Meson Spectroscopy and Search for Spin-Exotic States at COMPASS

Quirin Weitzel for the COMPASS Collaboration

Physik-Department E18 Technische Universität München

24th Advanced Studies Institute - Symmetries and Spin Prague, July 24, 2008

* Supported by:

BMBF, Excellence Cluster Universe and Maier-Leibnitz-Labor der TU und LMU München

Bundesministerium für Bildung und Forschung

2 Event Selection and Data Sample

3 Partial Wave Analysis

4 Results from PWA

Introduction

Motivation: Mesons and Spin-Exotic States

Quark Model:

- Color-neutral $q\bar{q}$ systems
- Quantum numbers $I^G J^{PC}$
- $P = (-1)^{L+1}$
- $C = (-1)^{L+S}$
- $G = (-1)^{I+L+S}$

QCD: additional color-neutral objects

- Tetraquarks (qq̄)(qq̄)
- Hybrids (qq)g
- Glueballs gg

Mixing of states with same $I^G J^{PC}$

Search for spin-exotic states:

• 0⁺⁻, 1⁻⁺, 2⁺⁻,...,

Meson Production from Diffractive Pion Dissociation

- Diffraction: incident particle only grazes the target, which remains intact
 ⇒ strong interaction, Pomeron exchange
- Dissociation: beam pion is excited to some resonance X⁻, which further decays
 ⇒ e.g. π⁻Pb ⇒ X⁻Pb ⇒ π⁻π⁻π⁺Pb

Pion quantum numbers:
$$I^G J^{PC} = 1^- 0^{-+}$$

 I^{G} conservation $\Rightarrow J^{PC}(X) = 0^{-+}, 1^{++}, 1^{-+}, 2^{++}, 2^{-+}, \dots,$

Rich meson spectrum accessible and possibly spin-exotic states

Q. Weitzel (TUM E18)

1⁻⁺ Light-Hybrid Candidates: $\pi_1(1400)$ and $\pi_1(1600)$

Positive evidences for $\pi_1(1600)$ in $\pi^-\pi^-\pi^+$:

S. U. Chung et al., Phys. Rev. D65, 072001 (2002)

Y. Khokhlov, Nucl. Phys. A663, 596 (2000)

Counterstatements from both experiments! \Rightarrow controversial situation

Overview

Overview 2 Types of Beam COmmon Muon and Proton Apparatus • Muons: $4 \cdot 10^7 s^{-1}$ for Structure and Spectroscopy ● Hadrons: 2.10⁷s⁻¹ Located at CERN's SPS 160-190 GeV Fixed-target experiment ۲ Two-stage magnetic spectrometer Data taking since 2002 MuonWall SM2 E/HCAL E/HCA SM1 MuonWall Target 50m RICH

Q. Weitzel (TUM E18)

Event Selection and Data Sample

Event Signature and Selection

• $a: 190 \text{ GeV } \pi^- \text{ beam}, \quad b(d): \text{target(recoil)}, \quad c \to 3\pi$

• Momentum transfer: -t, scattering angle: θ (~ mrad in LAB!)

Selection Criteria

- Diffractive trigger
- Primary vertex in target with 3 outgoing particles (--+)
- Exclusivity assumption: target stays intact
- COMPASS 2004: ~ 4 000 000 3π events on Pb (few days of running), ~ 400 000 events with $0.1 < t' < 1.0 \text{ GeV}^2/c^2$

Momentum Transfer Distributions

Momentum transfer from target: $-t = -(p_{\text{beam}} - p_{(\pi^-\pi^-\pi^+)})^2$ $\Rightarrow t' = |t| - |t|_{min}$

Diffraction pattern: Pb nucleus acts like "black disc" in optics

High-t': scattering on single nucleons inside Pb nucleus

Q. Weitzel (TUM E18)

Mesons and Spin-Exotic States at COMPASS

$\pi^{-}\pi^{-}\pi^{+}$ Mass Distributions and Acceptance

$\pi^{-}\pi^{-}\pi^{+}$ Mass Distributions and Acceptance

Mesons and Spin-Exotic States at COMPASS

Q. Weitzel (TUM E18)

Partial Wave Analysis

Overview of Partial Wave Analysis (high-t')

- Isobar model assumed
- Zemach formalism, reflectivity basis
- Reggeon exchange
- Partial wave: J^{PC} M^e[isobar]L
- Nucleon target \Rightarrow rank 2
- Program: Illinois \rightarrow Dubna \rightarrow Protvino \rightarrow Munich, (D. Ryabchikov)
- Mass-independent PWA ($40 \text{ MeV}/c^2$ mass bins): 42 waves
 - Extended log-likelihood method (Ascoli/Kachaev fitter)
 - Acceptance corrections included
 - $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$ from PDG, $(\pi\pi)_s$ with separated $f_0(980)$ from VES
 - Multiple solutions $(\Delta \ln L \leq 1)$ added as additional error
- Mass-dependent χ^2 -fit: 7 waves
 - X parameterized by Breit-Wigner (BW) functions
 - Coherent background added for some waves: $\exp(-lpha p^2)$

