Symmetry energy in the neutron star equation of state and astrophysical observations

David E. Álvarez C.

Seminar

Theory of hadronic matter under extreme conditions

May 2013

Outline

- Introduction to neutron stars
- Astronomical observations of neutron star related phenomena
- The symmetry energy from laboratory experiments
- Applications of the symmetry energy to neutron star phenomenology
- Bonus: massive hybrid stars (twins)

Neutron Star Composition

Mass vs. Radius Relation

Mass vs. Radius Relation

Cooling

The nuclear symmetry energy

is the difference between symmetric nuclear matter and pure neutron matter in the parabolic approximation:

$$E(n, x) = E(n, x = 1/2) + E_s(n) * \alpha^2(x) + E_q(n) * \alpha^4(x) + O(\alpha^6(x))$$

with $\alpha = 1-2x$ and $E(n, x = 1/2)$ given by the PAL parameterization in this work

E_s measurements in the laboratory

Nuclear masses from the liquid droplet model
Neutron skin thickness
Isospin diffusion
Giant dipole resonances

*"P-Rex" experiment (Pb radius experiment - C.J. Horowitz)

*Uses parity violating electron scattering to measure the neutron radius in Pb208 at Hall A in Jeferson Lab

Measurements in Laboratory Experiments

 E_s is highly undetermined both above and below n_0

Crust-Core Transition

SLy4 Ioffe EoS used to model the NS crust

Kubis, Alvarez-Castillo: Kubis, Porebska, Alvarez-Castillo : arXiv:1205.6368 arXiv:0910.5066

Bézier Curves

^{*}Kubis, Alvarez-Castillo 2012

Implemented models of E_s for neutron stars

Low denstity E_s models

Neutron clusterization

Correction for neutron clusterization

*Solid lines represent the corrected nuclear energy per baryon

Neutron star modeling

 Nuclear interaction: E(n, x) = E(n, x = 1/2) + E_s(n) * α²(x), E_s described by a Bézier curve E(n,x=1/2) taken from PAL
 Beta equilibrium: μ_n - μ_p = μ_e = μ_μ

2 phase construction under Gibbs conditions

 $\frac{am}{dr} = 4\pi r^2 \rho$

$$p^{I} = p^{II} \qquad \mu_{n}^{I} = \mu_{n}^{II} \qquad \mu_{e}^{I} = \mu_{e}^{II}$$
TOV equations + Equation of State
$$\frac{dp}{dr} = -\frac{(\rho + p/c^{2})G(m + 4\pi r^{3} p/c^{2})}{r^{2}(1 - 2Gm/rc^{2})}$$
with the EoS as input $p(\rho)$

Mass vs Radius Relations

Crustal Fraction Moment of Inertia and Glitch Constraint

Crust Thickness

Quartic order effects

Universal Symmetry Energy Conjecture

Symmetry Energy Conjecture

FIG. 7. (Color online) Density dependence of the asymmetry contribution to the energy per particle (left panel) and of the proton fraction (right panel) in NSM. Encircled curves correspond to EoSs that violate the DU-constraint.

Maximum bound for $\delta^2 E_s$

Energy per baryon in the parabolic approximation

$$E(n,x) = E_0(n) + \delta^2(x)E_s(n)$$

 $n = n_n + n_p \qquad \delta = 1 - 2x \qquad x = n_p/n$

Beta equilibrium conditions and charge neutrality

$$n \rightarrow p + e$$

 $\mu_n = \mu_p + \mu_e$
 $\mu_e(n, \delta) = 4\delta E_S(n),$
 $xn = \frac{1}{3\pi^2} \mu_e^3.$

$$E_S(n,x) = (an)^{1/3} \frac{x^{1/3}}{1-2x}$$

*Klaehn, Blaschke, Alvarez-Castillo in preparation

x=1/8

Direct Urca threshold

Cooling phenomenology of NS suggest Durca process should not occur for NS with typical masses, e.g., $1.3 < M/M_{SUN} < 1.5$. Two possibilities: 1. Maximum mass before the onset is reached (pink) 2. Bounded symmetry energy (blue)

