Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering Elena Zemlyanichkina, LHEP JINR, Dubna, Russia

Abstract

Inclusive $(A_{1,p})$ and semi-inclusive $(A_{1,p}^{\pi+}, A_{p1}^{p}, A_{1,p}^{K+})$ double-spin asymmetries in deep-inelastic muon-proton scattering have been measured at COMPASS (SPS) CERN). The results have been obtained with data collected in 2007 for the longitudinal polarised NH₃ solid target and beam of positive muons with energy E = 160 GeV. We improve the statistical precision of $g_1^p(x;Q2)$ by a factor of two in the low x region. Proton asymmetries have been combined with the deuteron ones [1] to extract the non-singlet spin-dependent structure function $g_1^{NS}(x;Q2)$. The first moment Γ_1^{NS} confirms the validity of the Bjorken sum-rule. Our new semi-inclusive data were used to evaluate the Δu , Δd , $\Delta \bar{u}$, $\Delta \bar{d}$ and $\Delta s \equiv \Delta \bar{s}$ distributions.

A Test Of The Bjorken Sum-Rule E143 E155 HERMES CLAS W>2. 0.02 COMPASS 0.01 E143 E155 HERMES 0.04 CLAS W>2.5 COMPASS 0.0 0.02

Double-Spin Asymmetries

COMPASS

Comparison of double-spin asymmetries of COM-PASS as a function of x with results of HERMES.

Polarized PDFs

Polarised Deep Inelastic Scattering

 $\mu^+ + d(p) \to \mu'^+ + X_{\prime}$ $\mu^+ + d(p) \rightarrow \mu'^+ + h + X$, $h \equiv \pi^+, \pi^-, K^+, K^-$

Quark densities:

• $q(x) = q^+(x) + q^-(x)$

•
$$\Delta q(x) = q^+(x) - q^-(x)$$

 $q^+(x)$ ($q^-(x)$): spins of the nucleon and struck quark are in the same (opposite) directions

$$A_{1} \equiv A^{\gamma N} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{g_{1}}{F_{1}} = \frac{2x}{F_{2}}g_{1} = \frac{\Sigma_{q}e_{q}^{2}\Delta q}{\Sigma_{q}e_{q}^{2}q}$$
$$A_{||} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \approx DA_{1} - \text{can be measured in an experiment; } D - \text{depolarisation factor}$$

Methods

Number of interactions:

 $N = a\Phi n\bar{\sigma}(1 \pm fP_B P_T A_{||})$

a – acceptance; Φ – beam flux; $n = n_d + \sum_A n_A$ – full density rotation every 8 h of nuclei of the target material; μ - beam

 $\overline{\sigma} = \frac{\overline{\sigma}_d n_d + \sum_A \overline{\sigma}_A n_A}{n}$ – full cross-section $f = \frac{n_d \overline{\sigma}_d}{n \overline{\sigma}}$ – dilution factor P_B , P_T – beam and target polarisation

$$\delta \equiv \frac{N_{up}}{N_{dn}} \frac{N'_{dn}}{N'_{up}} \Rightarrow \alpha A^2 + bA + c = 0$$

Good and comparable precision at low x for results on g_1^d and g_1^p gives ideal condition for a new evaluation of the non-singlet structure function

$$g_1^{NS}(x) = g_1^p(x) - g_1^n(x) = 2\left[g_1^p(x) - \frac{g_1^d(x)}{(1 - 3/2\omega_D)}\right]$$

where ω_D is the deuteron D-state probability ($\omega_D =$ 0.05 ± 0.01).

The first moment provides a test of the Bjorken sum rule, a fundamental result of QCD derived using current algebra

$$\int_0^1 g_1^{NS}(x) dx = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C^{NS} \quad \text{or} \quad \Delta u - \Delta d = \left| \frac{g_A}{g_V} \right|$$

C^{NS} was calculated in pQCD up to $\alpha_s^3(Q^2)$.

