Study of nuclear excitations via proton inelastic scattering and related topics at RCNP

A. Tamii
Research Center for Nuclear Physics, Osaka University

Yomeimon Gate at Toshogu Temple in Nikko, Japan in 17th century

The gate looks fully symmetric. But...

There is intentional error in the symmetry. Why?

People were afraid that God did not like a perfect work made by human-being.

It seems that God likes symmetry breaking...

This is the part in my talk related to symmetries. The rest of my talk is related to spin, nuclear spin excitations.

Outline

- Overview of the RCNP cyclotron facility
- High resolution proton inelastic scattering experiment at zero degrees
- Summary

RCNP Cyclotron Facility

Beam line polarimeters for pol. measurement

Ion Sources

- Polarized p/d Ion Source pol. ~ 70\%
- Neomafios
light ions
- 18GHz SC ECRIS
heavy ions

Grand Raiden \& Large Acceptance Spectrometer (LAS) (high-resolution and/or coincidence measurements)

- elastic/inelastic scattering: (p,p’), (d,d'), (α, α^{\prime}), ...
- charge exchange reactions: (${ }^{3} \mathrm{He}, \mathrm{t}$), ($\left.{ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be}\right), \ldots$
- transfer/pick-up reactions: (p,d), (p,t), (d, ${ }^{3} \mathrm{He}$), ...
- coincidence measurements: (p,pp), (p,pd), ...

100m n-TOF course

Experiments with unstable nuclei

- High-spin shape isomer search HPGe array
(11 HPGe’s, 25-35\% thick)
- magnetic moment of unstable nuclei (β-NMR)
A. Odahara, T. Shimoda, et al.
K. Matsuta, et al.

High-Resolution Proton Inelastic-Scattering experiment at zero degrees

RCNP, Osaka University
A. Tamii, H. Matsubara, T. Adachi, K. Fujita, H. Hashimoto, K. Hatanaka, Y. Tameshige and M. Yosoi

Dep. of Phys., Osaka University
Y. Fujita

Dep. of Phys., Kyoto University
H. Sakaguchi and J. Zenihiro

CNS, Univ. of Tokyo
T. Kawabata, K. Nakanishi,
Y. Shimizu and Y. Sasamoto

CYRIC, Tohoku University
M. Itoh and Y. Sakemi

Dep. of Phys., Kyushu University
M. Dozono

Dep. of Phys., Niigata University
Y. Shimbara

KVI, Univ. of Groningen
L.A. Popescu

IFIC-CSIC, Univ. of Valencia
B. Rubio and A.B. Perez-Cerdan

Sch. of Science Univ. of Witwatersrand J. Carter and H. Fujita
iThemba LABS
F.D. Smit

IKP, TU-Darmstadt
P. von Neumann-Cosel, A. Richter,
I. Poltoratska, V. Ponomarev
and K. Zimmer

Experimental Setup

Spectrometers in the 0-deg. experiment setup

Grand Raiden in the 0deg Measurement Setup

Spectrometers in the 0-deg. experiment setup

Representative Specta

Inelastic Scattering from ${ }^{12} \mathrm{C}$

DWBA calc.
Cohen Kurath Wave Function
Franey Love Effective Interaction

The angular distributions are well reproduced by the DWBA calculations for both $\mathrm{T}=0$ and $\mathrm{T}=1$.

Physics Motivations

Motivations

1. M1 excitation: $0^{+} \rightarrow 1^{+}$ strength distribution and quenching for each $T=0$ and $T=1$ excitation over the sd-shell region

G.M. Crawley et al.,PRC39(1989)311
(3. Fragmentation of the excitation strengths: giant resonances and M1 exciations)

${ }^{48} \mathrm{Ca}\left(p, p^{\prime}\right)$ at IUCF at 0 deg., Y. Fujita et al.

Isoscalar and Isovector M1 strengths in the sd-shell region

Quenching of the GT strengths

Gamow-Teller (GT) quenching problem:
The observed GT strengths are systematically smaller the sum-rule value.
GT sum rule : $S_{\beta^{-}}-S_{\beta^{+}}=3(N-Z)$

Quenching Factor

$$
Q \equiv \frac{\text { Strength(exp.) }}{\text { Strength(theory) }}
$$

By sophisticated measurements and analysis of (p, n) and (n, p) reactions $50 \rightarrow 90 \%$ of the strength was observed in 90 Zr upto $\mathrm{E}_{x}=50 \mathrm{MeV}$
T. Wakasa et al., PRC55(1997)2909 K. Yako et al., PLB615(2005)193

2 quenching schemes:

- Mixing of multi-particle multi-hole states
- Mixing of Δ-hole states
\longleftarrow dominant contribution

M1 excitations and analogous excitations

Isovector ($\Delta \mathrm{T}=1$) M1 excitation is analogous to GT.
\Rightarrow Similar quenching is expected Isoscalar ($\Delta \mathrm{T}=0$) M1 excitation: Δ-h mixing does not take place
\Rightarrow Is there any difference between isoscalar and isovector excitations?
IS: Isoscalar $\Delta T=0 \quad \sigma$
IV: Isovector $\Delta T=1 \quad \sigma \tau$

Study of isoscalar/isovector M1 excitations over the sd-shell region

For all the $\mathrm{N}=\mathrm{Z}$ even-even stable targets: (isoscalar/isovector excitations do not mix to each other)

$$
{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S},{ }^{36} \mathrm{Ar},{ }^{40} \mathrm{Ca}
$$

${ }^{16} \mathrm{O}$: Ice target $\left(\mathrm{H}_{2} \mathrm{O}\right)$
${ }^{32}$ S: Cooled target (for preventing sublimation)
${ }^{36} \mathrm{Ar}$: Gas target
${ }^{20} \mathrm{Ne}$: Cooled gas target

Cooled target system

- $\mathrm{H}_{2} \mathrm{O},{ }^{32} \mathrm{~S}$

Cooled by liq. N2
T. Kawabata et al., NIMA 459 (2001) 171.

$10 \mathrm{mg} / \mathrm{cm}^{\wedge} 2$

Cooled gas target system

- Applicable for high-res. exp. ($<30 \mathrm{keV}$ at $<6 \mathrm{deg}$)
- Cooled by liq. N_{2}
- Gas recycling system

Inelastic Scattering from ${ }^{28} \mathrm{Si}$ at 0 degrees

Angular Distribution of IS and IV 1^{+}excitations

DWBA calculation
Trans. density : A. Willis et al., PRC 43(1991)5 (by OXBASH in sd shell only) NN interaction. : Franey and Love, PRC31(1985)488. (325 MeV data) Optical potential : K. Lin, M.Sc. thesis., Simon Fraser U. 1986.

Analyzed by H. Matsubara

From angular distribution, isospin value is identified.

Other states identified as 1^{+}

Strength distribution

preliminary

shell model calculation:
OXBASH + USD interaction

M1 strength in ${ }^{28} \mathrm{Si}$

Cumulative Sum

preliminary

Followings should be checked more carefully.

- $\mathrm{B}(\sigma)$ is determined from $\mathrm{d} \sigma / \mathrm{d} \Omega(\mathrm{q}=0)$

$$
\text { Quenching Factor }=\frac{\Sigma B(\sigma)_{\text {exp }}}{\Sigma B(\sigma)_{\text {shell-model }}}
$$ relying on the eff. interaction and DWIA calculation.

-Bare g-factor is used in the S.M. calculation.

Quenching factor for isovector M1 excitations

 (very preliminary)

Theory: OXBASH USD, sd-shell, Ohw, free-g-factor

Missing M1 strength in ${ }^{208} \mathrm{~Pb}$

Prediction of the M1 strengths in ${ }^{208} \mathrm{~Pb}$ with $1 p-1 h$ basis

$1 p-1 h$ excited states of protons $\mid \pi\left\{h_{9 / 2}-h_{11 / 2}{ }^{-1}\right\}>$ and neutrons $\mid v\left\{i_{11 / 2}-i_{13 / 2}{ }^{-1}\right\}>$ strongly couples to each other due to

- spin-orbit splittings of p and n orbits are similar
- orbital angular momentum l's are similar and yield
- a lower-lying state at $\sim 5.4 \mathrm{MeV}$ with $\mathrm{B}(\mathrm{M} 1) \sim 1 \mu_{N}^{2}$
- a higher-lying state at $\sim 7.5 \mathrm{MeV}$ with $\mathrm{B}(\mathrm{M} 1) \sim 50 \mu_{N}{ }^{2}$
in Tamm-Dancoff approximation.

J.D. Vergados, Phys. Lett. 36B (1971) 12.

Bohr and Mottelson, Nuclear Structure vol II (1975)636.

Fragmentation of the M1 strengths in ${ }^{208} \mathrm{~Pb}$

The low-lying strength is considered to be exhausted by a state located at 5.846 MeV . observed by (p,p’) S.I. Hayakawa et al., PRL49(1982)1624, (e,e’), and (d,d’).

