20-26 July, 2008 SPIN and SYMMETRY 2008 in Praha

Experimental Plans at the J-PARC Hadron Experimental Hall

Hiroyuki Noumi, Research Center for Nuclear Physics, Osaka University

J-PARC for High Power Proton Beam of ~Mega Watt

J-PARC Construction Schedule

High Intensity Proton Beam at 3 GeV, 50 GeV

v to SK

Nuclear Target

FFF

Muon

Neutrino

Kaon

Anti-proton

50 GeV PS Slow Extraction

Pion

outron

Feb, 2008

The Hadron Experimental Hall (HD-Hall) is Only and World Highest Power of the KAON Factory

HADRON BEAM LINE FACILITY

Slow Extraction Beam :

- 50 GeV 15 μA (0.75 MW)
 3.3x10¹⁴ p/spill (0.7 s flat top, 3.6 s repetitio
- 30 GeV, $9\mu A$ (0.27 MW) in Phase 1

- Key Issue for safe and stable operation of the beam line
 - Minimum Un-necessary/Unwanted Beam Loss
 - ✓ Radiation-Hardness and/or Heat-resistance for Beam Line Components
 - Maintenance Scenario in High Radiation Area

Key Instruments / Devices for High Power Beam Handling

© Completely Inorganic Electromagnet

- Coil w/ Mineral Insulation Cable
- Bi-metal Thermal Switch
- Ceramic Insulation Signal Line
- Water Pressure Gauge
- Metal or Graphite Foil Gasket

© Non-Destructive Beam Diagnosis

- Residual Gas Ionization
- Beam Profile/Beam Intensity
- No Electrode Intercept Beam
- No Beam Loss
- No Amplifier (Low Vacuum ~10Pa)
- Collection E Field
- e- Confining Magnetic Field

Energy Deposit arround the T1 Target

T1 (Ni t54mm) is irradiated with 50 GeV 15 μ A (0.75 MW) proton beam. A power of 200 kW is released at T1.

T1 and Vacuum Chamber

Water-cooled, Rotating Ni Disk Target

Temperature rise

Design w/ Simulation and R&D w/ proof machine

13-Feb-04 TEMPERATURE RELATIVE GELSIUS

TINE - 54,2000

OGAL MX+1+

72.88 60.25 65.71 62.14 55.50 31.43 47.86 44.21 40.71 11.14 31.57

Beam Dump - Heat analysis by MARS & ANSYS (calculated by A. TOYODA & M. MINAKAWA)

We finally reduced the volume of Cu.

Maintenance

Full Remote with crane and cask

Semi-Remote

- > Quick Connection/Disconnection
 - ✓ Lever Coupler for Cooling Water (2MPa)
 - ✓ Knife Switch for Electricity (3000A)
 - ✓ Bellow Expander (Vacuum)
 - ✓ Chain Cramp for Vacuum Flange

for U-tight Metal Seale

Design Concept :

To Layout secondary lines as many as possible, while only one target station, T1, is constructed at the beginning.

- Two Separated Charged Kaon Beam Lines (K1.8 and K1.1) Branch Line of each BL (K1.8BR / K0.8)
- One Neutral Kaon Beam Lines (K0)

Efficient coordination and execution of experimental programs

Milestones

- July 2007: Start of magnet Inst. In HD-Hall
- Nov.2007: Start of Dry-run of 50GeV-PS(MR)
- Feb.2008: Inst. of Beam Abort Devices of MR
- May 2008: Beam commissioning of MR (at 3GeV)
- July 2008: Inst. of Slow Ext. Devices of MR
- Dec.2008: Beam commissioning of MR (upto 30GeV) Start of Slow Extraction
- Feb.2009: End of the first Slow Extraction
- April2009: Start of Neutrino Beam Operation
 with Fast Extraction
- Oct.2009: Second Slow Extraction for Physics