The Q^2 dependence of the non-singlet structure function $g_1^{NS}(x, Q^2)$ is decoupled from the singlet quark and the gluon spin densities. Consequently a fit of the Q^2 evolution of g_1^{NS} requires only a small number of parameters to describe the shape of an isovector quark density, $\Delta q_3(x)$, at some reference Q^2 . In the present analysis, $Q_0^2 = 3(\text{GeV}/c)^2$ is taken as reference Q^2 in the fit and the following parameterisation used for Δq_3 :

At LO in QCD under the assumption of independent quark fragmentation, the double spin asymmetries for a hadron h produced in the current fragmentation region can be decomposed into a sum of products of quark helicity distributions $\Delta q(x, Q^2)$ times quark fragmentation functions $D_q^h(z, Q^2)$, where z is the fraction of the virtual photon energy taken by the hadron *h*:

$$A_1^h(x,Q^2,z) = \frac{\Sigma_q e_q^2 \Delta q(x,Q^2) D_q^h(z,Q^2)}{\Sigma_q e_q^2 q(x,Q^2) D_q^h(z,Q^2)}$$

In the present analysis we neglect the Q^2 dependence of the asymmetries and assume all measurements to be valid at $Q_0^2 = 3(\text{GeV}/c)^2$. For the unpolarised parton distributions we use the LO parametrisation of MRST [4] and for fragmentation functions the LO parametrisation of DSS [5].

The four semi-inclusive asymmetries of the proton, the four of the deuteron and the two inclusive asymmetries provide a system of ten equations with five unknowns (Δu , Δd , $\Delta \bar{u}$, Δd and $\Delta s \equiv \Delta \bar{s}$). The equations are solved by a least-square fit, independently in each bin of x. The analysis is limited to $x \leq 0.3$ because sea quark contributions become insignificant above this limit.

Necessary conditions:

✓ Beam track goes through all target cells \Rightarrow Flux cancelation

 $\checkmark \frac{\langle a_{up} \rangle}{\langle a_{dn} \rangle} = \frac{\langle a'_{dn} \rangle}{\langle a'_{un} \rangle}, \langle a \rangle = \frac{\int a \Phi n \sigma d\vec{x}}{\int \Phi n \sigma d\vec{x}} \Rightarrow \text{Acceptance}$ cancelation

References

- [1] [COMPASS Collaboration], "Flavour Separation of Helicity Distributions from Deep Inelastic Muon-Deuteron Scattering", Phys. Lett. B 680 (2009) 217
- [2] [COMPASS Collaboration], "The Spin-dependent Structure Function of the Proton g_1^p and a Test of the Bjorken Sum Rule", Phys. Lett. B 690 (2010) 466
- [3] [COMPASS Collaboration], "Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muondeuteron scattering", Phys. Lett. B 693 (2010) 227
- [4] A. D. Martin, W. J. Stirling and R. S. Thorne, "MRST partons generated in a fixed-flavor scheme", Phys. Lett. B 636 (2006) 259
- [5] D. de Florian, R. Sassot and M. Stratmann, "Global analysis of fragmentation functions for pions and kaons and their uncertainties", Phys. Rev. D 75 (2007) 114010

$$\Delta q_3(x) = \eta_3 \frac{x^{\alpha_3} (1-x)^{\beta_3}}{\int_0^1 x^{\alpha_3} (1-x)^{\beta_3} dx}$$

COMPASS result [2]:

 $|g_A/g_V| = 1.28 \pm 0.07 (\text{stat.}) \pm 0.10 (\text{syst.})$

The dominant systematic error is due to uncertainties on the beam and target polarisation. PDG'10, neutron β -decay: $|g_A/g_V| = 1.2701 \pm 0.0025$

Statistics, [$\times 10^6$ events]

	target	
	deutron	proton
incl.	135.1	85.3
π^+	22.8	12.3
π^{-}	20.5	10.9
K^+	4.8	3.6
K^-	3.3	2.3

Presently $(\Delta \bar{u} - \Delta \bar{d})$ is accessible only via semiinclusive DIS processes. COMPASS results indicate a slightly positive distribution. The first moment of the distribution in the x region of the measurement is [3]

$$\int_{0.004}^{0.3} (\Delta \bar{u} - \Delta \bar{d}) dx = 0.052 \pm 0.035 (stat.) \pm 0.013 (syst.)$$

Unpolarised case: $\int_0^1 (\bar{u} - \bar{d}) dx = 0.118 \pm 0.012$

Open Questions

Extraction of FFs from COMPASS data is ongoing. New COMPASS data on longitudinal polarized NH₃ target were collected during the year 2011 to increase the precision of the measurements.