Neutron Star Cooling Processes

Process Name	Process	Emissivity Q_{ν}	Reference
		$({\rm erg} {\rm ~cm^{-3}} {\rm ~s^{-1}})$	
Bremsstrahlung	$n + n \rightarrow n + n + \nu_e + \bar{\nu}_e$	$\simeq 10^{19} T_9^8$	Page, Geppert
	$n + p \rightarrow n + p + \nu_e + \bar{\nu}_e$		and Weber [92]
	$p + p \rightarrow n + p + \nu_e + \bar{\nu}_e$		
Modified Urca	$n+n \rightarrow n+p+e^-+\bar{\nu}_e$	$\simeq 10^{20} T_9^8$	Friman
	$n+p+e^- \to n+n+\nu_e$	07 0	and Maxwell [93]
Direct Urca	$n \to p + e^- + \bar{\nu}_e$	$\simeq 10^{27} T_9^6$	Lattimer et al. [94]
	$p + e^- \rightarrow n + \nu_e$		T
Quark Urca	$d \rightarrow u + e^- + \bar{\nu}_e$	$\simeq 10^{26} \alpha_c T_9^6$	Iwamoto [95]
	$u + e^- \rightarrow d + \nu_e$	1094776	
Kaon Condensate	$n + K^- \rightarrow n + e^- + \bar{\nu}_e$	$\simeq 10^{24} T_{9}^{6}$	Brown et al. [96]
	$n + e^- \rightarrow n + K^- + \nu_e$	1026-	
Pion Condensate	$n + \pi^- \rightarrow n + e^- + \bar{\nu}_e$	$\simeq 10^{20} T_9^0$	Maxwell et al. [97]
	$n + e^- \rightarrow n + \pi^- + \nu_e$		

Direct Urca is the fastest cooling process. Threshold for onset: $p_{F,n} < p_{F,p+} p_{F,e}$. For electrons only then $x_{DU}=1/9$.

Leptonic contribution to EoS

- Direct Urca constrain allows to keep the proton fraction bounded x < 1/9.
- Therefore, leptonic contribution (x dependent) also bounded.

Understanding of the universal behavior of $\delta^2 E_s$, symmetry energy contribution to the NS for EoS which obey the DUrca constraint.

Bayesian TOV Analysis

Nuclear interactions:

 $\varepsilon_{\text{trans}} < \varepsilon < \varepsilon_1$

$$\varepsilon = n_B \left\{ m_B + B + \frac{K}{18} (u-1)^2 + \frac{K'}{162} (u-1)^3 + (1-2x)^2 [S_k u^{2/3} + S_p u^{\gamma}] + \frac{3}{4} \hbar c x (3\pi^2 n_b x)^{1/3} \right\}$$

$$\varepsilon_{\text{trans}} \approx \varepsilon_0 / 2$$

Beta equilibrium and leptonic contribution:

$$\begin{aligned} \frac{\partial \varepsilon}{\partial x} &= \hbar c (3\pi^2 n_B x)^{1/3} - 4 [S_k u^{2/3} + S_p u^{\gamma}] (1 - 2x) = 0 \\ x &= \frac{1}{4} [(\sqrt{d+1} + 1)^{1/3} - (\sqrt{d+1} - 1)^{1/3}]^3 \\ d &= \frac{\pi^2 n_B}{288} \left(\frac{\hbar c}{[S_k u^{2/3} + S_p u^{\gamma}]}\right)^3 \end{aligned}$$

Steiner, A. W., Lattimer, J. M., & Brown, E. F. 2010, ApJ, 722, 33

Parametrization of the EoS

$$P = K_1 \varepsilon^{1+1/n_1} \qquad \qquad \mathbf{\varepsilon_1} < \mathbf{\varepsilon} < \mathbf{\varepsilon_2}$$

$$P = K_2 \varepsilon^{1+1/n_2} \qquad \varepsilon > \varepsilon_2$$

Criteria to follow (rejection rules):

- 1. the maximum mass is smaller than 1.66 M_{\odot} , which is 2σ below the mass of PSR J1903+0327, $1.74 \pm 0.04 M_{\odot}$ (Champion et al. 2008);
- the EOS becomes acausal below the central density of the maximum mass star;
- 3. the EOS is anywhere hydrodynamically unstable, i.e., has a pressure that decreases with increasing density; and
- 4. the maximum mass star has a maximum stable rotation rate less than 716 Hz, the spin frequency of the fastest known pulsar, Ter 5AD (Hessels et al. 2006). The spin frequency at which equatorial mass shedding commences is given to within a few percent by Haensel et al. (2009):

$$f_K \simeq 1.08 \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{10 \,\mathrm{km}}{R}\right)^{3/2} \mathrm{kHz}\,. \tag{39}$$

E₀(n) (Preliminary Results)

EoS for Symmetric Nuclear Matter extracted from NS observations (Bayesian TOV inversion) and Universal Symmetry Energy compared to Flow Constraint from Heavy Ion Collisions.

