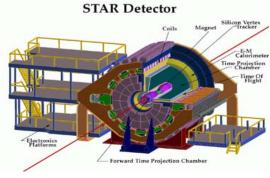


- Some Introductory Remarks
- The Quantity of Interest for a True P-even/T-odd Null-Test
- Some Experimental Details
- First Test of a Novel Measuring Method for Total Cross-Sections
- Data Analysis
- Summary

Some Introductory Remarks



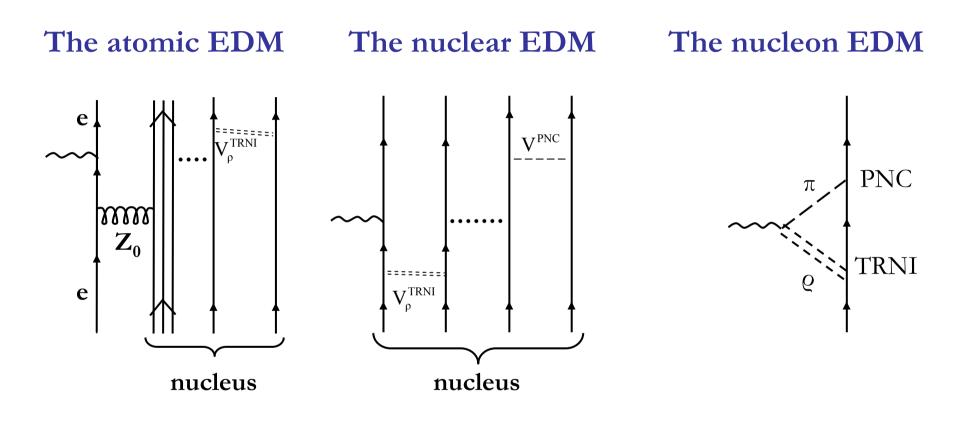
"Go right to the frontiers of science and you will learn soon what is missing"

Georg Christoph Lichtenberg (1742-1799)

High Energy Frontier

Precision Frontier

TRI and Parity Tests

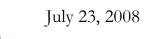

+ = +	correlation in ⁵⁷ Fe	$\overline{\alpha}_{\chi} \leq 5 \cdot 10^{-6}$			
Detailed Bal.	in $p + {}^{27}Al = {}^{4}He + {}^{24}Mg$	$\overline{\alpha}_{\chi} \leq 10^{-3}$			
P - A	in \vec{p} - p scattering	$\overline{g}_{\chi} \leq 3 \cdot 10^{-2}$			
Neutron EDM		$\overline{g}_{TP} \leq 10^{-11}$	$\overline{g}_{\rho\chi} \leq 1.5 \cdot 10^{-3}$		
Atomic EDM	in ¹⁹⁹ Hg		$\overline{\mathbf{g}}_{\rho \mathbf{X}} \leq 1 \cdot 10^{-2}$ $\overline{\mathbf{g}}_{\rho \mathbf{X}} \leq 6.7 \cdot 10^{-3}$ $\overline{\mathbf{g}}_{\rho \mathbf{X}} \leq 2.3 \cdot 10^{-2}$		
CSB	, A for \vec{n} - p and \vec{p} - n scatt.		$\overline{\mathbf{g}}_{\rho \mathbf{X}} \leq 6.7 \cdot 10^{-3}$		
n - transm.	through 165 $ m \ddot{H}o$	$\overline{g}_{\chi} \leq 2.8 \cdot 10^{-4}$	$\overline{\mathbf{g}}_{\rho \mathbf{\chi}} \leq 2.3 \cdot 10^{-2}$		
Null-tests					
A_{L}	in \vec{p} - p scattering (-A 0 200 ⁻⁸				
A _{y,xz}	in $\vec{p} - \vec{d}$ scattering (potentially	$0.1 \cdot \overline{g}_{\rho \chi} \text{ of } {}^{165} \overline{\text{Ho}})$			
$\overline{\alpha}_{\chi}$ Strength of eff. T-violating N-core potential					
$\overline{g}_{\chi/\mu}$ Strength of T-violating / TP-violating NN potential					