The higher-lying strength is fragmented into many tiny states by mechanisms:

- core-polarization or g.s. correlation
- coupling to $2 \mathrm{p}-2 \mathrm{~h}$ states
- coupling to Δ-h states
- meson exchange current

Experimentally, only a strength of $\sim 10 \mu_{N}{ }^{2}$ has been observed (until 1988) comparing with theoretical

calc. by Lee and Pittel PRC11(1975)607. predictions of $\sim 10 \mu_{N}{ }^{2}$.
\rightarrow "Missing M1 strength in ${ }^{208} \mathrm{~Pb}$ "

Prediction of the M1 strengths in ${ }^{208} \mathrm{~Pb}$

Many theoretical works have been done for reproducing the observed M1 strengths

- spreading by the coupling to $2 p-2 h$ states: 20% of reduction
- ground state correlation:
20% of reduction
- coupling to Δ-h states and MEC:
20% of reduction

If all these mechanisms additively contribute, "the best that be expected from theoretical predictions is $20 \mu_{N}{ }^{2 "}$
I.S. Towner, Phys. Rep 155 (1987) 263.

Search for M1 strengths by experiments

Experimentally many reactions have been used to observe the M1 strengths:
${ }^{208} \mathrm{~Pb}(\vec{\gamma}, \gamma),{ }^{208} \mathrm{~Pb}(\gamma, \vec{n}),{ }^{207} \mathrm{~Pb}(n, n),{ }^{207} \mathrm{~Pb}(n, \gamma)$,
${ }^{208} \mathrm{~Pb}\left(e, e^{\prime}\right)$, and ${ }^{208} \mathrm{~Pb}\left(p, p^{\prime}\right)$

In 1988, R.M. Laszewsky et al. have identified $8.8 \mu_{N}{ }^{2}$ below Sn by a ${ }^{208} \mathrm{~Pb}(\vec{\gamma}, \gamma)$ measurement. In total the higher-lying strength became $15.6 \mu_{N}{ }^{2}$ which came closer to the "best" (smallest) theoretical prediction of $20 \mu_{N}{ }^{2}$.

The search for M1 strengths in ${ }^{208} \mathrm{~Pb}$ over a large Ex range is important to experimentally determine the M1 strengths and their E_{x} distribution.

R.M. Laszewski et al, PRL61(1988)1710

Grand Raiden in the 0deg Measurement Setup

- ΔS can be model-independently extracted by measuring polarization transfer coefficients at 0° (ΔS decomposition of the strengths)

$$
2 D_{N N}+D_{L L}=\left\{\begin{aligned}
-1 \text { for } \Delta S=1 & \text { M1 } \\
3 \text { for } \Delta S=0 & \text { E1 }
\end{aligned}\right.
$$

- E1 and M1 strengths can be decomposed
D_{NN} data have been taken.
D_{LL} measurement is scheduled in this year.

In the present stage, we need an assumption ($\mathrm{D}_{\mathrm{NN}}=-0.24$ for M 1) for the decomposition.

Summary

- High-resolution (p, p^{\prime}) measurements at forward angles including zero degrees are established and are extensively performed.
${ }^{12} \mathrm{C}$, sd-shell region, ${ }^{48} \mathrm{Ca},{ }^{58} \mathrm{Ni},{ }^{208} \mathrm{~Pb}$
- A lot of high-quality data are coming soon.

Thank you!

Fragmentation of Excitation Strengths

Fine Structure of the Gamow-Teller Resonances

The GT strength in ${ }^{58} \mathrm{Cu}$ has been resolved into many fragmented narrow peaks with widths of ~ 100 keV .

How can the

- fragmentation
- peak width
be explained by theories?

Fine structure of the GDR in ${ }^{28} \mathrm{Si}$

$$
\Delta \mathrm{J} \pi=1 ; \Delta \mathrm{T}=1
$$

- $(\gamma, a b s)$,

gamma absorption data: H. Harada et al., J. Nucl. Sci. Tech38_465(2001).

Fine structure of the GDR in ${ }^{28} \mathrm{Si}$

Similar GDR fine structures are observed by different probes

$$
\Delta \mathrm{J} \pi=1 ; \Delta \mathrm{T}=1
$$

gamma absorption data: H. Harada et al., J. Nucl. Sci. Tech38_465(2001).
(p, p^{\prime}) data: from E249 at RCNP, H. Matsubara et al.
28Si: $S_{p}=11.6 \mathrm{MeV}, S_{n}=17.2 \mathrm{MeV}$
(p, p ') at 0deg RCNP-E299

Strength distribution

preliminary

shell model calculation:
OXBASH + USD interaction

Exponential Slope of the B(σ) Strength Distribution

Data: RCNP-E249
Calc: OXBASH, sd-shell, 0hw

The property of fragmentation can be compared with theoretical calculations?