$E_0(n)$ (Preliminary Results)

Flow Constraint and NS Constraint to SNM compared to three microscopic EoS.

Conclusions

- *k-models:* Es at low density. According to these models, the mass of the Vela pulsar should be very low, with much less than 1 Solar Mass. A need for a better understanding on uniform matter and cluster formation.
- Neutron star cooling can constrain the EoS. Low mass NS should not cool by direct Urca process therefore some models can be ruled out.
- Different determination of the critical density. Finite size effects derived from Coulomb interactions lower the values of the thickness of neutron stars.
- *Effects of the quartic term in the energy expansion*. Neutron star crusts are the most affected. For the models with thick crust the effect is so large that cannot be neglected. This is where the parabolic approximation breaks down.

Conclusions

- There exists a Maximal Contribution from the Symmetry Energy of Nuclear Matter to the NS EoS for proton fractions in a not too narrow region around x=1/8, e.g., between 0.05 and 0.2
- This is close to the Direct Urca threshold (1/9 for electrons only)
- Violating the DUrca threshold consequently results in deviations from the Universal Symmetry Energy (USE)
- Applications to Compact Stars: Bayesian analysis from mass radius relation could result in predictions for the cold symmetric matter beyond the flow constraint.
- From laboratory measurements of symmetric nuclear matter one can predict the NS EoS using the USE

Teaser MASSIVE HYBRID STARS!

Alvarez-Castillo, Blaschke arXiv:1304.7758

DUBNA

Proving the CEP with Compact Stars

Finding a 1st order PT in the QCD phase diagram

Measuring the Mass-radius sequence – detect a 1st order PT

Alford, Han, Prakash, arxiv:1302.4732

First order PT can lead to a stable branch of hybrid stars with quark matter cores which, depending on the size of the "latent heat" (jump in energy density), can even be disconnected from the hadronic one by an unstable branch \rightarrow "third family of CS".

Measuring two disconnected populations of compact stars in the M-R diagram would be the detection of a first order phase transition in compact star matter and thus the indirect proof for the existence of a critical endpoint (CEP) in the QCD phase diagram!

A QCD-based hybrid EoS

Here: (A) Maxwell construction (B) mu-dependent vector coupling: $P_Q(\mu_c) = P_H(\mu_c)$

H = DBHF, APR; Q = nI- PNJL

$$\begin{split} P_Q(\mu) &= P(0,\mu;\eta_{<}) f_{<}(\mu) + P(0,\mu;\eta_{>}) f_{>}(\mu) ,\\ f_{\leq}(\mu) &= \frac{1}{2} \left[1 \mp \tanh\left(\frac{\mu - \hat{\mu}}{\Gamma}\right) \right] \,. \end{split}$$

DB, Alvarez Castillo, Benic, Contrera, Lastowiecki, arxiv:1302.6275 (2012)

Conclusions

- Given the knowledge from lattice QCD that at zero baryon density the QCD phase transition proceeds as a crossover, twins would then support the existence of a CEP in the QCD phase diagram.
- The details of the interrelation between the compact star EoS and the symmetric matter EoS have to be worked out, accounting for the formation of pasta structures in a mixed phase.

Bibliography

- [1] Kubis, S. 2007, Phys. Rev. C, 76, 025801
- [2] Baym, G., Bethe, H. A., & Pethick, C. J. 1971, Nuclear Physics A, 175, 225 Pethick, C. J., Ravenhall, D. G., & Lorenz, C. P. 1995, Nuclear Physics A, 584, 675
- [3] Alvarez-Castillo, D. E., & Kubis, S. 2011, American Institute of Physics Conference Series, 1396, 165
- [4] http://en.wikipedia.org/wiki/Bezier_curve
- [5] Natowitz, J. B., et al. 2010, Physical Review Letters, 104, 202501
- [6] Kubis, S., Porebska, J., & Alvarez-Castillo, D. E. Acta Phys. Polon. B41:2449,2010
- [7] Alvarez-Castillo, D. E., Ph.D. thesis, 2012
- [8] Link, B., Epstein, R. I., & Lattimer, J. M. 1999, Physical Review Letters, 83, 3362 025801
- [9] T. Klahn et al., Phys. Rev. C 74, 035802 (2006) [arXiv:nucl-th/0602038].

GRACIAS