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Abstract

We consider the perspectives of using orthogonal wavelet expan-
sion with Daubechies wavelets for lattice theories. The discrete
wavelet transform have been already applied to simulate the Landau-
Ginzburg/Φ4 theory with the assumption that the wavelet coeffi-
cients of the order parameter Φ(x) are delta-correlated Gaussian
processes in the scale-position space. This reduces the autocor-
relation time of simulation, and is not the only merit of wavelet
transform. By construction the wavelet transform represents the
snapshot of a field at a given scale, and therefore can be used as
a tool to study the correlations between fluctuations of different
scales. For the same reason the relation of wavelet transform to the
renormalization group are considered. We also discuss the prospec-
tive of wavelet transform to improve the Metropolis algorithm and
the simulated annealing procedure.
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Continuous Wavelet Transform

CWT in L2-norm:

φ(x) =
1

Cg

∫

1

ad/2
g

(

x − b

a

)

φa(b)
daddb

ad+1
,

φa(b) =

∫

1

ad/2
g

(

x − b

a

)

φ(x)ddx ,

For isotropic wavelets g the normalization constant Cψ is readily
evaluated using Fourier transform:

Cg =

∫ ∞

0
|g̃(ak)|2 da

a
=

∫

|g̃(k)|2 ddk

Sd |k |
<∞,

where Sd = 2πd/2

Γ(d/2) is the area of unit sphere in R
d .

G : x ′ = ax+b, U(a, b)g(x) = a−d/2g

(

x − b

a

)

, dµ(a, b) =
daddb

ad+1
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Basic wavelets for CWT
Examples
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Discrete Wavelet Transform

Wavelet transform on a sublattice

a = am0 , b = nb0a
m
0 , n,m ∈ Z

often choice a0 = 2

ψm
n (x) = a

−m
2

0 ψ
(

a−m
0 − nb0

)

b0

m=0

m=1

m=2

Wavelet coefficients

dm
n = 〈ψm

n |f 〉 ≡
∫

a
−m

2
0 ψ̄(a−m

0 x − nb0)f (x)dx

Reconstruction

f (x) =
∑

ψ̃m
n (x)d

m
n + error term
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Multi-Resolution Analysis

Consider a Hilbert space of L2(R) functions, then the Mallat mul-
tiresolution analysis (MRA), is an increasing sequence of subspaces
{Vj}j∈Z,Vj ∈ L2(R), such that

1 . . . ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . .

2 clos ∪j∈Z Vj = L2(R)

3 ∩j∈ZVj = ∅
4 The spaces Vj and Vj−1 are similar in a sense that

f (x) ∈ Vj ⇔ f (2x) ∈ Vj−1, j ∈ Z.

5 Vj = linear span {φjk(x), j , k ∈ Z}, φ0k(x) = φ(x − k)

Since Vj and Vj+1 are different in resolution, some details are lost
in projection f ∈ VN on a ladder of spaces VN+1,VN+2, . . .. The
details can be stored in orthogonal complements Wj = Vj−1 \ Vj ,
Qm = Pm−1 − Pm. ψ

m
n is a basis in Wm

Explicitly: V0 = V1 ⊕W1, V1 = V2 ⊕W2, . . .
Hence V0 = W1 ⊕W2 ⊕W3 ⊕ . . . .⊕ VN
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Fast Wavelet Transform

The numerical implementation of the decomposition of a function
f ∈ L2([0, 1]) is based on the truncation of the Mallat sequence
with certain finest resolution level V0. The unit interval in N =
2, 4, 8, 16, 32, . . . points. The initial data vector is then denoted
as s0 = (s00 , . . . , s

0
N−1) ∈ V0. The projections onto the spaces

V1,W1,V2,W2, . . . are sequentially performed

s0

h ⇓ g ց
s1 d1

h ⇓ g ց
s2 d2

h ⇓ g ց
s3 d3

. . .

s ji =
∑N−1

k=0 hks
j−1
k+2i ,

d j
i =

∑N−1
k=0 gks

j−1
k+2i ,

where N denotes the size of current data vector.
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Haar wavelet algorithm
Scaling function φ(x) = χ[0,1)(x)

Low-pass filter is a pair-averaging, high-pass filter is a difference

h1 = h2 =
1√
2

Decomposition

s jk =
s j−1
2k + s j−1

2k+1√
2

, d j
k =

s j−1
2k − s j−1

2k+1√
2

Reconstruction

s j−1
2k =

s jk + d j
k√

2
, s j−1

2k+1 =
s jk − d j

k√
2
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Daubechies wavelets
Daubechies, I. Comm. Pure. Appl. Math.41(1988)909

Orthogonal wavelets with compact support - the Daubechies
wavelets - are given not explicitly, but recursively, by functional scal-
ing equation:

φ(x) =
√
2
N−1
∑

k=0

hkφ(2x − k)

The coefficients hk give complete definition of the wavelet

ψ(x) =
√
2
N−1
∑

k=0

gkφ(2x − k)

The coefficients hk and gk are referred to as low- and high-pass filter
coefficients. They are related by

gk = (−1)khN−1−k , 0 ≤ k < N
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Scaling and wavelet functions for DAUB4 wavelet
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Graphs of φ(x) and ψ(x) obtained at recursion level 8 for DAUB4
wavelet
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2 and more dimensions
from M.V.Altaisky, Wavelets:Theory,Implementation,Applications, 2005
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Two ways of use

Coordinate resolution: a
microscope at a given point

φ(x , ξ) =
∑

jk

d j
k(ξ)ψ

j
k(x)
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Two ways of use

Coordinate resolution: a
microscope at a given point

φ(x , ξ) =
∑

jk

d j
k(ξ)ψ

j
k(x)

Amplitude resolution (Generalized
Polynomial Chaos)
[O.P. Le Maitre et al. J. Comp.
Phys. 197(2004)28]

φ(x , ξ) =
∑

jk

d j
k(x)ψ

j
k(P(ξ))

P(ξ) =

∫ ξ

−∞

p(s)ds ≡ u ∈ [0, 1]

d j
k(x) = 〈φ(x)ψj

k(P(ξ))〉ξ
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Partition function

Z [J] =

∫

exp

(

−βH[φ] +

∫

ddxJ(x)φ(x)

)

Dφ,

H[φ] =

∫

ddx

[

1

2
(∂φ)2 +

1

2
m2φ2 + V (φ)

]

Integration over a finite set of wavelet coefficients d j
k instead of

infinite set Dφ
β

x x’
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Landau-Ginzburg Φ4 model simulation
C.Best. Nucl. Phys. B Proc. Suppl.83(2000)848

Ginzburg-Landau Hamiltonian

H[φ] =

∫

ddx

[

1

2
(∂φ(x))2 +

r0
2
(φ(x))2 +

u0
2
(φ(x))4

]

Decomposition with respect Daubechies wavelets

φ(x) =
∑

j ,x ′

d j
x ′ψ

j
x ′(x) + φ0, 〈φ〉 = φ0

Fluctuating wavelet coefficients 〈d j
t,xd

j ′

t′,x ′〉 = δjj ′δxx ′δtt′Aj
t ,

t = (h1, . . . , hd) is the d-dimensional filter multiindex. Thus the
correlations of fluctuating wavelet coefficients depend on scale only.
For Daubechies wavelets the matrix elements of the Laplacian are
known analytically

∫

ddxψj
t,x1(x)∆ψ

j
t′,x1

(x) = 2−2jCtt′

Latto,Resnikoff,Tenenbaum,1991
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Variational ansatz

The correlations Aj can be found by minimizing the free energy
C.Best, A.Schäfer and W.Greiner. NPB (P.S.)34(1994)780

F = U − S/β, U = Z−1
Tr(He−βH), S = −kB

∑

p(u) ln p(u)

This gives

U

N
= −1

2

∑

jt

2−j(d+2)CttAn
t + r0A+

3u0
2

A2

+ 3u0φ
2
0A+

r0
2
φ20 +

u0
2
φ40,

A =
∑

j ,t

2−jdAj
t

C.Best. Nucl. Phys. B Proc. Suppl.83(2000)848
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Fluctuation strength in Landau-Ginzburg Φ4 wavelet model
C.Best. Nucl. Phys. B Proc. Suppl.83(2000)848

Minimizing the free energy with respect
to magnetization φ0 gives

φ0 = 0 or φ0 =

√

− r0
2u0

− 3A

The spontaneous symmetry breaking oc-
cures then A exceeds − r0

6u0
.

The minimization of the free energy with
respect to Aj

t gives

Aj
t =

1

β

1

−2−2n−1Ctt +
1
2 r0 + 3u0(A+ φ20)
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Wavelet Path Integral Monte Carlo
A.E.Cho et al. J.Chem.Phys.117(2002)5971

Fourier Path Integral

x(u) = x + (x ′ − x)u +
∑∞

k=1 ak sinπku
0 ≤ u = τ

β~ ≤ 1

β

x x’
In analogy with Fourier transform one can introduce

Wavelet Path Integral Monte Carlo

x(u) = x + (x ′ − x)u + s0φ(u) +
∑

j ,k

w j
kψ

j
k(u) + αu + δ

Mean coordinate averaged in u:

〈x〉 = x + x ′

2
+ s0 +

α

2
+ δ
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Imaginary time path action

S [x(u)] = β

∫ 1

0
du

{ m

2β2~2
[

x ′ − x + α

+ s0φ
′(u) +

∑

j ,k

w j
kψ

j
k

′
(u)

