

ASI-2008

PRAHA -2008

« SYMMETRY and SPIN »

Spin-flip amplitude in the impact parameter representation <u>Oleg V. Selyugin</u>

BLTPh,JINR

Introduction

- Structure of hadron elastic scattering amplitude
- Non-linear equations and saturation
- Basic properties of the unitarization schemes
- b-dependence of the phases
- Analysing power in different unitarization schemes

Summary

Total cross-section

Understand the asymptotic <u>behavior of σ_{tot}</u>

<u>Predictions</u> $\sqrt{s} = 14 TeV$

Model	σ_{tot}	$σ_{el}/σ_{τοτ}$	□ ☎ t =0)	B 1€t=0)
COMPET	111		0.11	
Marsel	103	0.28	0.12	19
Dubna	128	0.33	0.19	21.
Pomer.(s+h)	150	0.29	0.24	21.4
Serpukhov	230	0.67		

Pomerons

$$\frac{1}{2}^{+} + \frac{1}{2}^{+} \rightarrow \frac{1}{2}^{+} + \frac{1}{2}^{+};$$

$$\begin{split} M(s,t) &= T_{1}(s,t)\overline{u}(p_{2})u(p_{1})\overline{u}(k_{2})u(k_{1}) \\ &+ T_{2}(s,t)\overline{u}(p_{2})\gamma K u(p_{1})\overline{u}(k_{2})\gamma P u(k_{1}) \\ &+ T_{3}(s,t)\overline{u}(p_{2})\gamma_{5}(\gamma K)u(p_{1})\overline{u}(k_{2}^{\gamma_{5}})\gamma_{5}(\gamma P)u(k_{1}) \\ &+ T_{4}(s,t)\overline{u}(p_{2})\gamma_{5}u(p_{1})\overline{u}(k_{2})\gamma_{5}u(k_{1}) \\ &+ T_{5}(s,t)[\overline{u}(p_{2})(\gamma K)u(p_{1})\overline{u}(k_{2})u(k_{1}) + \overline{u}(p_{2})u(p_{1})\overline{u}(k_{2})(\gamma P)u(k_{1})] \\ &+ T_{6}(s,t)[\overline{u}(p_{2})(\gamma K)u(p_{1})\overline{u}(k_{2})u(k_{1}) - \overline{u}(p_{2})u(p_{1})\overline{u}(k_{2})(\gamma P)u(k_{1})] \\ &+ T_{7}(s,t)\overline{u}(p_{2})\gamma_{5}u(p_{1})\overline{u}(k_{2})\gamma_{5}(\gamma P)u(k_{1}) \\ &+ T_{8}(s,t)\overline{u}(p_{2})\gamma_{5}(\gamma K)u(p_{1})\overline{u}(k_{2})\gamma_{5}u(k_{1}) \quad ; \end{split}$$

Regge limit

for fixed **t**

The crossing matrix factorized in the limit $s \to \infty$;

the Regge-pole contributions to the helicity amplitudes in the s-chanel

$$\Phi^{B}_{\lambda_{3}\lambda_{4}\lambda_{1}\lambda_{2}}(s,t) = \sum_{i} g^{i}_{\lambda_{3}\lambda_{1}} g^{i}_{\lambda_{4}\lambda_{2}} \left[\sqrt{-t}\right]^{|\lambda_{3}-\lambda_{1}|+|\lambda_{4}-\lambda_{2}|} \left(\frac{s}{s_{0}}\right)^{\alpha_{i}} \left(1 \pm \exp\left[-i\pi\alpha_{i}\right]\right)$$
$$\Phi^{B}_{++--}(s,t) = \Phi^{B}_{+--+}(s,t) \to 0$$

when exchanged Regge poles have natural parity $\Phi^{B}_{++++}(s,t) = \Phi^{B}_{+-+-}(s,t).$