PAC Approval Summary

Jan, 2008

	(Co-) Spokespersons	Affiliation	Title of the experiment	Slow line priority Day1? Day1 Priority		Beamline	
P01	V. Sumachev	Petersburg Nulear Physics Institute	Proposal on measurements of the spin rotation parameters A and R at the J-PARC in the resonance region of $\pi\text{-N}$ elastic scattering	Rejected			
P03	K. Tanida	Kyoto U	Measurement of X rays from Ξ^- Atom	Stage 2			K1.8
P04	J. C. Peng; S. Sawada	U.of Illinois at Urbana-Champaign; KEK	Measurement of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron	Deferred			Primaly
P05	T. Nagae	KEK	Spectroscopic Study of Ξ -Hypernucleus, $^{12}{}_{\Xi}$ Be, via the 12 C(K ⁻ , K ⁺) Reaction	Stage 2	Day1	1	K1.8
P06	J.Imazato	КЕК	Measurement of T-violating Transverse Muon Polarization in K * -> π^0 μ^* v Decays	Stage 1			K1. 1BR
P07	K.Imai, K.Nakazawa, H.Tamura	Kyoto U., Gifu U., Tohoku U.	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	Stage 2			K1.8
P08	A. Krutenkova	ITEP	Pion double charge exchange on oxygen at J-PARC	Stage 1			K1.8
P10	A. Sakaguchi, T. Fukuda	Osaka U	Production of Neutron-Rich Lambda-Hypernuclei with the Double Charge-Exchange Reaction (Revised from Initial P10)	Stage 2			K1.8
P11	K.Nishikawa	КЕК	Tokai-to-Kamioka (T2K) Long Baseline Neutrino Oscillation Experimental Proposal	Stage 2			neutrino
P13	T.Tamura	Tohoku U.	Gamma-ray spectroscopy of light hypernuclei	Stage 2	Day1	2	K1.8
P14	T. Yamanaka	Osaka University	Proposal for $K_{L} \rightarrow \pi^{0} v v$ -bar Experiment at J-PARC	Stage 2			КО
P15	M.Iwasaki, T.Nagae	RIKEN, KEK	A Search for deeply-bound kaonic nuclear states by in-flight 3He(K-, n) reaction	Stage 2	Day1		K1. 8BR
P16	S.Yokkaichi	RIKEN	Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD	Stage 1			High pt
P17	R. Hayano, H. Outa	U. Tokyo, RIKEN	Precision spectroscopy of Kaonic ³ He 3d->2p X-rays	Stage 2	Day1		K1.8BR
P18	H. Bhang, H. Outa, H. Park	SNU, RIKEN, KRISS	Coincidence Measurement of the Weak Decay of ¹² _A C and the three-body weak interaction process	Stage 1			K1.8
P19	M.Naruki	RIKEN	High-resolution Search for Θ^* Pentaguark in $\pi^*p \rightarrow K^*X$ Reactions	Stage 2	Day1		K1. 8
P21	Y. Kuno	Osaka U	An Experimental Search for μ - e Conversion at a Sensitivity of 10 ⁻¹⁶ with a Slow- Extracted Bunched Beam	Deferred			New beamline
P22	S. Ajimura, A.Sakaguchi	Osaka U	Exclusive Study on the Lambda-N Weak Interaction in A=4 Lambda-Hypernuclei (Revised from Initial P10)	Stage 1			K1.8
P23	A.D.Krisch	U. Michigan	Analyzing power An and Ann in 30-50GeV very-high-Pt2 proton-proton elastic scattering	Deferred			Primaly
P24	Y. Goto, H. Sato	RIKEN, KEK	Polarized proton acceleration at J-PARC	No decision			-

http://j-parc.jp/NuclPart/PACmeeting_0801_e.html

Summary of Experiments at the J-PARC 50-GeV PS

Strangeness Nuclear Physics
 Spectroscopic Studies of S=-2 hypernuclei (E03,E05,E07)
 Spectroscopic Studies of S=-1 hypernuclei (E10,E13,E18,E22)
 Spectroscopic Studies of Kaonic Nuclei (E15,E17)