 $\overline{g}_{\rho\chi}$ Strength of T-violating G-MN coupling constant

Violation of TRI can be related to the ρ Meson

But :

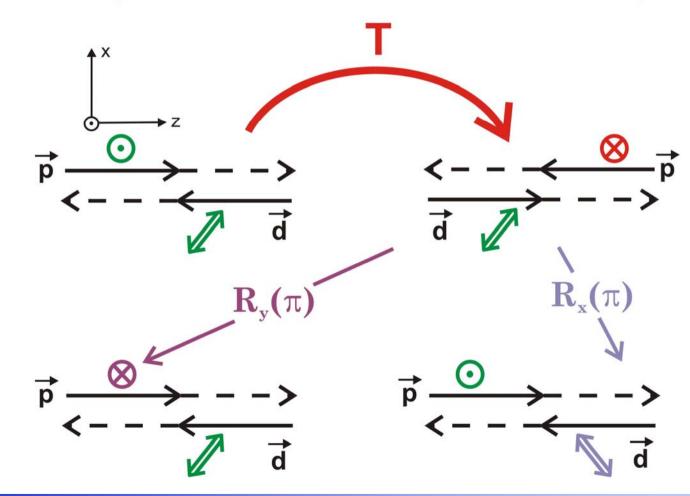
There is no Null-Experiment for a reaction with two particles in and two particles out.


F.Arash, M.J. Moravcsik, and G.R. Goldstein, Phys.Rev.Lett. 54 (1985) 2649

Loophole:

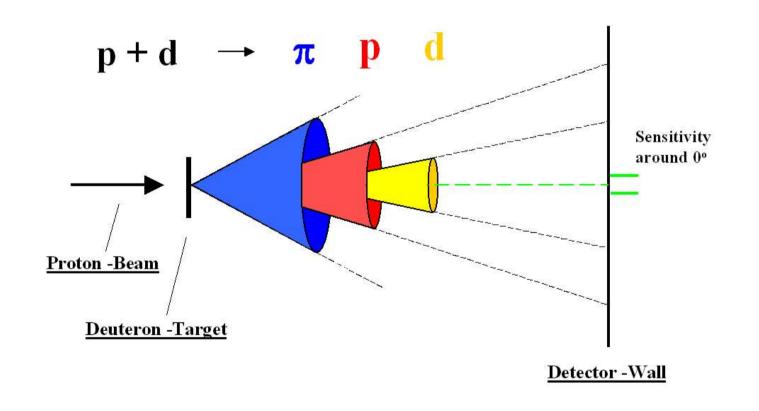
The proof from above relies on the construction of crosssections from bilinear products of scattering amplitudes.

In forward scattering the total cross-section can be measured via the optical theorem.
 H.E. Conzett, Phys. Rev. C 48 (1993) 423



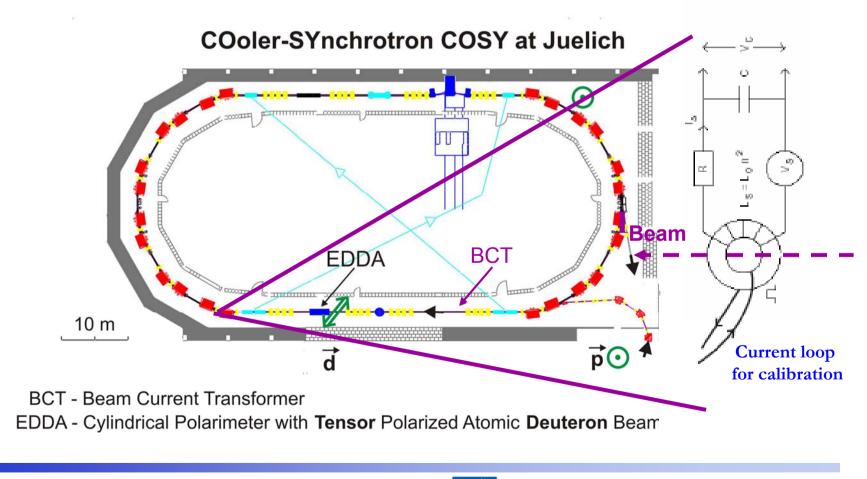
The Quantity of Interest for a True P-even/T-odd Null-Test