Impact parameter representation

$$M(s,t) = \frac{ip}{2\pi} \int_0^\infty \Gamma(s,b) \ e^{-i\vec{q}\vec{b}} \ d^2b$$

$$M(s,t) = \frac{1}{2\pi} \int_0^\infty b J_0(bq) \Gamma(s,b) db$$

Unitarity in impact parameter representation

 $S S^+ = 1$

$$\begin{split} \operatorname{Im} &< p_{1}, p_{2}, out \mid T \mid p_{1}, p_{2}, in > = \frac{(2\pi)^{4}}{2} \sum_{\gamma} d\gamma \, \delta(\sum_{1}^{2} p_{r} - (\sum_{1}^{n} q_{r}) \mid T_{\gamma \alpha} \mid^{2} \\ T(s, t) &= is \int_{0}^{\infty} b \, db \, J_{0}(bq) \, \Gamma(b, s) \\ \left| \Gamma(s, b) \right| \leq 1; \end{split}$$

 $\operatorname{Im}\Gamma(s,b) = |\operatorname{Im}\Gamma(s,b)|^2 + |\operatorname{Re}\Gamma(s,b)|^2 + g_{inel}$

Saturation bound

$$T(s,t) = \frac{1}{2\pi} \int_0^\infty b \ J_0(bq) \ [1 - e^{-\chi(s,b)}] db$$

$$\chi(s,b) = 2\pi \int_0^\infty q \ J_0(bq) \ M_B(s,q) dq$$

$$\chi(s,b) = -\frac{1}{2k} \int_{-\infty}^{\infty} dz V \left[\sqrt{z^2 + b^2}\right]$$

Non-linear equation (K-matrix)

$$N[y] = \Gamma(s,0);$$

$$\frac{dN}{dy} = \Delta N(1-N); \qquad y = \ln(s/s_0);$$

$$N[y] = \frac{s^{\Delta y} f(b)}{1+s^{\Delta y} f(b)};$$

$$N[y] = \frac{i \chi(s,b)}{1+\chi(s,b)}; \qquad \Gamma(s,b) = \frac{K(s,b)}{1-i K(s,b)};$$

Non-linear equation (eikonal)

$$\frac{dN}{dy} = (-Ln[1-N]) (1-N);$$

 $N(s,b)=1-\exp[i\chi(s,b)];$

Eikonal and K-matrix

13

Eikonal and K-matrix

Interpolating form of unitarization

 $G(s,b) = 1 - (1 + \chi(s,b)/\gamma)^{-\gamma};$ $\gamma = 1; \qquad G(s,b) = 1 - \frac{1}{(1 + \chi(s,b))} = \frac{\chi(s,b)}{1 + \chi(s,b)};$ $\gamma \to \infty; \qquad G(s,b) = 1 - Exp(-\chi(s,b);$

$$\frac{dN}{dy} = \gamma (1 - [1 - N]^{1/\gamma}) (1 - N);$$

Normalization and forms of unitarization

$$\begin{aligned} \sigma_{tot}(s) &= 8\pi \int_{0}^{\infty} b \, db \frac{1}{2} \left(1 - \exp[-\chi(s,b)] \right) & \chi(s,b) = 2 \, \delta(s,b); \\ \sigma_{tot}(s) &= 4\pi \int_{0}^{\infty} b \, db \, \left(1 - \exp[-\chi(s,b)] \right) & \\ \sigma_{tot}(s) &= 8\pi \int_{0}^{\infty} b \, db \, \frac{U(s,b)}{1 + U(s,b)}; & \\ U(s,b) &= \delta(s,b) = \chi(s,b)/2; \\ \sigma_{tot}(s) &= 4\pi \int_{0}^{\infty} b \, db \, \frac{\chi(s,b)}{1 + \chi(s,b)/2}; \end{aligned}$$

<u>Low energies</u> $\chi_{eik}(s,b) = \chi_{U-m}(s,b) = F_{Born}(s,t);$

Inelastic cross sections

eikonal

$$\sigma^{eik}_{inel}(s) = 2\pi \int_{0}^{\infty} b \, db \, (1 - \exp[-2\chi(s,b)])$$