Partial Wave Set for Mass-Indep. Fit (42 Waves)

$J^{PC}M^{\epsilon}$	L	Isobar π	Cut [GeV]	PC			
0-+0+	S	foπ	1.40	$J' \in M^{\epsilon}$	L	Isobar π	Cut [GeV]
$0^{-+}0^{+}$	S	$(\pi\pi)_{e}\pi$	-	$2^{++}1^{+}$	Р	$f_2\pi$	1.50
0-+0+	P	$\rho\pi$	-	$2^{++}1^{+}$	D	$ ho\pi$	-
1-+1+	Р	$\rho\pi$	-	3++0+	S	$ ho_3\pi$	1.50
1++0+	S	$\rho\pi$	-	3++0+	Р	$f_2\pi$	1.20
$1^{++}0^{+}$	Р	$f_{2}\pi$	1.20	3++0+	D	$\rho\pi$	1.50
$1^{++}0^{+}$	Р	$(\pi\pi)_{c}\pi$	0.84	$3^{++}1^{+}$	S	$ ho_3\pi$	1.50
$1^{++}0^{+}$	D	0π	1.30	$3^{++}1^{+}$	Р	$f_2\pi$	1.20
$1^{++}1^{+}$	S	$\rho\pi$	_	$3^{++}1^{+}$	D	$\rho\pi$	1.50
$1^{++}1^{+}$	Р	f>π	1.40	$4^{-+}0^{+}$	F	$\rho\pi$	1.20
$1^{++}1^{+}$	Р	$(\pi\pi)_{s}\pi$	1.40	$4^{-+}1^{+}$	F	$ ho\pi$	1.20
$1^{++}1^{+}$	D	$\rho\pi$	1.40	4++1+	F	$f_2\pi$	1.60
2-+0+	S	$f_2\pi$	1.20	$4^{++}1^{+}$	G	$ ho\pi$	1.64
$2^{-+}0^{+}$	Р	$\rho\pi$	0.80	$1^{-+}0^{-}$	Р	$\rho\pi$	-
$2^{-+}0^{+}$	D	$f_2\pi$	1.50	$1^{-+}1^{-}$	Р	$ ho\pi$	-
$2^{-+}0^{+}$	D	$(\pi\pi)_s\pi$	0.80	$1^{++}1^{-}$	S	$\rho\pi$	-
$2^{-+}0^{+}$	F	$\rho\pi$	1.20	$2^{-+}1^{-}$	S	$f_2\pi$	1.20
$2^{-+}1^{+}$	S	$f_2\pi$	1.20	$2^{++}0^{-}$	Р	$f_2\pi$	1.30
$2^{-+}1^{+}$	Р	$ ho\pi$	0.80	$2^{++}0^{-}$	D	$ ho\pi$	-
$2^{-+}1^{+}$	D	$f_2\pi$	1.50	$2^{++}1^{-}$	Р	$f_2\pi$	1.30
$2^{-+}1^{+}$	D	$(\pi\pi)_s\pi$	1.20	FLAT			
$2^{-+}1^{+}$	F	$\rho\pi$	1.20		I	I	I

Partial Waves used in Mass-Dep. Fit (7 Waves)

$J^{PC}M^{\epsilon}$	L	Isobar π	Cut [GeV]
0-+0+	S	$f_0\pi$	1.40
$0^{-+}0^{+}$	S	$(\pi\pi)_s\pi$	-
$0^{-+}0^{+}$	P	$ ho\pi$	-
$1^{-+}1^{+}$	Ρ	$ ho\pi$	-
$1^{++}0^{+}$	S	$ ho\pi$	-
$1^{++}0^{+}$	P	$f_2\pi$	1.20
$1^{++}0^{+}$	P	$(\pi\pi)_s\pi$	0.84
$1^{++}0^{+}$	D	$ ho\pi$	1.30
$1^{++}1^{+}$	S	$ ho\pi$	-
$1^{++}1^{+}$	P	$f_2\pi$	1.40
$1^{++}1^{+}$	P	$(\pi\pi)_s\pi$	1.40
$1^{++}1^{+}$	D	$ ho\pi$	1.40
$2^{-+}0^{+}$	S	$f_2\pi$	1.20
$2^{-+}0^{+}$	P	$ ho\pi$	0.80
$2^{-+}0^{+}$	D	$f_2\pi$	1.50
$2^{-+}0^{+}$	D	$(\pi\pi)_s\pi$	0.80
$2^{-+}0^{+}$	F	$ ho\pi$	1.20
$2^{-+}1^{+}$	S	$f_2\pi$	1.20
$2^{-+}1^{+}$	P	$ ho\pi$	0.80
$2^{-+}1^{+}$	D	$f_2\pi$	1.50
$2^{-+}1^{+}$	D	$(\pi\pi)_s\pi$	1.20
$2^{-+}1^{+}$	F	$ ho\pi$	1.20