The Principle of the Time Reversal Invariance test at COSY (TRIC)



External Total Cross Section Measurements

External Fixed Target


Scattering-Cones and Detector-Sensitivity

The Experimental Setup

Internal σ_{tot} Measurements are Related to Precise Current Measurements

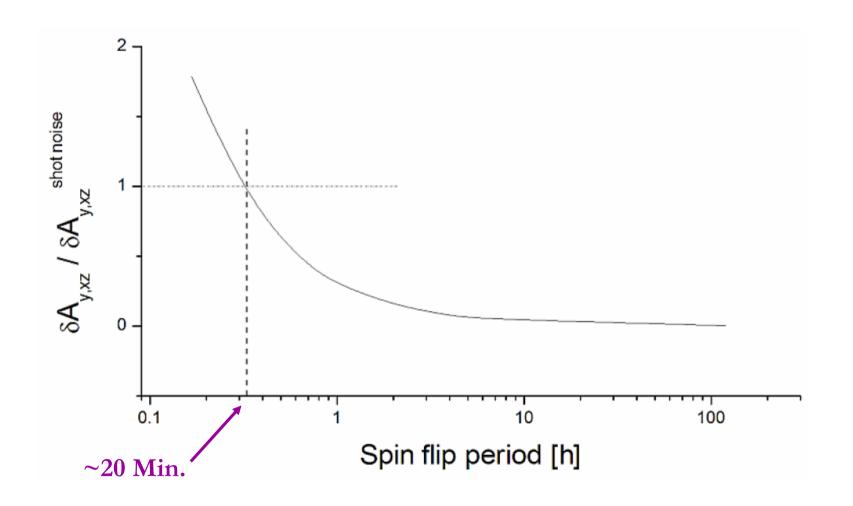
The total pol. correlation $A_{y,xz}$ is measured via the forward scatt. amplitude $\mathcal{F}(0)$

- F(0) Forward scatt. amplitude for unpolarized particles
 - P Density matrix
- (0) Forward scatt. amplitude (matrix) for polarized particles
- A_{y, xz} is proportional to the relative difference of the current slopes of the circulating proton beam with respect to the chosen polarization configuration (+/-) of the proton beam and deuteron target.

time

Initial Estimation of Precision

 $A_{y,xz} = \frac{1}{2} \cdot \frac{1}{\sigma_0 \cdot \rho d \cdot P_y P_{xz}} \cdot \frac{1}{N} \cdot \left(\frac{d\mathbf{I}^+}{\mathbf{I}_0^+} - \frac{d\mathbf{I}^-}{\mathbf{I}_0^-} \right)$ Demand for long life-time (e-cooling)


$$\delta(\Delta T) = |-S| \cdot \delta A_{y,xz} \cong \frac{1}{\sqrt{2}} \cdot \frac{\delta I}{I}$$

Demand for precise current measurement

Relative accuracy of current in 1 s measurement: $3 \cdot 10^{-4}$

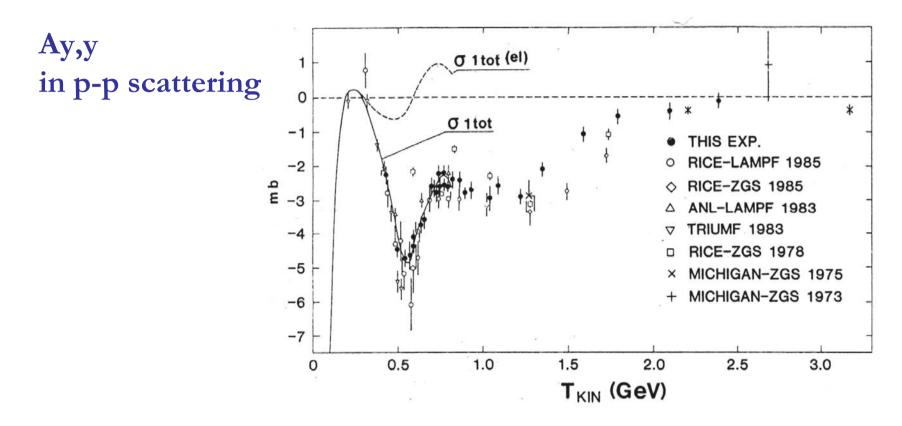
 $A_{y,xz}$ can thus be measured with an accuracy of 10⁻⁶ in 10 days