U-matrix

$$\frac{dN_u}{dy} = \Delta N_u \left(1 - N_n / c_u\right); \qquad c_u = 2;$$

$$\sigma^{U-m}_{inel}(s) = 2\pi \int_{0}^{\infty} b \, db \, \frac{\chi(s,b)}{(1+\chi(s,b)/2)^{2}};$$

$$\frac{\sigma_{el}(s)}{\sigma_{tot}(s)} \to 1;$$

Asymptotic features of unitarization schemes

Low energies

 $G_{eik}(s,b) \Box \chi(s,b);$ $G_{U-m}(s,b) \Box \chi(s,b);$

High energies

$$G_{eik}(s,b \le b_{sat}) = 1;$$

$$G_{U-m}(s,b \leq b_{sat}) = 2;$$

Effect of antishadowing

S. Troshin (hep-ph/0701241 v4 June 4

« Black Disk Limit is a direct consequence of the exponential unitarization with an extra assumption on the pure imaginary nature of the phase shift »

Renormalized eikonal

$$\sigma_{tot}(s) = 8\pi \int_{0}^{\infty} b \, db \, (1 - \exp[-\delta(s, b)])$$

$$\sigma_{inel}(s) = 8\pi \int_{0}^{\infty} b \, db \, e^{-\delta(s, b)} \, (1 - e^{-\delta(s, b)}) \qquad \frac{\sigma_{el}(s)}{\sigma_{tot}(s)} \to 1;$$

14 TeV

Corresponding phases

$$f_{l}(s) = \frac{i}{2}(1 - \sqrt{1 - 4\eta_{l}(s)}), \quad |f_{l}| \le \frac{1}{2}$$
$$f_{l}(s) = \frac{i}{2}(1 + \sqrt{1 - 4\eta_{l}(s)}), \quad \frac{1}{2} \le |f_{l}| \le 1.$$

$$\chi_{U-m}(s,b) = 2 \tanh\{\frac{1}{2}\chi_{eik}(s,b)\};$$

$$\chi_{eik}(s,b) = \log\{\frac{1+\chi_{U-m}(s,b)/2}{1-\chi_{U-m}(s,b)/2}\};$$

Renormalization of the U-matrix \rightarrow K-matrix

$$S = \frac{1 - \chi(s,b)/2}{1 + \chi(s,b)/2}; \qquad G(s,b) = 1 - S = \frac{\chi(s,b)}{1 + \chi(s,b)/2};$$

$$S = \frac{1}{1 + \chi(s,b)}; \qquad G(s,b) = 1 - S = \frac{\chi(s,b)}{1 + \chi(s,b)};$$

$$\sigma_{tot}(s) = 4\pi \int_{0}^{\infty} b \, db \, \frac{\chi(s,b)}{1+\chi(s,b)};$$

$$G_{inel}(s,b) = \frac{\chi^{2}(s,b) + \chi(s,b)/2}{(1+\chi(s,b))^{2}} \qquad \frac{\sigma_{el}(s)}{\sigma_{tot}(s)} = \frac{1}{2};$$

$\frac{RHIC \ beams + internal \ targets \equiv}{fixed \ target \ mode}$ $\frac{\sqrt{s} \sim 14 \ GeV}{}$

$$\frac{d \sigma}{d t} = \pi |e^{i\alpha \varphi} F_C(t) + F_N(s,t)|^2$$

$$A_{N} \frac{d\sigma}{dt} = \frac{4\pi}{s^{2}} \operatorname{Im} [F_{nfl} F_{fl}^{*}]$$

$$A_N \frac{d\sigma}{dt} = \frac{4\pi}{s^2} |F_{nfl}||F_{fl}^*|\sin(\varphi_1 - \varphi_2)$$

$$M(s,t) = \frac{ip}{2\pi} \int_0^\infty \Gamma(s,b) \ e^{-i\vec{q}\vec{b}} \ d^2b$$

$$T(s,t) = \frac{1}{2\pi} \int_0^\infty b J_0(bq) \left[1 - e^{-\hat{\chi}(s,b)}\right] db$$

$$\widehat{\chi}(s,b) = \chi_c(s,b) - i\chi_{LS}(s,b)(\sigma_1 + \sigma_2) \bullet (b \times \widehat{l})$$