$J^{PC}M^{\epsilon}$	L	Isobar π	Cut [GeV]
$2^{++}1^{+}$	Р	$f_2\pi$	1.50
$2^{++}1^{+}$	D	$ ho\pi$	-
3++0+	S	$\rho_3\pi$	1.50
$3^{++}0^{+}$	P	$f_2\pi$	1.20
$3^{++}0^{+}$	D	$ ho\pi$	1.50
$3^{++}1^{+}$	S	$ ho_3\pi$	1.50
$3^{++}1^{+}$	P	$f_2\pi$	1.20
$3^{++}1^{+}$	D	$ ho\pi$	1.50
4-+0+	F	$\rho\pi$	1.20
$4^{-+}1^{+}$	F	$ ho\pi$	1.20
$4^{++}1^{+}$	F	$f_2\pi$	1.60
4++1+	G	$ ho\pi$	1.64
1-+0-	Р	$\rho\pi$	-
$1^{-+}1^{-}$	P	$ ho\pi$	-
$1^{++}1^{-}$	S	$ ho\pi$	-
$2^{-+}1^{-}$	S	$f_2\pi$	1.20
$2^{++}0^{-}$	P	$f_2\pi$	1.30
$2^{++}0^{-}$	D	$ ho\pi$	-
$2^{++}1^{-}$	P	$f_2\pi$	1.30
FLAT			

Results from PWA

 $1^{++}0^+
ho\pi S$ and $2^{-+}0^+f_2\pi S$

- BW for $a_1(1260)$ + background: $M = (1.256 \pm 0.006 \stackrel{+0.007}{-0.017}) \text{ GeV}$ $\Gamma = (0.366 \pm 0.009 \stackrel{+0.028}{-0.025}) \text{ GeV}$
- BW for $\pi_2(1670)$: $M = (1.659 \pm 0.003 \stackrel{+0.024}{-0.008}) \text{ GeV}$ $\Gamma = (0.271 \pm 0.009 \stackrel{+0.022}{-0.024}) \text{ GeV}$

$2^{++}1^+ ho\pi D$

- Two Breit-Wigners needed to describe $2^{++}1^+\rho\pi D$ phase motion: BW1 for $a_2(1320)$ + BW2 for $a_2(1700)$
- $M = (1.321 \pm 0.001 \stackrel{+0.000}{_{-0.007}}) \,\text{GeV}, \qquad \Gamma = (0.110 \pm 0.002 \stackrel{+0.002}{_{-0.015}}) \,\text{GeV}$
- $a_2(1700)$ parameters fixed to PDG values: M = 1.732 GeV, $\Gamma = 0.194$ GeV

• Constant width Breit-Wigner used for $a_4(2040)$ (no branching ratios known) • $M = (1.884 \pm 0.013 \stackrel{+0.050}{_{-0.002}}) \text{ GeV}, \qquad \Gamma = (0.295 \pm 0.024 \stackrel{+0.046}{_{-0.019}}) \text{ GeV}$

• Constant width Breit-Wigner for $\pi(1800)$ and low-mass background • $M = (1.785 \pm 0.009 \stackrel{+0.012}{_{-0.006}}) \text{ GeV}, \quad \Gamma = (0.208 \pm 0.022 \stackrel{+0.021}{_{-0.037}}) \text{ GeV}$

Exotic $1^{-+}1^+\rho\pi P$ Wave

- $\bullet\,$ Significant 1^{-+} amplitude consistent with resonance at $\sim 1.6\,\text{GeV}$
- No leakage observed
- BW for $\pi_1(1600)$ + background: $M = (1.660 \pm 0.010 \stackrel{+0.000}{-0.064}) \text{ GeV}$ $\Gamma = (0.269 \pm 0.021 \stackrel{+0.042}{-0.064}) \text{ GeV}$