Choice of Spin-Flip Period

The Feasiblity of the TRIC Experiment at COSY Basic Error Analysis

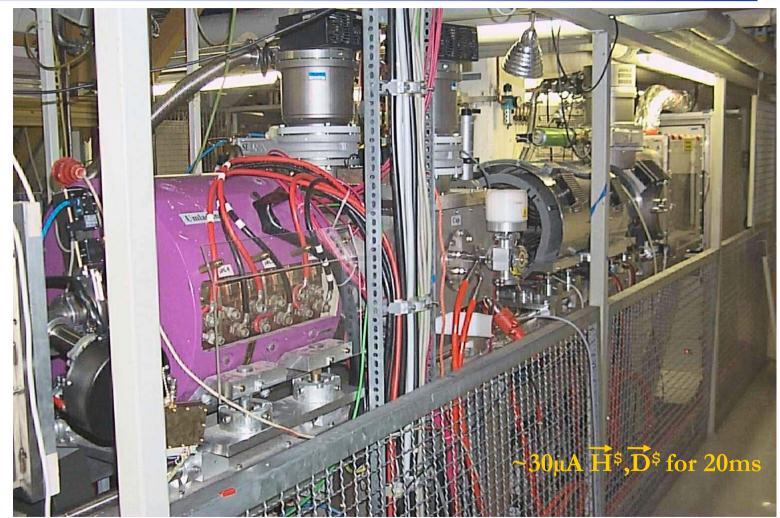
0,0	A <u>0,x</u>	A _{0,Y}	A _{0,Z}	A _{0,XX}	$\mathbf{A}_{0,\mathrm{YY}}$	A _{0,ZZ}	A _{0,XY}	A _{0,YZ}	A _{0,XZ}
	A _{X,X}							A _{X,YZ}	
A _{Y,0}	A _{Y,X}	A _{Y,Y}	A _{Y.Z}					A _{Y,YZ}	
A _{Z,0}	A _{z,x}	A _{z,y}	A _{z,z}	A _{z,xx}	A _{Z,YY}	A _{z,zz}	A _{Z,XY}	A _{z,yz}	A _{z,xz}

Line cancels because of :


Protonspinflip p_x, p_z negligible for protons

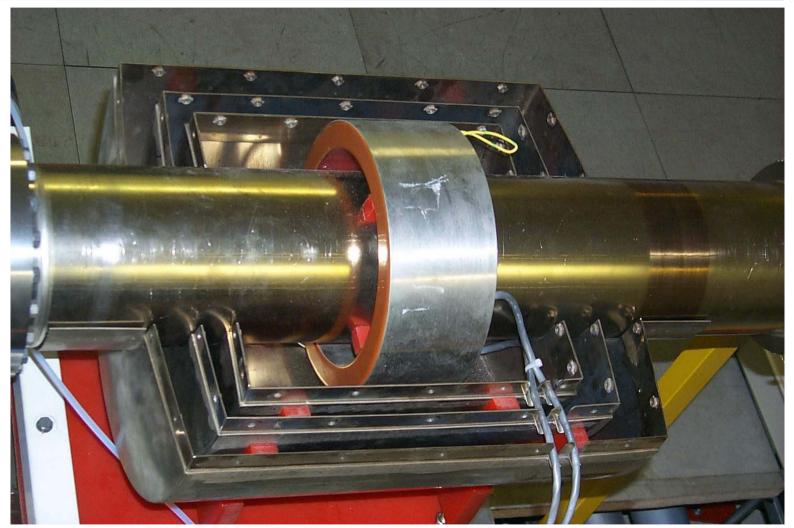
Quantity cancels because of : K, F

Total cross section $\sigma_{1tot} = \frac{1}{2} \Delta \sigma_{tot}$ in p-p Scattering