Eikonal case

$$F_{nf}(s,t) = ip \int_0^\infty b \ J_0(bq) \ [1 - e^{-\chi_c(s,b)}] db$$

$$F_{sf}(s,t) = p \int_0^\infty b^2 J_1(bq) \chi_{LS} e^{-\chi_c(s,b)} db$$

$$F^{B}_{\lambda_{3}\lambda_{4}\lambda_{1}\lambda_{2}}(p,q) = U_{\lambda_{3}\lambda_{4}\lambda_{1}\lambda_{2}}(p,q) + i\frac{\pi}{8}\sum_{\lambda'\lambda''}d\Omega_{\hat{k}}U_{\lambda_{3}\lambda_{4}\lambda'\lambda''}(p,k)F^{B}_{\lambda_{3}\lambda_{4}\lambda'\lambda''}(k,q)$$

$$\Gamma_{1}(s,b) = \frac{(u_{1} + u_{1}^{2} - u_{2}^{2})(1 + u_{3} + u_{4}) - 2(1 + 2u_{1} - 2u_{2})u_{5}^{2}}{(1 + u_{1} - u_{2})(1 + u_{1} + u_{2})(1 + u_{3} + u_{4}) - 4u_{5}^{2}}$$
$$\approx \frac{u_{1}}{1 + u_{1}};$$

$$\Gamma_5(s,b) = \frac{u_5}{(1+u_1+u_2)(1+u_3+u_4)-4u_5^2} \approx \frac{u_5}{(1+u_1)^2};$$

$$F_{sf}(s,t) = p \int_0^\infty b^2 J_1(bq) \frac{u_5}{(1+u_1)^2} db$$

<u>K-matrix</u>

$$\Gamma(s,b) = \frac{\chi_c + \sigma \chi_{sf}}{(1 + \chi_c + \sigma \chi_{sf})} = 1 - \frac{1}{(1 + \chi_c + \sigma \chi_{sf})} = 1 - \frac{(1 + \chi_c) - \sigma \chi_{sf}}{(1 + \chi_c)^2 - (\sigma \chi_{sf})^2}$$
$$= \frac{\chi_c}{1 + \chi_c} + \sigma \frac{\chi_{sf}}{(1 + \chi_c)^2};$$
$$\underbrace{U-matrix}$$

$$\Gamma(s,b) = \frac{\chi_c + \sigma \chi_{sf}}{(1 + \chi_c/2 + \sigma \chi_{sf}/2)} = \frac{\chi_c}{1 + \chi_c/2} + \sigma \frac{\chi_{sf}}{(1 + \chi_c/2)^2};$$

<u>29</u>

$$\underline{A}_{\underline{N}} - eikonal$$
$$\Gamma_{+}^{Eik}(s,b) = (1 - \exp[-\chi_{nf}(s,b)])$$

$$\Gamma_{-}^{Eik}(s,b) = \chi_{sf}(s,b) \exp[-\chi_{nf}(s,b)])$$

<u>30</u>

$$\underline{A}_{\underline{N}} - eikonal$$

 $\Gamma^{Eik}_{+}(s,b) = (1 - \exp[-\chi_{nf}(s,b)])$

$$\Gamma_{-}^{Eik}(s,b) = \chi_{sf} \exp[-\chi_{nf}(s,b)])$$

<u>31</u>

$$\underline{A}_{\underline{N}} - \underline{Born \ term}$$
$$\Gamma^{Born}_{+}(s,b) = \chi_{nf}(s,b)$$

