Progress on Single Crystals for Detection of High-Energy Particles

Jindřich Houžvička
houzvicka@crytur.cz
Crytur is one of the world leading companies in synthetic crystal manufacturing with history reaching back to 1943. Crytur operates a modern 4500 sqm facility where it uses sophisticated proprietary crystal growing and machining technologies.

CRYTUR

Crytur is one of the world leading companies in synthetic crystal manufacturing with history reaching back to 1943. Crytur operates a modern 4500 sqm facility where it uses sophisticated proprietary crystal growing and machining technologies.

CRYTUR
CRYTUR
Experienced supplier

- 125 employees
- Turnover 5,7 mil. EUR in 2014
- ISO 9001:2009 certified
- Advanced customer audits
- SME status
SCINTILLATORS

- Heavy scintillators (LuAG:Ce, LuAP:Ce, LuAG:Pr, PWO)
- „Radiation hard“ scintillator (YAG:Ce)
- High temperature scintillators (YAP:Ce, LuAG:Pr)
- Other scintillators (CRY18, CRY19, silicates, etc.)
- Scintillation probes and detectors, including housing and electronics
- Single photon counting detectors, based on Timepix
PANDA calorimeters

Calorimeters:
all endcap crystals produced
TDR approved
Lead Tungstate

• All end cup crystals produced, but ca 8000 crystals still missing
• BTCP plant closed in 2010
• CRYTUR decides to re-start product in May 2014, with support of Giessen University
• Proof-of-concept realized within one year
• Crytur approaches semi-production phase in August 2015.
Lead Tungstate
Fig. 7. Transversal and longitudinal optical transmittance spectra of 200 mm sample. For comparison the longitudinal transmittance of 200 mm PWO-II produced by BTCP according to PANDA EMC specification is presented.

Taken from SCINT: New Start of Lead Tungstate Crystal Production for High-Energy Physics Experiments - Andrei Borisevich, Valery Dormenev, Jindrich Houzvicka, Mikhail Korjik, Rainer W. Novotny
Proof-of-concept realized – parameters comparable to the BTCP production, the same Czochralski method, the same raw material (from Russia).

The next stage – test production of 150 pieces until 3/2016

4 growth stations
2 polishing machines
Lead Tungstate
Lead Tungstate

Production period: ?

Increase number of growing furnaces up to 20, grinding and polishing machines up to 4, single wire saw and annealing furnaces according the requirements from pre-production period

Depends on FAIR
YAG:Ce Fibres

Material for High Luminosity phase of the Large Hadron Collider at CERN

- Good radiation hardness
- High light yield

Measurement performed at Giessen
YAG:Ce Fibres
YAG:Ce/Tungsten Fibre Detector
Radiation Tolerance of LuAG:Ce and YAG:Ce Crystals under High Levels of Gamma- and Proton-Irradiation – SCINT publication

M. Lucchini, K. Pauwels, K. Blazek, S. Ochesanu and E. Auffray
CERN
Response of a sampling detector module to high energetic photons

- A single module and 2 x 2 array of modules have been tested
- Readout with bialkali photo-multiplier tubes (+ light guide)
- Tagged photon beam from 56 to 766 MeV @ MAMI (Mainz)
- Beam diameter: ~ 1.0 cm
Energy distributions for a single module

- 56 MeV
- 160 MeV
- 406 MeV
- 681 MeV

Counts vs. channel / a.u.
YAG:Ce Large Crystals
CRYTUR PROPRIETARY TECHNOLOGY

Parameters:

Sizes up to 6 inch, can be further up-scaled, just question of investment
Stress-free core, excellent material properties
Excellent process economics due to the size
YAG:Ce/Tungsten Fibre Detector

New Detector for Large Hadron Collider at CERN

To produce 1 million fibers:
1 crystal ~ 5000 - 7000 fibers ~ 1 and ½ month
200 crystals
With 10 furnaces in work it takes ~2.5 years
1 year ~ 8X10 crystals X 5000 fiber = 400000 fibers/year

Technology well feasible
YAG:Ce/Tungsten Fibre Detector

- CRYTUR has in hands growing of good quality garnets and manufacturing of the square fibers
- **YAG:Ce** is the one of the best candidates for high energy physics applications
 - Good radiation hardness
 - High light output
 - Decreasing of time decay ongoing work