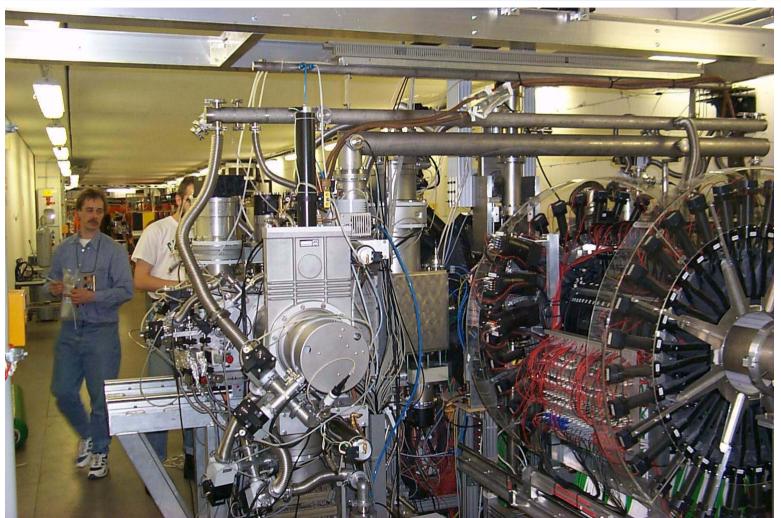


F. Perrot et al., Nucl. Phys. B 278 (1986) 881

The Feasiblity of the TRIC Experiment at COSY The H^{\$} Source for \vec{p} and \vec{d} for COSY



The Feasiblity of the TRIC Experiment at COSY The Precision Beam Current Transformer (BCT)

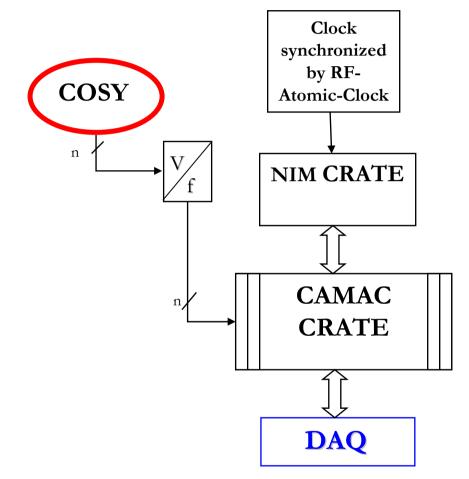


D.Eversheim, SPIN- Praha-2008

The Feasiblity of the TRIC Experiment at COSY The Atomic Beam Target with the EDDA Detector

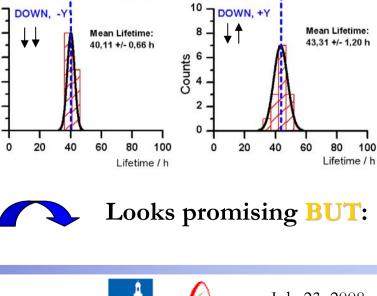
D.Eversheim, SPIN- Praha-2008

Run Nov. 2006, Single Run, Target & Beamdump Closed


e – cooling on / off off off off on on 2,62 · Intensity [mA] 2,56 26100 26200 26300 Time [s]

D.Eversheim, SPIN-Praha-2008

The Principle of the TRIC Data Acquisition


• The real time data acquisition system with WinXP developed for this experiment worked without any problem.