$$\Gamma_{-}^{Born}(s,b) = \chi_{sf}(s,b)$$

$$\underline{A}_{\underline{N}} - \underline{K} - \underline{M} - \underline{K} -$$

$$\Gamma_{-}^{K-m}(s,b) = \frac{\chi_{sf}(s,b)}{(1+\chi_{nf}(s,b))^{2}}$$

$$\Gamma_{+}^{K-m}(s,b) = \frac{\chi_{nf}(s,b)}{1+\chi_{nf}(s,b)}$$

_

$$\Gamma_{-}^{K-m}(s,b) = \frac{\chi_{sf}(s,b)}{(1+\chi_{nf}(s,b))^2}$$

$$\sqrt{s} = 500 \ GeV;$$

$$\frac{A_{N} - U_{T} - matrix}{\Gamma_{+}^{U-m}(s,b)} = \frac{\chi_{nf}(s,b)}{1 + \chi_{nf}(s,b)/2}$$

$$\int_{V}^{70} \int_{1}^{70} \int_{0}^{70} \int$$

$$\underline{A}_{\underline{N}} - \underline{U}_{\underline{T}} - \underline{matrix}$$

$$\Gamma^{U-m}_{+}(s,b) = \frac{\chi_{nf}(s,b)}{1 + \chi_{nf}(s,b)/2}$$

$$\sqrt{s} = 50 \; GeV;$$

$$\Gamma_{-}^{U-m}(s,b) = \frac{\chi_{sf}(s,b)}{(1+\chi_{nf}(s,b)/2)^2}$$

<u>36</u>
$$\chi_{U-m}(s,b) = 2 \tanh\{\frac{1}{2}\chi_{eik}(s,b)\};$$

$$\chi_{U-m}(s,b) = 2 \frac{e^{\chi_{eik}(s,b)/2} - e^{-\chi_{eik}(s,b)/2}}{e^{\chi_{eik}(s,b)/2} + e^{-\chi_{eik}(s,b)/2}};$$

$$\sqrt{s} = 50 \; GeV;$$

$$\underline{A}_{\underline{N}} - \underline{U}_{\underline{T}} - \underline{matrix} \quad (New fit of \chi_{nf}^{fit}(s, b) from \frac{d\sigma}{dt}$$

$$\Gamma_{+}^{U-m}(s,b) = \frac{\chi_{nf}^{fit}(s,b)}{1 + \chi_{nf}^{fit}(s,b)/2}$$

$$\Gamma_{-}^{U-m}(s,b) = \frac{\chi_{sf}(s,b)}{\left(1 + \chi_{nf}^{fit}(s,b)/2\right)^2} \qquad \chi_{nf}^{fit}(s,b) \neq \chi_{nf}^{Born}(s,b);$$

<u>38</u>

Summary

Unitarization effects is very important for the description spin correlation parameters at RHIC

Non-linear equations correspond to the different forms of the unitarization schemes. They can have the same asymptotic regime.

 An interpolating form of unitarization can reproduce both the eikonal and the K-matrix (extended U-matrix) unitarization

Summary

 The true form of the unitarization, which is still to be determined, can help to determine the form of the non-linear equation, which describes the non-perturbative processes at high energies.

END

The experiments on proton elastic scattering occupy

an important place in the research program at the LHC.

It is very likely that BDL regime will be reached at LHC energies. will be reflected in the behavior of B(t) and ρ (t). lt

Double Spin Correlation parameter

$$A_{NN} = \frac{\sigma^{\uparrow\uparrow+\downarrow\downarrow} - \sigma^{\uparrow\downarrow+\downarrow\uparrow}}{\sigma^{\uparrow\uparrow+\downarrow\downarrow} + \sigma^{\uparrow\downarrow+\downarrow\uparrow}}$$

$$A_{NN}(s,t)\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \left\{ 2|\phi_5|^2 + \text{Re}\left(\phi_1^*\phi_2 - \phi_3^*\phi_4\right) \right\}$$

 $\frac{essentially \ 1 \ free \ parameter:}{momentum \ transfer \ t} = (p_3 - p_1)^2 = (p_4 - p_2)^2 < 0$ $+ center \ of \ mass \ energy \ s = (p_1 + p_2)^2 = (p_3 - p_4)^2$

+ azimuthal angle φ if polarized !