✓ Hadron Physics

Spectroscopy of Exotic Hadrons (E19) Chiral Restoration of Mesons in Nuclear Medium (E16) Hadron Structure by DY process (P04,P23,P24)

✓ Kaon Rare Decay Physics

 $K^0 \rightarrow \pi^0 \ \overline{\nu\nu}$: CP violating process (E14)

Transverse μ -pol. in $K^+ \rightarrow \pi^0 \mu^+ \nu$: T violating process (E06)

✓ Lepton Flavor Violation

LFV $\mu^- \rightarrow e^-$ conversion process (P21)

✓ Neutrino Physics

T2K Exp.: long baseline $v_{\mu} \rightarrow v_{e}$ oscillation (E11)

June, 2008

Search for Physics Beyond SM in Kaon Decays

Experimental Search for Flavor Violating μ^2 -e⁻ conversion P21: Y. Kuno et al.

Overview of the New Experiment : COMET

Physics with High-Mass Dimuons at J-PARC KEK S. Sawada

P04: J.C. Peng, S. Sawada

Drell-Yan (at 50 GeV):

- $\overline{d} / \overline{u}$ flavor asymmetry at large x
- Antiquark distributions in nuclei
- Quark energy loss in nuclei
- J/Ψ Production (at 30 or 50 GeV):
- J/Ψ nuclear dependence
- $\overline{d} / \overline{u}$ via J / Ψ production

Spin physics with dimuons (mostly with polarized beam/target):

• Drell-Yan with polarized beam/target

(Sea-quark polarizations, transversity, Sivers function)

• J/Ψ with polarized beam/target

(Quark polarization, transversity, Sivers function)

• Unpolarized Drell-Yan decay angular distributions (Boer-Mulder's distribution function)

P24: Y. Goto, H. Sato

I larned...

Experimetal Topics related to J-PARC have been reported in the past SPIN2008:

Y. Goto introduced in 2006, "Spin physics of the J-PARC dimuon experiment" $\rightarrow P24$

N. Saito introduced

"J-PARC project: current status and future prospects"

So, this time:

Strangeness Nuclear Physics at J-PARC

Questions in Strangeness Nuclear Physics:

- Q: Can We Understand the "Nuclear Force" within SU_F(3)? Particularly, Can We Reveal the Short Range Part in the BB interaction? Do We Need Quark DoF?
- **Q**: Can We Understand the "*Nuclear Matter*" further more?
 - Particularly, What is going on in *Dense Nuclear Matter*? Is Neutron Star *Hyperon Star*? Is *Quark Star existing*? Strange Quark Matter?
- **Q**: How change the Hadron Property in Media?

related to *(partial)* Restoration of Chiral Symmetry, may reveal the mechanism of quark condensations.

Questions in Strangeness Nuclear Physics:

- Q: Can We Understand the "Nuclear Force" within SU_F(3)? Particularly, Can We Reveal the Short Range Part in the BB interaction? Do We Need Quark DoF?
- **Q** : Can We Understand the "*Nuclear Matter*" further more?

Particularly, What is going on in *Dense Nuclear Matter*? Is Neutron Star Hyperon Star? Is Quark Star existing? Strange Quark Matter?

Q: How change the Hadron Property in Media?

related to *(partial) Restoration of Chiral Symmetry*, may reveal the mechanism of quark condensations.

Lattice QCD reproduced Yukawa's Nuclear Force and demonstrated repulsive core in the NN potential!

Precision Hypernuclear Spectroscopic Data reveal *the Baryon-Baryon Interactions* in collaboration with Precision Theoretical Calculations

BB Interaction through Hypernuclear Spectroscopy
In ∧ hypernuclear system, the frameworks work very well, demonstrating that:

- Single-Particle Structure: $B_A \rightarrow U_A$ G-matrix concept: Good
- Spin-Spin, Spin-Orbit splitting: AN spin-dependent force
- \rightarrow BB Potential Models, reproducing Λ Single-Particle Potential *Precise Measurements make the Model more precise.*