Uncorrected Calculated Lifetimes

A_{y,y} in p-p scattering 10 -UP. +Y $\sigma_{\text{tot}} = \sigma_0 (1 + A_{y,y} CP_B P_T)$ Counts Mean Lifetime: 41,10 +/- 1,83 h $\sigma_{\uparrow\uparrow} = \sigma_{\downarrow\downarrow}$ 0 and 0 20 40 10 T DOWN, -Y 8 $\sigma_{\downarrow\uparrow} = \sigma_{\uparrow\downarrow}$ Counts 2 0 20 40 0 and for $P_T = P_x$ $\sigma_{tot} = \sigma_0$

10

Counts

0

0

UP, -Y

20

40

60

D.Eversheim, SPIN- Praha-2008

60

80 100

Lifetime / h

Mean Lifetime:

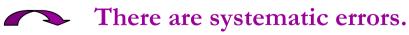
44.60 +/- 1.42 h

80 100

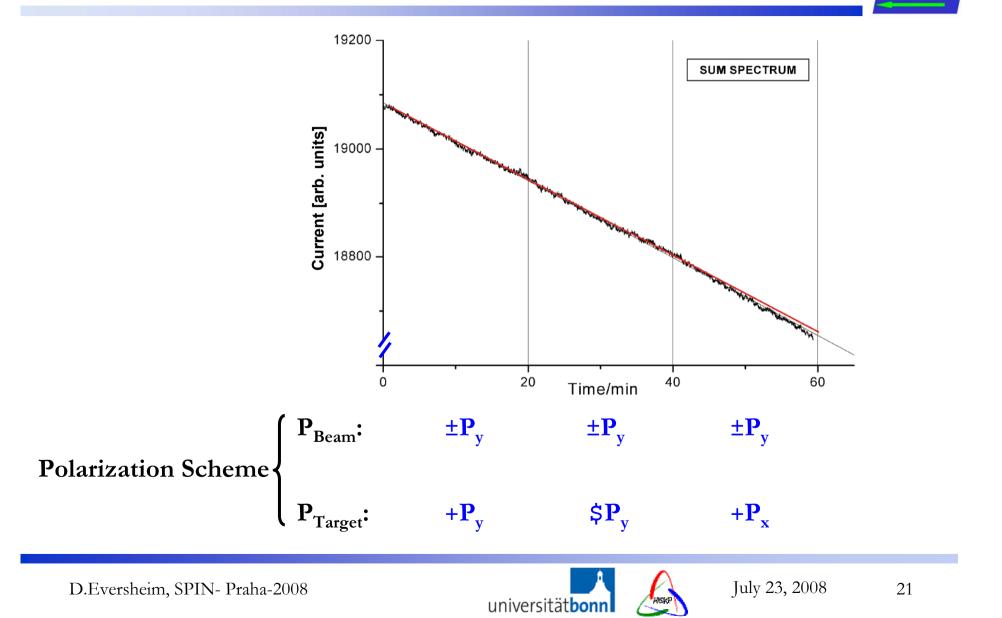
80

100

Lifetime / h



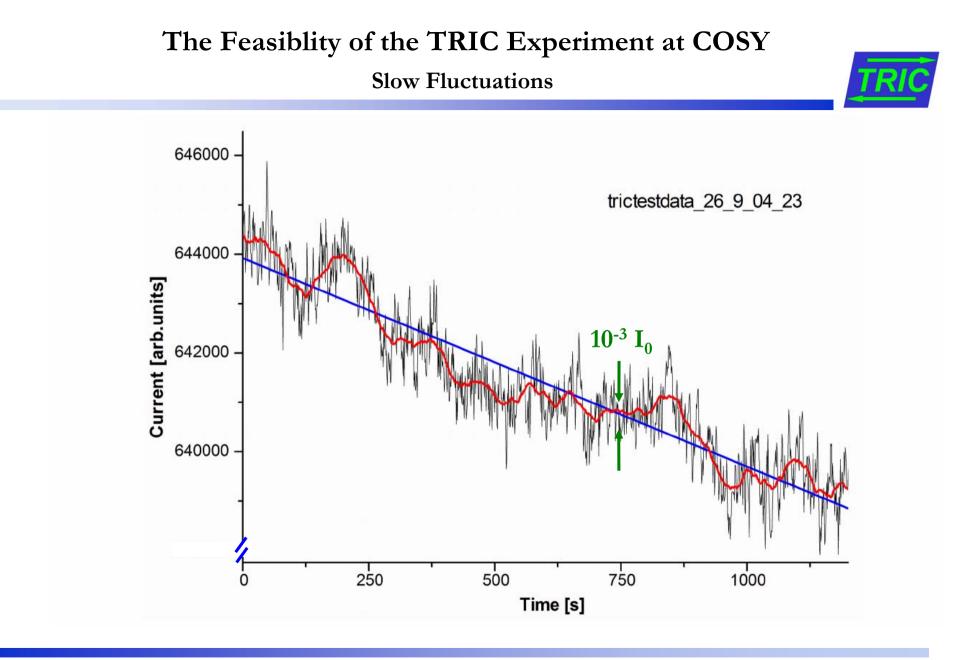
- \$ Differences of the lifetimes are too big.
 - Substantial corrections are due.
- \$ There are different distribution widths for the various spin configurations.
- \$ The standard deviation of a single measurement is much smaller than the distribution width of the lifetimes.


