$$\chi \equiv r^{2} \qquad \gamma_{1}\gamma_{2} = l^{2}a^{2} - l^{2}J(MJ + 2a\mathcal{E})$$
$$C = -\frac{2}{(\beta_{1} - \beta_{2})} \left[\frac{\alpha - \beta_{1}}{\sqrt{B_{1}}} - \frac{\alpha - \beta_{2}}{\sqrt{B_{2}}} \right] \ln(\gamma_{1} - \gamma_{2})$$

Geodesics which start and finish at

 $r = \infty$

Formation of QGP of 4-dim QCD ⇔ Black Hole formation in AdS₅

Multiplicity: AdS-estimations fit experimental data

$$S_{data} \propto s_{NN}^{0.15}$$

$$\tau_{ther}/\tau_{det} \sim 0.1 - 0.05$$

- Non-centricity decreases thermalization time.
 - New phase transition (T vs $\,\mu_B$)

Formation of trapped surfaces is only possible when Q<Qcr

Red for a smeared matter **Blue** for a point-like source

I.A., A.Bagrov, Joukovskaya, 0909.1294 I.A., A.Bagrov, E.Pozdeeva, 1201.6542