 \Rightarrow elastic pp kinematics fully constrained by recoil proton only !

СПИН 05

Alessandro Bravar

Complex eikonal and unitarity bound

 $G(s,b) = (1 - \exp[-Y(s,b) + i X(s,b)])$

Some A_N measurements in the CNI

Spin correlation parameter - A_N

 $\underline{A}_{N}^{beam}(t) = \underline{A}_{N}^{target}(t)$

for elastic scattering only!

 $\underline{P_{beam}} = \underline{P_{target}} \cdot \underline{\varepsilon_B} / \underline{\varepsilon_T}$

Soft and hard Pomeron

<u>Donnachie-Landshoff model;</u> <u>Schuler-Sjostrand model</u>

$$T(s,t) = [h_1(\frac{s}{s_0})^{\Delta_1} e^{\alpha_1 t \ln(s/s_0)} + h_2(\frac{s}{s_0})^{\Delta_2} e^{\alpha_2 t \ln(s/s_0)}] F^2(t)$$

Such form of U-matrix does not have the BDL regime

<u>49</u>

Corresponding phases

$$\chi_{eik}(s,b) = log \{1 + \chi_{U-m}(s,b)\};$$

$$\chi_{U-m}(s,b) = e^{\chi(s,b)} \{1 - e^{-\chi_{eik}(s,b)}\};$$

Radius of the saturation

$$R^{2}(s) \Box 4[R_{0}Ln(\frac{h}{2B}) + [R_{0} + \frac{\alpha'}{\Delta}Ln(\frac{h}{2(d + \Delta Ln(s))})]\Delta Ln(s) + \Delta \alpha' Ln^{2}(s)]$$

Low s
$$R^2(s) \Box Ln(s);$$

 $s \rightarrow \infty$ $R^2(s) \Box Ln^2(s).$

soft IPomeron $\alpha' \Delta = 0.1 * 0.3 = 0.03$

hard IPomeron $\alpha' \Delta = 0.4 * 0.1 = 0.04$

$$2 \operatorname{Im} \Gamma(s,b) - |\operatorname{Im} \Gamma(s,b)|^{2} + |\operatorname{Re} \Gamma(s,b)|^{2} = g_{in} > 0$$

$$g_{in} < 1$$

$$\Gamma(s,b) = i [1 - (1 - g_{in}) \exp(i\Phi)]$$

$$\Gamma(s,b) = i [1 - \exp(-\Omega + i\Phi)]$$

$$\Gamma(s,b) = 1 - \exp[i \chi(s,b)]$$

$$= 1 - \exp[-\operatorname{Re} \Omega(s,b)][\cos(\Omega) - i \sin(\Omega)]$$

CONTRACTOR OF THE OWNER OWNER

 $\frac{momentum transfer t = (p_3 - p_1)^2 = (p_4 - p_2)^2 < 0}{p_1 + center of mass energy}$ $\frac{s = (p_1 + p_2)^2 = (p_3 - p_4)^2}{p_1 + azimuthal angle \varphi if}$

 $\frac{\Rightarrow elastic \ pp \ kinematics \ fully}{constrained \ by \ recoil \ proton}$ $\frac{only}{constrained}$

Soft and hard Pomeron

×

Donnachie-Landshoff model; Schuler-Sjostrand model Cudell-Lengyel-Martynov-Selyugin

$$T(s,t) = [h_1(\frac{s}{s_0})^{\Delta_1} e^{\alpha_1 t \ln(s/s_0)} + h_2(\frac{s}{s_0})^{\Delta_2} e^{\alpha_2 t \ln(s/s_0)}] F^2(t)$$

$$\frac{dN}{dy} = \chi \ Exp[-\chi];$$

Corresponding phases 2

56

Extended forms of the unitarization

Ter-Martirosyan-Kaidalov

$$\sigma_{tot}(s) = 8\pi \int_{0}^{\infty} b \, db \frac{1}{2C} \left(1 - \exp[-2C\,\delta(s,b)]\right) \qquad C \approx 1.2;$$