	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Λ}	
ESC04a	-13.7	-20.5	0.6	0.2	0.5	-4.5	-1.0	-38.5	"OBEP based"
ESC04b	-13.3	-22.6	0.5	-0.0	0.6	-4.3	-1.1	-40.2	Th. A. Rijken and Y. Yamamoto
ESC04c	-13.9	-28.5	2.9	0.0	1.3	-6.5	-1.3	-46.0	Phys.Rev.C73:
ESC04d	-13.6	-26.6	3.2	-0.2	0.9	-6.4	-1.4	-44.1	044008,2006
NSC97e	-12.7	-25.5	2.1	0.5	3.2	-1.3	-1.2	-34.8	_
NSC97f	-14.3	-22.4	2.4	0.5	4.0	-0.7	-1.2	-31.8	" <mark>QM based</mark> " - Y. Fujiwara et al
fss2	-4.8	-28.4*	2.1#	-0.4		-5.7		-48.2	Prog.Part.Nucl.Phys.
		58:439, 2007 <i>k</i> ₅=1.35 fm ⁻¹							

BB Potential Models and Σ Single-Particle Potential in Nucl. Matt.

• U_{Σ} 's are to be repulsive. (E438 exp.)

OBEP based: to be improved.

QM: Strong repulsion due to the Quark Pauli Exclusion Effect in I=3/2, S=1

	Т	${}^{1}S_{0} {}^{3}S_{1} {}^{1}P_{1} {}^{3}P_{0} {}^{3}P_{1} {}^{3}P_{2} D U_{\Sigma}$	_
ESC04a	1/2	11.6 -26.9 2.4 2.7 -6.4 -2.0 -0.8	_
	3/2	-11.3 2.6 -6.8 -2.3 5.9 -5.1 -0.2 -36.5	
ESC04b	1/2	9.6 - 25.3 1.8 1.6 - 5.4 - 2.1 - 0.7	"OPED based"
	3/2	-9.6 9.9 -5.5 -1.9 5.4 -4.6 -0.2 -27.1	$- Th \ \Delta Rijken and$
ESC04c	1/2	6.4 - 20.6 2.4 2.9 - 6.7 - 1.6 - 0.9	Y. Yamamoto.
	3/2	-10.7 6.9 -8.8 -2.6 6.0 -5.8 -0.2 -33.2	Phys.Rev.C73:
ESC04d	1/2	6.5 - 21.0 2.6 2.4 - 6.7 - 1.7 - 0.9	044008,2006
	3/2	-10.1 14.0 -8.5 -2.6 5.9 -5.7 -0.2 -26.0	<i>k</i> _f =1.0 fm ⁻¹
NSC97f	1/2	$14.9 -8.3 2.1 2.5 \ -4.6 0.5 \ -0.5$	
	3/2	-12.4 -4.1 -4.1 -2.1 6.0 -2.8 -0.1 -12.9	
fss2	1/2	6.7 -23.9* -6.5# 2.9 -1.6	Y. Fuiiwara et al
	3/2	-9.2 41.2* 3.3 [#] -2.2 -2.5 7.5	Prog.Part.Nucl.Phys.
	-	$*{}^{3}S_{1}+{}^{3}D_{1}$ $*{}^{1}P_{1}+{}^{3}P_{1}$	58:439, 2007

 $k_f = 1.35 \text{ fm}^{-1}$

Demonstration of Repulsive U_{Σ} via the (π^-, K^+) reaction on Si

Exp. Data \rightarrow P. K. Saha, Phys. Rev. C70, 044613(2004)

Si DWIA calculation → T. Harada and Y. Hirabayashi, NPA759(2005)143

Do We Need Quark? S. Ajimura et al, PRL86, 4255(2001) T. Akikawa et al., PRL88, 082501(2002) Very Small SO splitting in Λ Hypernucei Large SO force in Σp Scattering: T. Kadowaki et al. Eur.P.J.A15:295(2002)

Strong Repulsive Σ-Nucleus Pot.: P.K.Saha et al.PRC70, 044613(2004)

→ Quark Pauli Exclusion Effect

Do We Need Quark?