Backup Slides

Beam Tuning

- Beam energy spread was checked by ${ }^{197} \mathrm{Au}\left(p, p_{0}\right)$ elastic scattering in the achromatic transport mode
$40-60 \mathrm{keV}$ (FWHM) at $E_{p}=295 \mathrm{MeV}$
It corresponds to a beam spot size of 3~5 mm on target in the dispersive transport mode.
- Halo free beam tuning at 0 deg. (achro. beam)

Single turn extraction of the AVF cyclotron

- Tuning of dispersion matching
$20 \mathrm{keV}(\mathrm{FWHM})$ at $E_{p}=295 \mathrm{MeV}$
It takes ~ 2 days for the beam tuning.

Beam spot in the dispersive mode

Background Subtraction

Vertical positions projected at the vertical focal plane were calculated.

Linear shape of the background in the Y position spectrum was assumed.

Background subtraction was applied by gating the Y position with true+b.g. and b.g. gates.

The background shape is well reproduced by this method.

Research Center for Nuclear Physics (RCNP)

proton beam $E_{p}=295 \mathrm{MeV}$

Animation by T. Wakasa

GT Strength $\mathrm{B}(\mathrm{GT})$ and Its Quenching

- GTGR :Predicted in 1963 by Ikeda, Fujii, Fujita (\leftarrow Core Pol.)
- Discovered in 1975
- Systematic Studies in 1980s at IUCF
- GT strength $B(G T)$ and $\sigma\left(0^{\circ}\right)$ of (p, n)
$-\sigma\left(0^{\circ}\right) \propto \mathrm{B}(\mathrm{GT})$ (Proportionality)
- GT sum-rule
- $\mathrm{S}_{\beta-}-\mathrm{S}_{\beta+}=3(\mathrm{~N}-\mathrm{Z})$

Quenching Factor
$Q \equiv \frac{S_{\beta^{-}}-S_{\beta^{+}}}{3(N-Z)}$

C. Gaarde, NP A396, 127c(1983)

Results of MDA for ${ }^{90} \mathrm{Zr}(\mathrm{p}, \mathrm{n}) \&(\mathrm{n}, \mathrm{p})$ at 300 MeV

- Multipole Decomposition (MD) Analyses
- (p, n)/(n,p) data have been analyzed with the same MD technique
- (p, n) data have been re-analyzed up to 70 MeV
- Results
- (p,n)
- Almost L=0 for GTGR region
(No Background)
- Fairly large L=0 (GT) strength up to 50 MeV excitation
- (n, p)

- $\mathrm{L}=0$ strength up to 30 MeV

Reconstruction of scattering angles (sieve-slit analysis)

\leftarrow
a sieve-slit was placed
at the entrance of GR

$$
\begin{aligned}
& B=+1.0 \%, X_{\mathrm{fp}}=-460 \mathrm{~mm}, \\
& E_{\mathrm{x}}=\sim 6 \mathrm{MeV} \text { at } 0 \mathrm{deg} \\
& \Delta \phi=0.5 \mathrm{deg}, \Delta \theta=0.15 \mathrm{deg}
\end{aligned}
$$

Image at the focal plane

Reconstructed image

Targets and Angles

	0°	$2.5{ }^{\circ}$	$4.5{ }^{\circ}$		9,12,15,18 ${ }^{\circ}$	achrom. 0° elastic		$\mathrm{g} / \mathrm{cm}^{2}$	
${ }^{\text {nat }} \mathrm{C}$	$\begin{aligned} & \text { © } \\ & 1.1) \end{aligned}$	((()	()	((30 (partly
mylar	(((-	-	-	-	10	
${ }^{13} \mathrm{CH}_{2}$	\bigcirc	-	-	-	-	-	-	0.7	
${ }^{24} \mathrm{Mg}$	\bigcirc	-	-	-	-	-	-	1.8	
${ }^{25} \mathrm{Mg}$	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	4.00	
${ }^{26} \mathrm{Mg}$	((((-	-	-	1.55	
${ }^{27} \mathrm{Al}$	\bigcirc	-	-	-	-	-	-	1.8	
${ }^{28} \mathrm{Si}$		© of el		(()	((1.86 (58.5 a
${ }^{40} \mathrm{Ca}$	\bigcirc	-	-	-	-	-	-	13	
${ }^{48} \mathrm{Ca}$	((()	-	-	-	-	1.9	
${ }^{58} \mathrm{Ni}$	(((-	-	-	-	4	
${ }^{64} \mathrm{Ni}$	((©	-	-	-	-	4.7	
${ }^{90} \mathrm{Zr}$	\triangle	-	-	-	-	-	-	1.0	
${ }^{120} \mathrm{Sn}$	\triangle	-	-	-	-	-	-	2.6	
${ }^{208} \mathrm{~Pb}$	((()	(-	-	-	5.2	