Giffon-Martynov-Predazzi

$$\sigma_{tot}(s) = 8\pi \int_{0}^{\infty} b \, db \frac{1}{2C} \left(1 - \exp[-2C\delta(s,b)]\right) \qquad C \ge \frac{1}{2};$$

$$\sigma_{tot}(s) = 8\pi \int_{0}^{\infty} b \, db \frac{\delta(s,b)}{1 + 2C\delta(s,b)}; \qquad G(n) = C^{n-1} \qquad \underline{eikonal} \qquad G(n) = n!C^{n-1} \qquad \underline{U-matrix} \qquad C \ge \frac{1}{2};$$

Interpolating form of unitarization

Elastic scattering amplitude

Impact parameter representation and unitarization schemes

$$T(s,t) = is \int_{0}^{\infty} b \, db \, J_{0}(bq) \, \Gamma(b,s)$$
$$T(s,t) = is \int_{0}^{\infty} b \, db \, J_{0}(bq) \, (1 - \exp[i \, \chi(s,b)])$$

$$T(s,t) = is \int_{0}^{\infty} b \, db \, J_0(bq) \, \frac{U(s,b)}{1 - iU(s,b)};$$

General form of Unitarization

$$\Gamma(s,b) = \frac{1}{n} [1 - \exp(-n \chi(s,b))];$$

$$\Gamma_n(s,b) = \frac{1}{n} [1 - \frac{1}{(1 + \chi(s,b))^n}]$$

 $\Gamma_{\lambda}(s,b) = 1 - \left[1 + \frac{\chi(s,b)}{\lambda}\right]^{-\lambda}$

 $\begin{array}{ll} \lambda \to \infty & \underline{eikonal} \\ \lambda \to 1 & \underline{K-matrix} \end{array}$

<u>Ter-Martirosyan, Kaidalov</u> <u>Desgrolard, Martynov</u>

Miettinen, Thomas

$$\Phi_{\lambda_{3}\lambda_{4}\lambda_{1}\lambda_{2}}^{B}(s,b) = U_{\lambda_{3}\lambda_{4}\lambda_{1}\lambda_{2}}(s,b) + i\rho(s)\sum_{\mu,\nu} g_{\lambda_{3}\lambda_{4}}^{i} g_{\lambda_{4}\lambda_{2}}^{i} \left[\sqrt{-t}\right]^{\lambda_{3}-\lambda_{1}|+|\lambda_{1}-\lambda_{2}|} \left(\frac{s}{s_{0}}\right)^{\alpha_{i}} (1 \pm \exp[-i\pi\alpha_{i}])$$

$$N[y] = \frac{i\chi(s,b)}{1+\chi(s,b)};$$

$$N = \frac{0.1 \ s^{0.4} \ Exp[(b/3)^{2}]}{1+0.1 \ s^{0.4} \ Exp[(b/3)^{2}]}$$

$$N = 1 - Exp[-0.1 \ s^{\Delta} \ Exp[(b/3)^{2}]]$$

$$\int_{0}^{z} x^{-1.3} (1-x)^{-1.3} \ Exp[x^{-1.3} (1-x)^{-1.3}] dx$$

<u>62</u>

$$F(s,t) = \Phi_1(s,t) + \Phi_3(t)$$
$$= F_N(s,t) + F_C(t) e^{i\alpha\varphi}$$

$$F_C(t) = \pm 2\alpha G^2(t) / |t|$$

$$B(s,t) = \frac{d}{dt} \left(\ln \frac{d\sigma}{dt}(s,t) \right),$$

$$\rho(s,t) = \frac{\operatorname{Re} F_N(s,t)}{\operatorname{Im} F_N(s,t)};$$

 $\sigma_{tot}(s) = 4\pi \operatorname{Im} F(s,t)$

Eikonal

$$\Gamma(s,b) = i/2\{1 - Exp(-b Exp[-\Delta i\pi/2])\}$$

$$= \frac{i}{2}\{1 - Exp[-b \cos[\Delta \pi/2]] * [\cos(b \sin(\Delta \pi/2)) + i \sin(b \sin(\Delta \pi/2))]$$

