RåD for the next generation of gaseous photon detectors for Imaging Cherenkov Counters

Jarda Polak (INFN *Trieste* and TUL *Liberec*)

Today's generation of gaseous PD, their limitations and the way out

The R&D lab studies

Our plans for future

Photon Detectors used for RICHs belong to three categories:

Vacuum based PDs

- PMTS (SELEX, HERMES, BaBar)
- MAPMTs (HERA-B, COMPASS)
- Flat panels (various test beams, proposed for CBM)
- Hybride PMTs (LHCb)
- MCP-PMT (all the studies for the high time resolution applications)

Gaseous PDs

- Organic vapours: TMAE and TEA (DELPHI, OMEGA, SLD CRID, CLEO III)
- Solid photocathodes: Csl (HADES, COMPASS, ALICE, JLAB-HALL A, PHENIX)

Si PDs

Silicon PMs (first tests only recently)

Large sensitive areas -> gaseous PD (the only cost affordable solution)

- photoconverting vapours are no longer in use, a part CLEO III (rates ! time resolution !)
- the present is represented by MWPC (open geometry!) with Csl
 - the first prove (in experiments !) that coupling solid photocathodes and gaseous PRESENT detectors works

Csl ion

- Severe recovery time (~ 1 d) after detector trips
- Moderate gain: effective gain $\sim 10^4$
- Aging

The way to the future: ion blocking geometries

- GEM/THGEM allow for multistage detectors
 - With THGEMs: High overall gain ↔ pe det. efficiency!
 - Good ion blocking (up to IFB at a few % level)
 - MHSP: IFB at 10⁻⁴ level
- opening the way to:
 - Gaseous detectors with solid photocathodes for visible light
- First step in this direction: PHENIX HBD

PAS

FUTURE

ion feedback →

bombardment (

Limitations of recent generation - MWPC

Source of the problem: ion bombardment of photo-converting layer

1) Moderate gain

MWPCs with CsI photocathodes in COMPASS: beam off: stable operation up to > 2300 V beam on: stable operation only up to ~2000 V (in spill→ ph. flux: 0 - 50 kHz/cm², mip flux: ~1 kHz/cm²) Whenever a severe discharge happens, recovery takes ~1 day Similar behavior reported from JLAB Hall-A the time 10⁴

25/07/2008 - SPIN 2008 PRAHA

There is need of new technology

to overcome recent limits - fight ion bombardment and photon feedback

Possible solution - closed geometries

GEMs and THGEMs

Chechik et al. NIM A535 (2004) 303 C. Shalem et al. NIM A558 (2006) 475 & NIM A558 (2006) 468

25/07/2008 - SPIN 2008 PRAHA

F. Sauli, NIM A386(1997)531

MultiGEM's: ion blocking + high GAIN

Examples of ion blocking schemes from literature

- Similar schemes can be adopted with THGEM

25/07/2008 - SPIN 2008 PRAHA

500

100

1

1.5

2

2.5

Signal amplitude follows Polya distribution:

3.5

Why do we try with THGEMs and reflective photocathode?

No need of high space resolution (> 1 mm) Large area coverage (5.5 m² for COMPASS RICH)

- industrial production
- stiffness
- robust against discharge damages

For reflective photocathodes,

-no need to keep the window at a fixed potential ($2nm Cr \rightarrow -20\%$)

- -possibility of windowless geometry
- -higher effective QE (larger pe extraction probability)

→small photoconversion dead zones (<20%; GEM ~ 40%)

Large gain

goal: SINGLE PHOTON detection

EXAMPLES OF THGEMS

THGEM multipliers

= GEM like structure with expanded dimensions

Manufactured by **standard PCB techniques** of precise drilling (different materials) and Cu etching.

Example of THGEM 10⁵ gain in single-THGEM

0.1mm RIM: prevents discharges \rightarrow high gains!

Example of production..

ELTOS S.p.A. (Arezzo, Tuscany) http://www.eltos.it/en/main/en-main.htm

POSALUX ULTRASPEED 6000LZ 6-spindle-roboter

Small diameter holes → high rotation speed of the driller. Multi-spindle machines at ELTOS reach 180000 turns/min → hole diam. down to 150 µm. Nominal drilling tolerance: +- 10 µm

11/30

LAB STUDIES AT CERN AND TRIESTE

25/07/2008 - SPIN 2008 PRAHA

... also GEM's are not so stable ...