○... measured, © ... good statistics, $\triangle \ldots$ poor statistics, $-\ldots$ not measured

Motivation

Merit of (p, p^{\prime}) scattering measurement at 0 deg. (1/2)

- $\Delta L=0$ excitations are favored at 0° (and Coulomb excitation of E1)
- ΔL information can be obtained from angular distribution of $d \sigma / d \Omega$ at forward angles.
- $d \sigma / d \Omega$ at 0° is approximately proportional to the relevant reduced matrix elements.

$$
\frac{d \sigma}{d \Omega}=K \cdot N \cdot\left|J^{S T}(q)\right|^{2} \cdot B^{S T}(q, \omega)
$$

- ΔS is model-independently identified by measuring polarization transfer coefficients at 0° (ΔS decomposition of the strengths)

$$
2 D_{N N}+D_{L L}=\left\{\begin{array}{cc}
-1 \text { for } \Delta S=1 & \text { e.g. M1 } \\
3 \text { for } \Delta S=0 & \text { e.g. E1 }
\end{array} \quad\right. \text { T.Suzuki, PTP103(2000)859 }
$$

- High-resolution measurement (20 keV) is feasible.
- Other reaction data, e.g. $\left(d, d^{\prime}\right),\left(\alpha, \alpha^{\prime}\right),\left({ }^{3} \mathrm{He}, t\right),\left(\gamma, \gamma^{\prime}\right)$ and $\left(e, e^{\prime}\right)$, provide complementary information

Merit of ($p, p \prime$) scattering measurement at 0 deg. (2/2)

- Excitation strengths can be measured in a wide E_{x} range ($5<E_{x}<25$ MeV) by a "single-shot" measurement (missing-mass spectroscopy)
- independent of the decay channel
- flat and high detection efficiency
- total width (or total excitation strength)
- Comparison with (e,e')
- complimentary: $B(\sigma)$ by $\left(p, p^{\prime}\right) \Leftrightarrow B(M 1)$ by $\left(e, e^{\prime}\right)$
- no radiative tail
- large cross-section
- reaction mechanism is not "very well-known"
Demerits

Sensitivity to B(M1) of various probes

R.M. Laszewski and J. Wambach, Comments Nucl. Part. Phys. 14 (1985) 321.

- Reduction of instrumental B.G. is essential
... requires a high-quality halo-free beam and beam stability
- Absolute normalization of the strength is not very straightforward

Analysis

Detailed calibrations have been mostly finished.

- Calibration of the scattering angle, solid angle. $\Delta \theta \sim 0.5-0.6^{\circ}$
- Calibration for high energy-resolution data. $\Delta \mathrm{E} \sim 20 \mathrm{keV}$
- Background subtraction works well
- Absolute cross sections and continuous angular distribution from 0 deg to large angles

M1 operator and reduced transition strength

GT transition:

$$
\begin{aligned}
& \mathrm{O}(G T)=\sigma \cdot \tau \quad \text { orbital-part spin-part } \\
& B(G T)=c|\langle f|(\sigma \cdot \tau)| i\rangle\rangle^{2} \\
& \mathrm{M} 1 \text { transition: } \\
& \mathrm{O}(M 1)=\underbrace{\text { IS } \ell}_{\ell}\rangle+g_{s}^{\mathrm{IS}} \sigma)+g_{\ell}^{\mathrm{IV}} \ell \cdot \tau+g_{s}^{\mathrm{IV}} \sigma \cdot \tau \\
& B(M 1)=c^{\prime}\left|\left\langle f \mid\left(g_{\ell}^{\mathrm{IS}} \ell+g_{s}^{\mathrm{IS}} \sigma+g_{\ell}^{\mathrm{IV}} \ell \cdot \tau+g_{s}^{\mathrm{IV}} \sigma \cdot \tau\right) i\right\rangle\right|^{2} \quad \text { EM probes } \\
& B(\sigma)=c^{\prime}\left|\left\langle f \mid\left(g_{s}^{\mathrm{IS}} \sigma\right) i\right\rangle\right|^{2} \quad \text { IS-M1 by }\left(p, p^{\prime}\right) \\
& B(\sigma)=c^{\prime}\left|\left\langle f \mid\left(g_{s}^{\mathrm{IV}} \sigma \cdot \tau\right) i\right\rangle\right|^{2} \quad \text { IV-M1 by }\left(p, p^{\prime}\right)
\end{aligned}
$$

$\rightarrow\left(p, p^{\prime}\right)$ and EM probes are complementray.