We are ready to grow YAG:Ce and to produce fibers
SCINTILLATORS

- Single crystals for high resolution imaging (1 micron) with ionising particles (electrons, protons, neutrons, X-ray, etc.)
- PET
- High-resolution imaging scintillation systems directly coupled to CCD
SCINTILLATION MATERIALS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YAG:Ce</td>
<td>550</td>
<td>4.55</td>
<td>No/No</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>LuAG:Ce</td>
<td>535</td>
<td>6.73</td>
<td>No/No</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>LuAG:Pr</td>
<td>315</td>
<td>6.73</td>
<td>No/No</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>CRY19</td>
<td>420</td>
<td>7.1</td>
<td>Yes/No</td>
<td>32</td>
<td>41</td>
</tr>
<tr>
<td>YAP:Ce</td>
<td>370</td>
<td>5.37</td>
<td>No/No</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>CRY18</td>
<td>425</td>
<td>4.5</td>
<td>Yes/No</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>CsI:Tl</td>
<td>565</td>
<td>4.51</td>
<td>No/Yes</td>
<td>45</td>
<td>900</td>
</tr>
<tr>
<td>GOS:Tb</td>
<td>544</td>
<td>7.34</td>
<td>-/No</td>
<td>60</td>
<td>106</td>
</tr>
<tr>
<td>CWO</td>
<td>475</td>
<td>7.9</td>
<td>Yes/No</td>
<td>12-15</td>
<td>5000</td>
</tr>
<tr>
<td>BGO</td>
<td>480</td>
<td>7.13</td>
<td>No/No</td>
<td>8-10</td>
<td>300</td>
</tr>
</tbody>
</table>

Screen quality

YAG:Ce ($Y_3Al_5O_{12}$)
CONTRACTUAL RESEARCH COLLABORATION

LuAG:Ce

YAG:Ce

YAP:Ce

CRY-18
Fast Heavy Scintillator LuAP:Ce
NEW TECHNOLOGIES
Probably the world largest YAG stress-free crystals

Diameters up to 105 mm!
CRYSTAL HOMOGENEITY

Yb:YAG Disc
Diameter 80mm
Thickness 8mm

Wavefront deformation smaller than $\lambda=20$ in the central area of 70mm.
Different Shapes

- Free-Standng
- Dia 2 mm
- Dia 50 mm
- On Substrates
- In Frames
Grids for Beam Location

50 micrometers

30 micrometers

L = 1 mm
Imaging System CRYCAM/CRYPIX

Scintillators (CRYCAM) or Semiconductor (CRYPIX) Based Detectors
Ionizing Radiation Detectors
VUV-XUV Radiation Imaging
Beam Detection
X-Ray Radiography
The physical parameters of the imaging screen are crucial for the high resolution imaging system.

- Screen homogeneity, optical quality
- Quantum efficiency
- High light output (DQE, efficient light gathering)
High Resolution

YAG:Ce, LuAG:Ce Screens

- Transparent very thin single crystal plates
- Resolution limited by the optical system used
High Resolution

- Cotton Stick
- Polymer Fibers
- Carbon Ski Stick
- Plastic Foam
CRYPIX/CRYCAM APPLICATIONS
CRYPIX in Nuclear Safety

- Single particle (counting) pixel detectors
- Ionizing radiation creates charge which is compared with threshold and registered digitally in pixels
- Good spatial resolution
- High read-out speed
- No noise, no dark current
- Almost unlimited dynamic range

Particle recognition and detection

Characteristic track shapes recorded by the Timepix device in TOT mode for different particle types:

a) gamma rays (60 keV),
b) electrons from a 90Sr source,
c) 5.5MeV alpha particles,
d) 11MeV protons entering the detector at angle 85 degrees
X-ray fluorescence imaging

Sample

Characteristic radiation

Pin-hole collimator

Pixel detector

X-ray tube

Piece of PCB

One Euro coin

Courtesy of IEAP Prague
X-ray fluorescence imaging

Color coding:
Cu = Red, **Pb** = Green, **Sn** = Blue

Pure Pb
- Pb: 40%
- Sn: 60%

Cu: 75%
- Zn: 20%
- Ni: 5%

Color coding:
Zn content is displayed in Pink

Courtesy of IEAP Prague
Soft tissue organs well recognized

Bone structure nicely imaged

Very light objects resolved (hairs)

Strange textured noise

Not a noise:
We can resolve hair fibers through the full mouse body!

High contrast X-ray imaging:
Courtesy of IEAP Prague
Noise-Free Camera
Noise-Free Camera

Gamma Camera
Neutron Camera

Very high resolution
Real camera – image generated by Timepix detector
Sapphire capillaries for SAXS, WAXS, XRD, PDF, EPR, ... in situ measurements

Diameters OD/ID: Ø1.0/0.6 and Ø1.6/1.1

Sealed by sapphire cap on one end. Tested at 100-200 MPa

Supercritical condition (water: p = 21.8 MPa, T = 647.1 K)

High temperature

High pressure
Thank you for your attention