Let's Exam. including S=-2 Sector at J-PARC!

Very Little Experimental Information is Available for S=-2.

Ξ-Hypernuclear Spectroscopy (E05)

U_{Ξ} and Partial Wave Contributions in Nuclear Matter (MeV)

Model	Т	¹ S ₀	³ S ₁	¹ P ₁	³ P ₀	³ P ₁	³ P ₂	U_{Ξ}	Γ_{Ξ}
NHC-D	0	-2.6	0.1	-2.1	-0.2	-0.7	-1.9		
	1	-3.2	-2.3	-3.0	-0.0	-3.1	-6.3	-25.2	0.9
Ehime	0	-0.9	-0.5	-1.0	0.3	-2.4	-0.7		
	1	-1.3	-8.6	-0.8	-0.4	-1.7	-4.2	-22.3	0.5
ESC04d*	0	6.3	-18.4	1.2	1.5	-1.3	-1.9		
	1	7.2	-1.7	-0.8	-0.5	-1.2	-2.8	-12.1	12.7

QM: fss2 \rightarrow -5.3

- ✓ OBE (NHC-D: M.M.Nagels et al., PRD12, 744(1975), Ehime: Nucl. Phys. A642:483(1998)) odd-state attraction strong A-dependence of U_z
- ✓ ESC04d*: Th. A. Rijken and Y. Yamamoto, PRC73,044008(2006) strong attraction of ³S₁(T=0)
- ✓ QM: Y. Fujiwara et al., NPA784,161(2007) strong Spin-Isospin dependence, S(I=1) repulsion (Quark-Pauli) → shallow U_{Ξ}

Separated Kaon Beam Line: K1.8

(Max. p=2 GeV/c, Total Length:45.853 m)

Baahn Ana Nazar & Skaftus devadindin aran Systam jen

Expected ¹²_ΞBe Spectrum

Neutron Number

Questions in Strangeness Nuclear Physics:

- Q: Can We Understand the "Nuclear Force" within SU_F(3)? Particularly, Can We Reveal the Short Range Part in the BB interaction? Do We Need Quark DoF?
- **Q**: Can We Understand the "*Nuclear Matter*" further more?
 - Particularly, What is going on in *Dense Nuclear Matter* ? Is Neutron Star Hyperon Star? → How is Quark Star/Strange Quark Matter existing?
- **Q**: How change the Hadron Property in Media?
 - related to *(partial) Restoration of Chiral Symmetry*, may reveal the mechanism of quark condensations.

Observed NS Masses No Heavier than 1.5xSolar Mass?

 $M_{\rm NS} < 1.44 M_{\odot}$

IF it is "Yes"...

The NS core is likely to a fraction of Hyperons.

from W. Weise, plenary talk in INPC07, 4/jun/2007

Neutron star

Role of the ΛN - ΣN coupling in Neutron Star Cores

S.Shinmura, K. S. Myint, T. Harada, and Y. Akaishi, J. Phys. G28(2002)L1

Single-particle Λ potential in neutron matter ($T=\infty$)

$\Lambda\Sigma$ Coherent Coupling Effect

Y. Akaishi et al.

First Observation of n-rich ${}^{10}_{\Lambda}$ Li via the (π^- ,K⁺) reaction at KEK-PS d σ /d Ω = 11.3±1.9 nb/sr at 1.2 GeV/c as small as ~1/1000 of (π^+ ,K⁺)

 \rightarrow the Λ state produces via Σ component through $\Lambda\Sigma$ coupling ?

Questions in Strangeness Nuclear Physics:

- Q: Can We Understand the "Nuclear Force" within SU_F(3)? Particularly, Can We Reveal the Short Range Part in the BB interaction? Do We Need Quark DoF?
- **Q** : Can We Understand the "Nuclear Matter" further more?
 - Particularly, What is going on in *Dense Nuclear Matter*? Is Neutron Star *Hyperon Star*? Is *Quark Star existing*? Strange Quark Matter?
- **Q**: How change the Hadron Property in Media?

related to *(partial)* Restoration of Chiral Symmetry, may reveal the mechanism of quark condensations.

