ECAL for SPD

lvan Orlov

JINR

NICA-SPIN-2014, Prague, February 10-16, 2014

Direct photon program

- Detect and identify direct photons from the non-polarized and polarized *pp* (*pd*) reactions.
- Exclude photons from π^0 -decays

Electron identification

• Detect e^+e^- pairs from Drell-Yan processes and from J/ψ -decays

Participation in trigger

Calorimeter construction

Scintillator	Polystyrene Kharkov
Absorber	Lead
Number of layers	109
Lead plate thickness	0.8 mm
Scintillator plate thickness	1.5 mm
Length	250.7 mm
Pb plate dimension	12 cm
Sc plate dimension	4 cm
Number of towers	9
Number of fibers per tower	16
Diam. of bundle	6.5 mm
Light guide	Winston cone glued to photodetector
Photo detector	MAPD -3N
Modul size	$120 \times 120 \times 250.7 \text{ mm}^3$
Effective Moliere radius	3.5 cm
Effective radiation length	1.64 cm
Total radiation lengt	$\approx 15X0$
Temperature stabilization	Peltier cooler
Number of modules	≈ 2000

<ロ> (四) (四) (三) (三) (三) (三)

Multi-pixel Avalanche Photo Diodes

Strong magnetic field prevents use of PMT. MAPD are insensitive to magnetic field and can be used in our case.

- The simulations presented were performed using Geant4 version 10.0
- Geometry: block of 9 modules (3x3)
- QGSP_BERT physics list
- Read-out electronics, optics and light collection were not simulated

・ロト ・四ト ・ヨト ・ヨト

Average shower profile for $e^-, \mu^-, \pi^-, \gamma$ (5 GeV)

돈 돈

2

A.

Energy resolution

Energy resolution for electrons with energies from 50 MeV to 10 GeV

Increase in angle of incidence improves energy resolution for the region of interest.

< (17) >

< ∃ >

Projective geometry

- Gaps in the calorimeter seriously affects energy resolution and particle detection.
- Projective geometry is needed to eliminate such problems.
- It was already tested that we can produce trapezoidal modules.

Modules in COMPASS (ECAL0)

Similar modules are already in use in COMPASS. Their parameters were measured in experiments.

Modules in COMPASS (ECAL0)

Monte carlo simulation

Energy resolutions of the ECAL0 3 \times 3 module matrix readout by the MAPD at $T = 15^{\circ}$ C versus the electron beam energy.

Modules in COMPASS (ECAL0)

Time resolution can be compared to Time-of-Flight camera and it is suitable for a trigger.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

MIP peak

(日) (同) (三) (三)

æ

- ECAL important part of SPD
- Already existing modules are suitable for the purposes of SPD
- Simulation is reasonably reproducing responses of calorimeter

・ 同 ト ・ ヨ ト ・ ヨ ト

э