Motivation

1. Systematic study of M1 strengths and their quenching

Gamow-Teller (GT) quenching problem:
The observed GT strengths are systematically smaller the sum-rule value.

GT sum rule : $\quad S_{\beta^{-}}-S_{\beta^{+}}=3(N-Z)$

$60 \rightarrow 90 \%$ of the strength is observed in ${ }^{90} \mathrm{Zr}$ upto $\mathrm{E}_{\mathrm{x}}=50 \mathrm{MeV}$
T. Wakasa et al., PRC55(1997)2909 (p, n) reaction
K. Yako et al., PLB615(2005)193 (n, p) reaction

How about M1 strengths?

G.M. Crawley et al., PRC39(1989)311

Quenching is observed in $\mathrm{T}=0,1 \mathrm{M} 1$ strengths in ${ }^{28} \mathrm{Si}$.
N. Anantaraman et al.,PRL52(1984)1409

Almost no quenching is observed in ${ }^{24,26} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S}$ for the sum of $T=0$ and $T=1$ strengths.
G.M. Crawley et al.,PRC39(1989)311

2. Mechanism of Fragmentation of M1 Strengths.

- Many candidates of fragmented M1 strengths in ${ }^{48} \mathrm{Ca}$ were found. ${ }^{48} \mathrm{Ca}\left(p, p^{\prime}\right)$ at IUCF at the foot of the prominent 1^{+}peak at 10.22 MeV .
- Several small M2 and M1 strengths have been identified from the ${ }^{48} \mathrm{Ca}\left(e, e^{\prime}\right)$ data at Darmstadt and Mainz
W. Steffen NPA404(1983)413.
P. von Nuemann-Cosel et al., PRL82(1999)1105.
${ }^{48} \mathrm{Ca}\left(p, p^{\prime}\right)$ at IUCF at 0 deg. analyzed by Y. Fujita et al.

N. Ryezayeva et al.,

3. New or exotic type of excitations in nuclei PRL89(2002)272502

Vortex type excitations in nuclei?
\longrightarrow Candidates found by Darmstadt (γ, γ^{\prime}) group by using Quasi-particle Phonon Model
4. Nuclear matrix element of inelastic scattering \rightarrow Origin of elements (nucleosynthesis)

FIG. 4. The QPM prediction for the velocity distributions of $E 1$ excitations at $E_{x}=6.5-10.5 \mathrm{MeV}$ (left) and $E_{x}>$ 10.5 MeV (right) in ${ }^{208} \mathrm{~Pb}$.

Search for toroidal E1 excitations in ${ }^{208} \mathrm{~Pb}$

Prediction of toroidal E1 excitation in ${ }^{208} \mathrm{~Pb}$ by Quasi-particle Phonon Model (QPM) calculations around $6.5-10.5 \mathrm{MeV}$.

QPM is known to well reproduce the E1 distribution measured by ${ }^{208} \mathrm{~Pb}(\gamma, \gamma)$.

By measuring angular distributions of $\mathrm{d} \sigma / \mathrm{d} \Omega$ and other observables for Coulomb E1 excitations might provide (indirect) evidence of the toroidal E1 mode excitation.

FIG. 4. The QPM prediction for the velocity distributions of $E 1$ excitations at $E_{x}=6.5-10.5 \mathrm{MeV}$ (left) and $E_{x}>$ 10.5 MeV (right) in ${ }^{208} \mathrm{~Pb}$.
N. Ryezayeva et al., RL89(2002)272502

DWBA calc. by P. von Neuman-Cosel et al. using QPM wave function and Love-Franey int.

Search for M1 strengths by experiments

Experimentally many reactions have been used to observe the M1 strengths:
${ }^{208} \mathrm{~Pb}(\vec{\gamma}, \gamma),{ }^{208} \mathrm{~Pb}(\gamma, \vec{n}),{ }^{207} \mathrm{~Pb}(n, n),{ }^{207} \mathrm{~Pb}(n, \gamma)$,
${ }^{208} \mathrm{~Pb}\left(e, e^{\prime}\right)$, and ${ }^{208} \mathrm{~Pb}\left(p, p^{\prime}\right)$

In 1988, R.M. Laszewsky et al. have identified $8.8 \mu_{N}{ }^{2}$ below Sn by a ${ }^{208} \mathrm{~Pb}(\vec{\gamma}, \gamma)$ measurement. In total the higher-lying strength became $15.6 \mu_{N}{ }^{2}$
which came closer to the "best" (smallest) theoretical prediction of $20 \mu_{N}{ }^{2}$.