Kaon in Nuclear Medium

Q: What is happen?

Deeply Bound K⁻-Nucleus System ?

Y. Akaishi & T. Yamazaki, Phys. Lett. B535 (2002) 70.

Structure of ppK-

T. Yamazaki & Y. Akaishi, Phys. Lett. <u>B535</u> (2002) 70.

KEK-PS E549実験(M. Iwasaki et al.)

Experimental Method

 $\mathbf{2}$

⁴He(K⁻ stopped, N)

CFRP vacuum PDC Vessel ⁴He target BLC T0 Pstart NC D Carbon degrader Pstop К T1 ÌС. Carbon degrader TC PDC ⁴He target Pstart κ (650 MeV/c) LC BLC T1 TO VDC 50cm

T. Kishimoto et al., PTP118(2007)181

Motivation : Two poles?

T. Hyodo: presented in SNP04

There are two poles of the scattering amplitude around nominal $\Lambda(1405)$ energy region.

- Cloudy bag model J. Fink, et al., PRC41, 2720
- Chiral unitary model

J. A. Oller, et al., PLB500, 263 E. Oset, et al., PLB527, 99 D. Jido, et al., PRC66, 025203 T. Hyodo, et al., PRC68, 018201 T. Hyodo, et al., PTP112, 73 C. Garcia-Recio, et al., PRD67, 076009 D. Jido, et al., NPA725, 181 T. Hyodo, et al., PRC68, 065203 C. Garcia-Recio, et al., PLB582, 49

Correlated quark model

A. Zhang, et al., hep-ph/0403210

ChU model, T. Hyodo

Evidence for the Two Pole structure of $\Lambda(1405)$!?

LEPS EXP. for $\gamma p \rightarrow K^+ \pi^- \Sigma^+$ or $\rightarrow K^+ \pi^+ \Sigma^-$:

M. Niiyama et al., arXiv:0805.4051v1 [hep-ex] 27 May 2008

Exp. to form S-Wave KN state and I=0 state in final state with low-E K- Beam at J-PARC

Electromagnetic Property of Hypernucleus

...provides

more detail/direct information on the dynamics of hadrons in nuclear medium.

The magnetic moment, μ , is described as

$$\mu = \langle \psi^*(m=J) | M_z | \psi(m=J) \rangle$$
$$M = \int \mathbf{r} \times \mathbf{j}(\mathbf{r}) d\mathbf{r}$$

j : represents the *current* distribution (of constituents) in the nucleus

M: magnetic dipole operator, *M*(M1)

Naive Picture: single-particle orbital motion + Intrinsic spin

 $M(M1) \sim \sum_{i}^{A} (g_{\ell}^{i} \ell_{i} + g_{s}^{i} s_{i})$ *i.e.* Schmidt value

Correction:

- medium modification by implication of Y core polarization
- exchange current (BB interaction in medium)
 ΛΣ coupling effect (Isospin≠0)
- hadron modification in medium

Approach to the Λ hypernuclear Magnetic Moment:

✓ Indirect measurement → τ , B(M1)

proposed by H. Tamura (Tohoku) et al.

• Doppler Shift Attenuation Method: B(M1)~|<f $|\mu_z|i>|^2~(g_C-g_A)^2$

γ-Weak Coincidence Method:

K. Tanida et al. PRL86, 1982(2001) c.f. $\tau^{-1} \sim B(E2) \sim 3.6 + 0.5^{+0.5}_{-0.4}$ [e²fm⁴] \rightarrow Q-moment $\sim < R^4 >$ ²⁵ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁷ ²⁷ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁷ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁶ ²⁷ ²⁷ ²⁶ ²⁶ ²⁷ ²⁶ ²⁷ ²⁶ ²⁶ ²⁶ ²⁷ ²⁷ ²⁶ ²⁶ ²⁶ ²⁷ ²⁷ ²⁶ ²⁶ ²⁷ ²⁷ ²⁶ ²⁶ ²⁶ ²⁷ ²⁷ ²⁶ ²⁷ ²⁷ ²⁷ ²⁶ ²⁷ ²⁷ ²⁶ ²⁶ ²⁷ ²⁷ ²⁷ ²⁷ ²⁷ ²⁷ ²⁷ ²⁶ ²⁷ ²⁰ ²⁰⁰ ²⁰⁰