2007 IEEE Nuclear Science Symposium Conference Record

MP5-3

Understanding the gain characteristics of GEMs inside the Hadron Blind Detector in PHENIX.

W. Anderson, B. Azmoun, C.-Y. Chi, Z. Citron, A. Dubey, J. M. Durham, Z. Fraenkel, T.Hemmick, J. Kamin, A. Kozlov, A.Milov, M. Naglis, R. Pisani, I. Ravinovich, T. Sakaguchi , D. Sharma, A. Sickles, I. Tserruya, C. Woody

Fig. 11. Gain as a function of time after HV was on for 3 days. Red points are for a GEM stack comprised of GEMs produced in 2006; blue points are for a stack of 2007 GEMs.

Fig. 12. GEM holes viewed under a microscope. 2006 production GEMs are shown above; 2007 production GEMs are below.

2) Larger RIMs allow higher gains ...

2) but increasing THICKNESS does it too

3) Are THGEM devices for HIGH RATES ?

25/07/2008

Approaching our goal - detect UV photons...

CsI evaporation at CERN (A. Braem, C. David, M. van Stenis)

THGEM

protection box

... Cherenkov photons...

THE SMALL PROTOTYPE STRUCTURE

serivy

TEST BEAM SET-UP FOR SMALL PROTOTYPES

25/07/2008 - SPIN 2008 PRAHA

Short term plans:

- optimize the parameters of the THGEM with photoconverting Csl layer to achieve maximum photoelectron collection efficiency
- optimize the parameters for the (double) THGEM to be used for the amplification of the signal to provide large and stable gain
- produce a set 600 x 600 mm² THGEMs and assemble them with stesalite spacer frames into first complete "full size" prototype chamber
- **Possible medium term project:**
 - Upgrade of COMPASS RICH (~4m²) with the new photon detectors in case the COMPASS Collaboration decides for it.

Longer term dream:

- find a configuration to reduce the ion back-flow down to <10⁻⁵ and operate this large area detectors with visible photoconverter

...we're building full size prototype

There is hope to use these detectors for detection of visible photons

Conclusions

- A third generation of gaseous Photon Detectors for RICH applications, based on micropattern gas detectors, is expected to overcome the performance limits of MWPC's coupled with CsI photocathodes.
- THGEM seem to be very promising: they are stiff, robust and suitable for industrial production; they are expected to provide high gain, small dead areas and very good photoelectron collection efficiencies.
- An effort to characterize these novel detectors has started with the aim to optimize geometrical parameters, production procedures and working conditions for large area coverage.
- A full size 600 x 600 mm² prototype will be produced, assembled and tested in the incoming months.

Thanks to the help from many colleagues...

M. Alexeev^a, R. Birsa^b, F. Bradamante^c, A. Bressan^c, M. Chiosso^d, P. Ciliberti^c, G. Croci^e, M. Colantoni^f, S. Dalla Torre^b, S. Duarte Pinto^e, O. Denisov^f, V. Diaz^b, N. Dibiase^d, V. Duic^c, A. Ferrero^d, M. Finger^g, M. Finger Jr^g, H. Fischer^h,G. Giacominiⁱ,b, M. Giorgi^c, B. Gobbo^b, R. Hagemann^h, F. H. Heinsius^h, K. Königsmann^h, D. Kramer^j, S. Levorato^c, A. Maggiora^f, A. Martin^c, G. Menon^b, A. Mutter^h, F. Nerling^h, D. Panzieri^a, G. Pesaro^c, J. Polak^{b,j}, E. Rocco^d, L. Ropelewski^e, P. Schiavon^c, C. Schill^h, M. Slunecka^j, F. Sozzi^c, L. Steiger^j, M. Sulc^j, S. Takekawa^c, F. Tessarotto^b, H. Wollny^h

- a INFN, Sezione di Torino and University of East Piemonte, Alessandria, Italy
- b INFN, Sezione di Trieste, Trieste, Italy
- c INFN, Sezione di Trieste and University of Trieste, Trieste, Italy
- d INFN, Sezione di Torino and University of Torino, Torino, Italy
- e CERN, European Organization for Nuclear Research, Geneva, Switzerland
- f INFN, Sezione di Torino, Torino, Italy
- g Charles University, Prague, Czech Republic and JINR, Dubna, Russia
- h Universität Freiburg, Physikalisches Institut, Freiburg, Germany
- i University of Bari, Bari, Italy
- j Technical University of Liberec, Liberec, Czech Republic

Thank you