Impact parameters dependence

$$T(s,t) = is \int_{0}^{\infty} b \, db \, J_{0}(bq) \, (1 - \exp[i \, \chi(s,b)])$$

The Froissart bound

$$\sigma_{tot}(s) \le a \, \log^2(s)$$

Factorization

$$\chi(s,b) = h(s) f(b); \qquad h(s) \square s^{\Delta}$$

Corresponding phases

Bound on the region of validity of the U-matrix phase

U-matrix

$$\Gamma(s,b) = \frac{i}{2}b \exp[-\Delta \pi i/2]/(1+b \exp[-\Delta \pi i/2)] =$$
$$= \frac{i}{2}\{1 - \frac{1}{1+b^2 + 2b \cos[\Delta \pi/2]}(1+b \cos[\Delta \pi/2] + ib \sin(\Delta \pi/2)]\}$$

67

TANGH

$$\frac{dN}{dy} = N^2 \left(1 - N^2\right);$$

 $\Gamma(s,b) = Tanh[\chi(s,b)]$

Total cross sections at the LHC

69

The p parameter

linked to σ_{tot} via dispersion relations

sensitive to σ_{tot} beyond the energy

at which is measured

predictions of σ_{tot} beyond LHC energies

Or, are dispersion relations still valid at LHC energies?

<u>2 last combination don't satisfied</u> <u>the cgarge invariants and change</u> <u>signe of time</u> <u>If all particles are the same the</u> <u>amplitude do not changes with</u> <u>Change 31632 on л16л2 and P->K</u> <u>K->P</u> <u>So the 6 cobination also</u> <u>disappear.</u>

Saturation of the Gluon dencity

$$xG(x) = x^{-\Delta} (1-x)^{-\Delta}$$

$$\frac{dN}{dx} = \chi \ Exp[-\chi];$$

Interpolating form of unitarization

Interpolating form of unitarization

74

$$\underline{A}_{\underline{N}} - \underline{U}_{\underline{T}} - \underline{matrix}$$

$$\Gamma^{U-m}_{+}(s,b) = \frac{\chi^{fit}_{nf}(s,b)}{1 + \chi^{fit}_{nf}(s,b)/2}$$

$$\Gamma_{-}^{U-m}(s,b) = \frac{\chi_{sf}(s,b)}{(1+\chi_{nf}^{fit}(s,b)/2)^2}$$

<u>75</u>

The nuclear slope parameter b

 \Box t-region of 10⁻² ÷ 10⁻¹ GeV²

The b parameter is sensitive to the exchange process

■Its measurement will allow to understand the QCD based models of hadronic interactions

□"Old" language : shrinkage of the forward peak
 ■b(s) ∝ 2 α' log s ; where α' is the slope of the Pomeron trajectory ≈ 0.25 GeV²

■Not simple exponential - t-dependence of local slope

Structure of small oscillations?

77

An-UfT

<u>AN UmTei</u>

<u>78</u>

Non-linear equations

eikonal

$$\frac{dN}{dy} = (-\log[1-N]) (1-N);$$

$$N = 1 - exp[-0.1s^{\Delta}]$$

$$N(y) = \Gamma(s, b_{fix})$$

U-matrix

$$\frac{dN}{dy} = N(1-N);$$
$$N = \frac{0.1 \ s^{\Delta}}{1+0.1 \ s^{\Delta}}$$