Ey (keV)

Direct measurement

BH1

KT.8

Approach to the Λ hypernuclear Magnetic Moment:

Direct measurement : precession in Strong Magnetic Field

Hypernuclear Polarization:

Λ Pol. in (π^+ , K⁺) and (K⁻, π^-)

20

K. Itonaga, T. Motoba and M. Sotona

Phase Shift Analysis by K. Itonaga, T. Motoba, and M. Sotona PTPsuppl.117, 17(1994) Large Polarization is produced via the (π^+, K^+) reaction

Measured Pol. of ${}^{5}_{\Lambda}$ He produced via (π^{+} ,K⁺) on 6 Li

 $W(\theta)=1 + \alpha P_A \cos \theta$, $\alpha=-0.642(13)$

What a Intense Sencondary Beam is Produced!

Expected Beam Intensity for 50GeV-15 μ A proton beam on Ni-54mm BL-Length=50 m, Acceptance:2msr%

by Sanford-Wang

One Possible Solution to handle very high intensity beam is :

High Intensity, High Resolution Beam Line

for

High Statistics and High Precision Spectroscopic Studies on n-rich Λ hypernuclei

- Provide very intense pion beam of as high as 10⁹ Hz to overcome a small cross section, to use a thin target for a high resolution.
- Dispersive beam at the exp. target and
- Momentum Matching of the Beam Line w/ the Spectrometer
- Realize a High Resolution of dp/p=1/10,000.

× 100 higher Statistics× 10 higher resolution

Momentum Matching Beam line and Spectrometer System QQDQD **Beam Envelope** Dispersive beam Spectrometer 50cm Q D 2 2 Q QS 3 41 SQ Q 25 6 DQ MS1 DD D 0 Q 1 Ĩ $4 \ 4 \ 4$ 9ĩ 1 1¦X2 S⊦1S 6666 2 2 2 66 1 S 123 1 0 1 2 S 123456 789 0 23 4566 ΑB 1S ~12m С С v D т FCIOC Ι 0 С Ι 0 М F F POF1M F 1 Μ Α S L 2 1 L 1 Vertical A23 ES 7<mark>5</mark>m Om Ī Horizontal First Order/ to be improved 1 2 1 4 0 S Е Ρ 1 1 1 1 0 0 0 0 1 1 1 9 5 00 5 8 9 8 90 1 278 3 40 99 9 99 01 8 0 0 1 0 1 0 1 07 5 0 6 5 66 6 9 g 9 0 8 222 66 66 $\begin{array}{c} \cdot & \cdot \cdot \\ 2 & 27 \end{array}$ 66 2 3 2 13 3 2 5 9 076 8 0 б 396 82 4 0 0 04 1 4 1 1 4 1 0 06 20 0 068 4 2 6 0 7 9 58600010 402 6 0 1 0 0 01 084 85 2 0 21 00 8 11 0 07800454 4 5 4 50c

Extension of Hadron Hall

Fig. 1: An example of layout plan of High Intensity, High Resolution (HIHR) Beam Line connected to the T2 target in the extended Hadron Experimental Hall.

as a SUMMARY...

 J-PARC Beam will be coming soon (at the end of 2008). J-PARC is only a Kaon Factory in the world, which will provide a lot of Unique and Good opportunities to study Nuclear and Particle Physics.

 ✓ J-PARC has to be an International Facility. Particularly, It is important to form International Collaborations. →Hadron User's Association, founded March, 2007
 http://www.rcnp.osaka-u.ac.jp/~jparchua/en/index.html

 The Hadron Exp. Hall is to be extended to accommodate Many Forth-coming Future Physics Experiments.

Please Come and Join Us!