]2

+ V (x(u))
}

Kinetic term cannot be evaluated an-
alytically. Numerical integration over
w = (s0,w

j
k) gives averages

〈A〉 =
∫

dxdwe−S(x ,w)A(x , x)
∫

dxdwe−S(x ,w)

Performance(SGI Origin 2000)
Lennard-Jones potential.
DAUB12. 8 · 106 MC points:
tWPI = 35000s, tFPI = 72000s
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Multiresolution analysis in statistical mechanics
A.E.Ismail et al. J. Chem. Phys. 118(2003)4414;4424

Ising model Hamiltonian

−βH =
∑

hi si +
∑

i ,j

Jijsi sj , si ∈ {−1,+1}, β = (kBT )−1

Orthogonal wavelet transform WTW = I,u = (s1, . . . , sN):

−βH = (hTWT )(Wu) + (uTWT )(WJWT )(Wu)

Hamiltonian in wavelet space

−βH̃[ũ] = h̃ũ+ ũT J̃ũ

Configuration space of ũ is wider than that of u.

Partition function

Z̃ =
∑

ũ

ω(ũ)e−βH̃
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Restrictions and Results

Only averages contribute,
but not details

〈s jkA(·)〉 6= 0, 〈d j
kA(·)〉 = 0

The restriction u → s
ignoring d prevents unique
reconstruction and results in
Kadanoff-like blocking
procedure

Left curve corresponds to
Metropolis MC,
right – to wavelets
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Just see correlations of 2D Ising with wavelets
64× 64
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Example of Ising model with Haar wavelet

1D

−H = J
∑

i

s0i s
0
i+1, s j−1

2k =
s jk + d j

k√
2

, s j−1
2k+1 =

s jk − d j
k√

2

−H/J =
1

2

∑

k

(s1k − d1
k )(s

1
k + s1k+1 + d1

k + d1
k+1)

= −1

2

∑

k

(

d1
k

)2
+ d1

kd
1
k+1 +

1

2

∑

i

(s12i )
2 + (s12i+1)

2

+ s12i s
1
2i+1 + s12i+1s

1
2i+2

− d1
2i s

1
2i+1 − d1

2i+1s
1
2i+2 + s12id

1
2i+1 + s12i+1d

1
2i+2 = . . .

Case of hierarchic harmonic oscillators is easier and is considered in
M.Altaisky, PLA 374(2009)522
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Example of Haar wavelet

Haar wavelet:

h =

(

1√
2
,
1√
2

)

, g =

(

1√
2
,− 1√

2

)

The finest level variables (block size 1) admit the values

s0 ∈ {−1, 1},
the second level variables (block size 2)

s1, d1 ∈ {0,±
√
2},

the third level variables (block size 4)

s2, d2 ∈ {0,±1,±2},
the fourth level variables (block size 8)

s3, d3 ∈ {0,± 1√
2
,±

√
2,±2

√
2},

etc.
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Why not construct MRA on Clebsch-Gordan coefficients?
M.V.Altaisky and N.E.Kaputkina. Int. J. Quant. Inf.10(2012)1250026

For M = 2 the finest resolution space V0 is the span of a four
spinor product

Ψ = ψ0ψ1ψ2ψ3,

which transforms according to (D 1
2
⊗D 1

2
)⊗ (D 1

2
⊗D 1

2
). We define

V1 as a linear span of the states of maximal spin of each block:

V1 = D1 ⊗ D1 = D2 ⊕ D1 ⊕ D0.

In this case the detail space W1 is

W1 = V0 \ V1 = D1 ⊗ D0 + D0 ⊗ D1 + D0 ⊗ D0.

Similarly, the V2 space is the maximal spin state of a next level
block, which transforms according to D2. The corresponding
detailed space is

W2 = V1 \ V2 = D1 ⊕ D0.

The total number of degrees of freedom is conserved.
V0 = W1 ⊕W2 ⊕ V2. Their dimensions are 16 = 7 + 4 + 5.
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Wavelets instead of MC: Kraichnan-Orszag system

The original Kraichnan-Orszag system: R.H.Kraichnan,Phys.
Fluids6(1963)1603; S.A.Orszag and L.R.Bissonnette, ibid.
10(1967)2603 is the system of three coupled first order differential
equations

dx1(t)

dt
= A1x2(t)x3(t),

dx2(t)

dt
= A2x1(t)x3(t),

dx3(t)

dt
= A3x1(t)x2(t),

describing convective processes, subjected to the incompressibility
condition A1 + A2 + A3 = 0. In our study we set
A1 = A2 = 1,A3 = −2.
The KO system is badly treated by Wiener-Hermite expansion: If
the initial perturbation is Gaussian ξk , the second order terms ξiξj
will always affect it. This results in its failure to describe
equipartition and causes numerical oscillations.
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MC simulation of KO system with random initial conditions
from Altaisky,Popova,Saraev in Proc. DD’09
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x(0) = 0.07,y(0) = 0.01,z(0) = −1.0; 5000 MC trajectories.
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PC solution of KO system
from Altaisky,Popova,Saraev in Proc. DD’09
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PC solution for the KO system, obtained with Hermitean
polynomials up to the second order and normally distributed initial
conditions, σ(x(0)) = σ(y(0)) = σ(z(0)) = 0.1.
x(0) = 0.07,y(0) = 0.01,z(0) = −1.0
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Initial conditions and Galerkin system
from Altaisky,Popova,Saraev in Proc. DD’09

