Puzzles of spin and strangeness in hadronic hyperon production

H.-W. Siebert Physikalisches Institut, Heidelberg Univ. *ret. now at* Institut für Kernphysik, Mainz Univ. WA89 Collaboration

 Λ polarization: a reminder

Ω production by Σ^- : new data

A search for Ω^- resonances

hyperon beam:

negative secondaries with mean momentum 340 GeV/c produced by SPS-protons of 450 GeV/c in Be target

expt. target 16m downstream of proton target, at the target $\Sigma^-/\pi^-/K^-/\Xi^- = 1/2.3/0.025/0.08$ π^- suppressed in trigger by TRAD counters

10m field-free decay region downstream of target

Omega magnet: 1.8T, field region 4m diam., 1.8m height

RICH: acceptance cutoff at $\approx 12 \text{ GeV/c}$ K^- threshold at 19.5 GeV/c

As reported in the previous workshop here, the polarization of Λ produced by Σ^- of 340 GeV/c momentum has *positive* sign:

WA89 (CERN), Σ^- -beam (340 GeV/c), Λ and Ξ^- polarization Eur. Phys. J. C32,221 and C36,315 (2004)

SELEX (Fermilab), Σ^- (610 GeV/c) and proton (525 GeV/c) beams, Λ (and $\overline{\Lambda}$) polarization arXiv:0706.3660v1

 Λ polarizations from expt. WA89, as a function of x_F for fixed bins in $p_t,$ in units of %

Two surprises:

P is mainly positive !!

in disagreement with predictions from recombination model: Y. Yamamoto, K. Kubo and H. Toki, Prog. Theor. Phys. **98** (1997) 95 L. Zuo-tang and C. Boros, Phys. Rev. Lett. **79** (1997) 3608

P breaks down above $p_t \approx 1.2 \text{ GeV/c}$!

Ω^- production by Σ^- :

 $\Omega \longrightarrow \Lambda K^-$ decays identified by cascade geometry and decay kinematics

reject candidates with $m(\Lambda \pi^-) \approx m(\Xi^-)$

 K^- selected by rejecting π^- identified clearly by the RICH counter

 $13,\!000$ identified decays from interactions in copper and carbon target

production cross section analyzed as function of x_F the dependence on p_t is very similar for all combinations of beam particle and produced hyperon and depends only slightly (if at all) on x_F .

Earlier measurement (open symbols) was based on 1/4 of total statistics and RICH was not used EPJ 26,357 (2003)

 \longrightarrow range now extended to large x_F .

Decuplet hyperon production by Σ^- , expt. WA89

One more contribution to the existing large set of hyperon and antihyperon production cross sections by π^{\pm} , K^{-} , p, n, Σ^{-} and Ξ^{-} beams

Nobody so far has managed (tried ??) to provide a model or at least a coherent phenomenological descriptio of these data 80 % of course would already be a good success rate, given experimental uncertainties

If people use strangeness as a tag for interesting processes at LHC, keep this in mind

Ω^- resonances:

poorly known ! PDG has 14 Λ^* , 15 Σ^* , 8 Ξ^* , 3 Ω^*

mass [MeV]	width [MeV]	decay channel	BR	N_{obs}	beam $[GeV/c]$
2251 ± 12	$2 \ 48 \ \pm \ 28$	$\Xi^0(1530)K^-$	0.7 ± 0.2	78	$\Xi^{-}, 102^{a}$
2253 ± 13	881 ± 38		≈ 1	44	$K^{-}, 11^{b}$
2384 ± 12	$2 \ 26 \ \pm \ 23$	$\Xi^0(1530)K^-$	< 0.45	45	$\Xi^{-}, 102^{a}$
		$\Xi^-\overline{K^0}$	0.5 ± 0.3		
2474 ± 12	$2 72 \pm 33$	$\Omega^{-}\pi^{+}\pi^{-}$		59	$K^{-}, 11^{b}$

Observations of Ω resonances. BR is relative to $\Xi^-\pi^+K^-$. ^{*a*}: Biagi et. al., ZPHY C31, 33 (1986), ^{*b*}: Aston et al., PLB 194, 579 (1987)

 \longrightarrow Most promising is a search for $\Omega^{-}(2250) \longrightarrow \Xi^{0}(1530)K^{-}$: $\Xi^{0}(1530)$ identified by cascade geometry and kinematics, K^{-} by RICH

 $\Xi^{-}\pi^{+}$ mass distribution in 6 bins of x_{F} , top left: 0-0.15, bottom right: 0.75-0.9.

 K^- selection: reject π^-, e^- with RICH \longrightarrow independent of K^- threshold !

 $\Xi^0(1530)K^-$ mass distribution in 6 bins of x_F , copper and carbon target.

we extract limits on $BR \cdot d\Sigma/dx_F$ at 95% CL, at 2250 MeV, for $\Gamma = 50$ MeV

Limits for decay to $\Xi^-\pi^+K^-$ are higher by factor ≈ 2.5

We also looked in the $\Xi^- K_S$ and $\Omega^- \pi^+ \pi^-$ channels, nothing (so far)

Theorists agree there should be 2 (nearly) degenerate resonances close to 2000 MeV and several more between 2200 and 2300 MeV and more further above

Maybe there is a chance to see them in an experiment with a K^- beam, good acceptance for cascade decays and very good K^- identification ??