Summary of Results and Comparison to PDG: Masses

Summary of Results and Comparison to PDG: Widths

Summary and Outlook

- \bullet COMPASS 2004 pilot run using a 190 GeV π^- beam
 - Diffractive dissociation on lead targets exploited for meson production
 - $\sim 4\,000\,000$ events recorded within a few days of data taking
 - Large range in momentum transfer t' covered $(10^{-3}$ -few GeV $^2/c^2)$
 - Excellent acceptance for diffractive $\pi^-\pi^-\pi^+$ events (~ 55-60%)
- Partial wave analysis has been performed on \sim 400 000 $\pi^-\pi^-\pi^+$ events with 0.1 < t' < 1.0 GeV²/ c^2
 - Dominant $a_1(1260)$, $a_2(1320)$ and $\pi_2(1670)$ states resolved
 - Also small, well-known resonances $\pi(1800)$ and $a_4(2040)$ can be fitted
 - Spin-exotic 1^{-+} state observed both in intensity and phase motion \Rightarrow consistent with $\pi_1(1600)$ resonance
- Analysis of low-t' data from COMPASS 2004 will be performed
- COMPASS will resume data taking with hadron beams this summer
 - Change-over to liquid hydrogen target
 - Much more high-t' statistics will be collected

Backup Slides: COMPASS Acceptance for $\pi^-\pi^-\pi^+$ Events

Q. Weitzel (TUM E18)

Mesons and Spin-Exotic States at COMPASS

Backup Slides: Important PWA Formulas

Mass-Independent Cross-Section and Spin Density Matrix

$$\sigma_{\mathsf{indep}}(au) = \sum_{\epsilon} \sum_{r} \left| \sum_{i} T^{\epsilon}_{ir} \psi^{\epsilon}_{i}(au) \Big/ \sqrt{\int |\psi^{\epsilon}_{i}(au')|^2 \mathsf{d} au'} \right|^2 \quad, \quad
ho^{\epsilon}_{ij} = \sum_{r} T^{\epsilon}_{ir} T^{\epsilon*}_{jr}$$

- ϵ : reflectivity, r: rank of density matrix, *i*: different partial waves
- T: complex production amplitudes (fit parameters!)
- ψ : complex decay amplitudes
- τ : phase space coordinates (5 parameters for 3-body decay)

Likelihood Function

$$\ln L = \sum_{n} \ln \sigma_{\text{indep}}(\tau_n) - \int \sigma_{\text{indep}}(\tau') \mathsf{Acc}(\tau') \mathsf{d}\tau'$$

• n: analyzed events, Acc: Acceptance

Mass-Dependent Fit

$$\rho_{ij}^{\epsilon} = \sum_{r} \left(\sum_{k} C_{ikr}^{\epsilon} \mathsf{BW}_{k}(m) \sqrt{\int |\psi_{i}^{\epsilon}(\tau)|^{2} \mathrm{d}\tau} \right) \left(\sum_{l} C_{jlr}^{\epsilon} \mathsf{BW}_{l}(m) \sqrt{\int |\psi_{j}^{\epsilon}(\tau)|^{2} \mathrm{d}\tau} \right)^{*}$$

Backup Slides: Spin Totals

Backup Slides: M = 0 and M = 1 Spin Totals

Q. Weitzel (TUM E18)

Mesons and Spin-Exotic States at COMPASS

SPIN-PRAHA08, July 2008 28 / 29

State	(GeV)	$COMPASS \pm stat \pm syst$	PDG
$a_1(1260)$	М	$1.256 \pm 0.006 + 0.007 \text{ - } 0.017$	1.230 ± 0.040
	Г	$0.366 \pm 0.009 + 0.028 - 0.025$	0.250 to 0.600
$a_2(1320)$	М	$1.321 \pm 0.001 + 0.000$ - 0.007	1.3183 ± 0.0006
	Г	$0.110\pm0.002+0.002-0.015$	0.107 ± 0.005
$\pi_1(1600)$	М	$1.660 \pm 0.010 + 0.000$ - 0.064	$1.653^{+0.018}_{-0.015}$
	Г	$0.269 \pm 0.021 + 0.042 - 0.064$	$0.225^{+0.045}_{-0.028}$
$\pi_2(1670)$	М	$1.659 \pm 0.003 + 0.024 - 0.008$	1.6724 ± 0.0032
	Г	$0.271 \pm 0.009 + 0.022 - 0.024$	0.259 ± 0.009
$\pi(1800)$	М	$1.785 \pm 0.009 + 0.012$ - 0.006	1.812 ± 0.014
	Г	$0.208 \pm 0.022 + 0.021 - 0.037$	0.207 ± 0.013
$a_4(2040)$	М	$1.884 \pm 0.013 + 0.050$ - 0.002	2.001 ± 0.010
	Г	$0.295 \pm 0.024 + 0.046 - 0.019$	0.313 ± 0.031

Phys. Rev. D65, 072001, 2002

Backup Slides: BNL-E852 Comparison (proton target)

Physical Review D, Volume 65, 072001, 2002

Q. Weitzel (TUM E18)