Still the search for M1 strengths in ${ }^{208} \mathrm{~Pb}$ is an important job to experimentally determine the M1 strengths and their E_{x} distribution.

R.M. Laszewski et al, PRL61(1988)1710

(p, p^{\prime}) scattering measurement at 0 deg (1/2)

M1

- $\Delta L=0$ excitations are favored at $0^{\circ} \quad$ (+ Coulomb excitation, E1)
- ΔL information can be obtained from angular distribution of $d \sigma / d \Omega$ at forward angles.
- $d \sigma / d \Omega$ at 0° is approximately proportional to the relevant reduced matrix elements.

$$
\frac{d \sigma}{d \Omega}=K \cdot N \cdot\left|J^{s T}(q)\right|^{2} \cdot B^{s T}(q, \omega) \quad \mathrm{B}(\sigma)
$$

- ΔS is model-independently identified by measuring polarization transfer coefficients at 0° (ΔS decomposition of the strengths)

$$
\underset{\text { DS }}{\underset{\text { SS }}{ }+D_{N N}+D_{L L}}\left(=2 D_{N N}+D_{L L}\right) .\left\{\begin{array}{lll}
-1 \text { for } \Delta S=1 & \text { e.g. M1 } \\
3 \text { for } \Delta S=0 & \text { e.g. Coulomb Excitation of E1 }
\end{array}\right.
$$

- High-resolution measurement (20 keV) is possible.
- Other reaction data, e.g. $\left(d, d^{\prime}\right),\left(\alpha, \alpha^{\prime}\right),\left({ }^{3} \mathrm{He}, t\right),\left(\gamma, \gamma^{\prime}\right)$ and $\left(e, e^{\prime}\right)$, provide complementary information

($p, p ’$) scattering measurement at 0 deg. (2/2)

- Excitation strengths can be measured in a wide E_{x} range ($5<E_{x}<25$ MeV) by a "single-shot" measurement (missing-mass spectroscopy)
- independent of the decay channel
- high and flat detection efficiency
- total excitation strength
- Comparison with (e,e')
- complementary: $B(\sigma)$ by $\left(p, p^{\prime}\right) \Leftrightarrow B(M 1)$ by ($\left.e, e^{\prime}\right)$
- no radiative tail
- large cross-section
- reaction mechanism is not "very well-known"
Demerits

R.M. Laszewski and J. Wambach, Comments Nucl. Part. Phys. 14 (1985) 321.
- Reduction of instrumental B.G. is essential
... requires a high-quality halo-free beam and beam stability
- Absolute normalization of the strength is not straightforward

Experiment

Data Reduction

Sieve Slit Calibration (Scattering Angle)

Sieve slit data by using ${ }^{58} \mathrm{Ni}\left(p, p_{0}\right)$ reaction at 16°

Horizontal scattering angle resolution:

$$
\Delta \theta=0.15 \mathrm{deg}
$$

F.P.

Vertical scattering angle resolution depends on the F.P. position $\Delta \phi=0.5$ deg at lower E_{x}. 0.8 deg at higher E_{x}.

calib. by H. Matsubara

horizontal scattering angle [deg]

horizontal scattering angle [deg]

Calibration of the aberation of GR

calib. by H. Matsubara

Aberation of the ion optics of GR was calibrated as the energy resolution of discrete peaks becomes better.

Sieve Slit Calibration (Scattering Angle)

Calibration of vertical scattering angle is very sensitive to the vertical beam position.

The vertical beam position was monitored by the LAS spectrometer during the experiment by measuring quasielastic scattering from the target.

Sieve slit data taken with various displaced beam spot on the target

Y: $-1,0,1 \mathrm{~mm}$
X: -8, -4, 0, 4, 8 mm

Background Subtraction

One of possible solutions:

\rightarrow Shift the $Y_{f p}$ (and correspondingly $\phi_{f p}$) before any calculation and apply completely the same analysis procedure as well as gates for getting b.g. spectrum

Background Subtraction

Gated by ϕ_{c} and projected onto Y_{c}
after
applying Scattering angle gate

Background Subtraction

It looks working good (even better than previous works?), but still requires more careful checks.

Comment:
Once a smooth b.g. shape is obatined, it is better to fit the b.g. shape by some smooth function and subtract it from true+b.g. spectrum for reducing statistical uncertainty especially in the case S / N is not very good.