In terms of wavelet transform the random initial conditions

xi (0, ξ) = 〈xi (0)〉+ σξ

gives α d i
jk(0) to be the wavelet coefficients of 〈xi (0)〉+ σP−1(u).

The KO system with gPC-wavelet substitution leads to the system
of ODE for the wavelet coefficients djk(t).

˙d1
jk = d2

j1k1
d3
j2k2

〈ψjkψj1k1ψj2k2〉
˙d2
jk = d1

j1k1
d3
j2k2

〈ψjkψj1k1ψj2k2〉
˙d3
jk = −2d1

j1k1
d2
j2k2

〈ψjkψj1k1ψj2k2〉,
where the connection coefficients

〈ψjkψj1k1ψj2k2〉 ≡
∫ ∞

−∞

ψjk(x)ψj1k1(x)ψj2k2(x)dx

are evaluated using the connections

Λk,m ≡
∫

φ(t)φ(t − k)φ(t −m)dt
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KO: mean with DAUB4
from Altaisky,Popova,Saraev in Proc. DD’09
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Mean values for the KO system with normally distributed initial
conditions. σ = 0.1. x(0) = 0.07, y(0) = 0.01, z(0) = −1.0
DAUB4 wavelet transform with 3 scales was used
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KO: variance with DAUB4
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Variances for the KO system with normally distributed initial
conditions. σ = 0.1. x(0) = 0.07, y(0) = 0.01, z(0) = −1.0.
DAUB4 wavelet transform with 3 scales was used
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KO: mean with DAUB6

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

"ko6l3.dat" u 1:2
"ko6l3.dat" u 1:3
"ko6l3.dat" u 1:4

Mean values for the KO system with normally distributed initial
conditions. σ = 0.1. x(0) = 0.07, y(0) = 0.01, z(0) = −1.0
DAUB6 wavelet transform with 3 scales was used
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KO: variance with DAUB6
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Variances for the KO system with normally distributed initial
conditions. σ = 0.1. x(0) = 0.07, y(0) = 0.01, z(0) = −1.0.
DAUB6 wavelet transform with 3 scales was used

35 Mikhail V. Altaisky Perspectives of wavelet bases in simulation of lattice theories



Multi-scale Metropolis?

To flip entire blocks by random change of bigger level
coefficients d j

k , j > 0, rather than s jk .

If the energy of the new configuration obtained in this way is
less than the energy of initial configuration, then the new
configuration is accepted.

If not, then the Metropolis algorithm is applied to the coarse
scales first, i.e. to spin configuration constructed for only the
coarse coefficients are present;

If the configuration is accepted at the coarse level then the
Metropolis algorithm goes one level down.

The procedure should be continued up to the finest resolution
level. The temperature may depend on the level T = T (t, j).
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Expected advantages

The wavelet transform of the matrix Jij is performed only
once. Having this done the Metropolis algorithm will not
spend unnecessary calculations of small scale details in case
the large scale block was flipped.

We also expect that the block structure of matrix to vector
multiplication in wavelet space provides for effective
parallelization.

We expect that some information about the coupling matrix
Jij will enable for choosing different temperatures at different
levels of the wavelet transform to speed up the simulated
annealing procedure.
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Gauge fixing
T.Draper and C.McNeile. hep-lat/9312044

Coulomb gauge fixing

F =
1

2nc3V

∑

x

3
∑

k=1

Tr(Ug
k (x)+Ug

k (x)
†),Ug

k (x) = G (x)Uk(x)G
†(x+k)

Single iteration G (x) = exp(ıωa(x)Taα),
where α is a step size, Ta are the SU(3) generators,

ωa(x) = −ı
3

∑

k=1

TrTa∆−k(Uk(x)− Uk(x)
†)

Find maximum of F using fast matrix multiplication CTH Davies
et al. PRD 37(1988)1581

FFT

G (x) =

exp
(

F̂−1 p
2
max

p2
F̂ ıωa(x)Taα

)

FWT

G (x) =

exp
(

Ŵ−1P̂Ŵ ıωa(x)Taα
)
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Thank You for Your Attention !
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