Analysis

Systematic study of the unit cross section is required

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}(q, \omega)=\hat{\sigma}_{T=0,1} \quad \mathrm{~F}(\mathrm{q}, \omega) \\
\mathrm{B}(\sigma)
\end{gathered}
$$

$\widehat{\sigma}_{T=0,1}$: unit cross section for $\mathrm{B}(\sigma)$
$\mathrm{F}(\mathrm{q}, \omega)$: kinematical factor
$\mathrm{B}(\sigma)$: spin-flip excitation strength
q : momentum transfer
ω : energy transfer present step

1) To determine the unit cross section by DWBA calculations relying on effective interaction and optical potential.
2) Calibration of the unit cross section against b-decay $f t$ values on the assumption of charge symmetry (only for $T=1$)
${ }^{12} \mathrm{C},{ }^{26} \mathrm{Mg}, \ldots$
3) Calibration against electro-magnetic probes: (γ, γ^{\prime}) and (e, e^{\prime}) $\left(p, p^{\prime}\right)---\mathrm{B}(\sigma) \Leftrightarrow \mathrm{B}(\mathrm{M} 1)$--- electro magnetic probes can be well calibrated? should be studied as a next step

Systematic study of the unit cross section is required

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}(q, \omega)=\widehat{\sigma}_{T=0,1} \mathrm{~F}(\mathrm{q}, \omega) \\
\mathrm{B}(\sigma)
\end{gathered}
$$

q : momentum transfer
ω : energy transfer present step

1) To determine the unit cross section by DWBA calculations relying on effective interaction and optical potential.
2) Calibration of the unit cross section against b-decay $f t$ values on the assumption of charge symmetry (only for $T=1$)
${ }^{12} \mathrm{C},{ }^{26} \mathrm{Mg}, \ldots$
3) Calibration against electro-magnetic probes: (γ, γ^{\prime}) and (e, e^{\prime}) $\left(p, p^{\prime}\right)--\mathrm{B}(\sigma) \Leftrightarrow \mathrm{B}(\mathrm{M} 1)$--- electro-magnetic probes can be well calibrated?

Spectra

Spectra

${ }^{40} \mathrm{Ca}\left(p, p^{\prime}\right)$

G.M. Crawley et al, PLB127(1983)322; (p, p^{\prime}) at Orsay, $E_{p}=201 \mathrm{MeV}$

7 of the states identified by (e,e') : observed.
11 of them: not observed
8 additional peaks were observed

W. Steffen et al, NPA404(1983)413; (e,e') at Darmstadt and Mainz

Differences come from: orbital par of the M1 operator

Extraction of general trend by checking the orbital contribution in each state.

B(б): (p,p’) B(M1): EM probes orbital part: combination

${ }^{64} \mathrm{Ni}(p, p$ ')

${ }^{90} \mathrm{Zr}\left(p, p^{\prime}\right)$

G.M. Crawley et al, PRC26(1982)87 at 200 MeV and 4 deg

present data

Discussion

Inelastic Scattering from ${ }^{12} \mathrm{C}$ at $8-12 \mathrm{MeV}$ region

${ }^{12} \mathrm{C}\left(\alpha, \alpha^{\prime}\right)$ at 400 MeV ,
M. Itoh et al., NPA738(2004)268.

Inelastic Scattering from ${ }^{12} \mathrm{C}$ at $8-12 \mathrm{MeV}$ region

The angular distribution need to be analyzed carefully.
At present, I cannot draw any preliminary conclusion. DWBA calculations are required.

Decomposition of M1 and E1 Excitations

After completing the experiment, we use the following modelindependent relation at 0 deg

$$
\begin{aligned}
& D_{S S}+D_{N N}+D_{L L}=\left\{\begin{aligned}
-1 \text { for } \Delta S=1 & \text { e.g. M1 T.Suzuki, P } \\
3 \text { for } \Delta S=0 & \text { e.g. Coulomb-Excited E1 }
\end{aligned}\right. \\
& \left(=2 D_{N N}+D_{L L}\right)
\end{aligned}
$$

The $D_{L L}$ measured is not done yet.
Thus, here we use an approximation of

$$
D_{N N}=\left\{\begin{array}{cll}
-0.24 \text { for } \Delta S=1 & \longleftarrow & \text { c.f. T.Wakasa, M. Dozono et al., } \\
1 & \text { for } \Delta S & =0
\end{array} \quad \text { for }{ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{n})^{12} \mathrm{~N}(\mathrm{~g} . \mathrm{s}) \text { at } 300 \mathrm{MeV}\right.
$$

to extract spin-flip strength.

141

Comparison of B(E1) Strength Distribution

Comparison with B(E1) Strength Distribution

preliminary

Comparison of B(E1) Strength Distribution

Comparison of B(E1) Strength Distribution

Comparison of B(E1) Strength Distribution