- There are undiscovered error contributions.
- \$ Measurements with target polarization P_x do not fit in the cross section scheme. $\sigma_{\text{parallel}} < \sigma_{\text{y,x}} < \sigma_{\text{antiparallel}}$

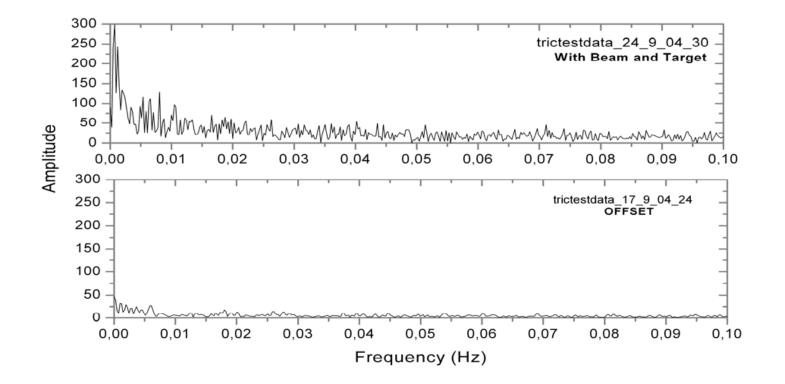
$$\sigma = \sigma_0 (1 + A_{y,y} \cdot P_{\text{Beam}} P_{\text{Target}})$$



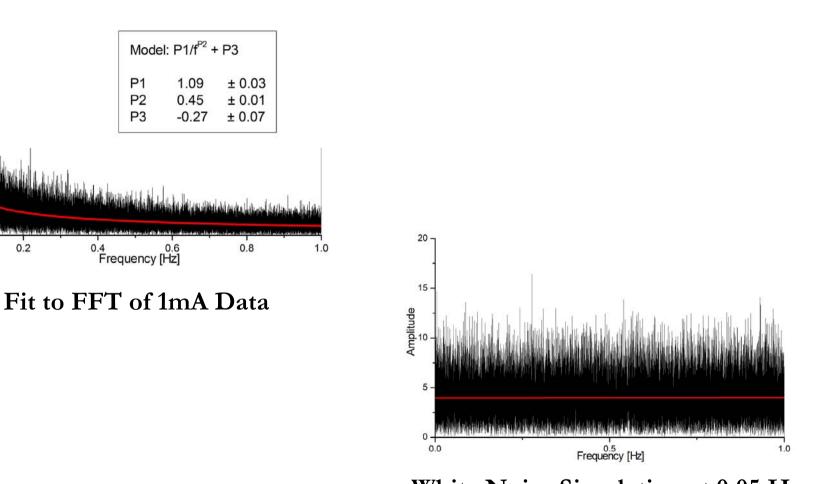
Sum of all Current Measurements


Lifetimes and their Standard Deviation

The standard deviation of the distribution of the measured lifetimes is by a factor 5 to 10 worse than the error of a single lifetime measurement.



D.Eversheim, SPIN- Praha-2008


The Feasiblity of the TRIC Experiment at COSY FFT of the BCT Signal

Noise in the offset substantially smaller than in the signal

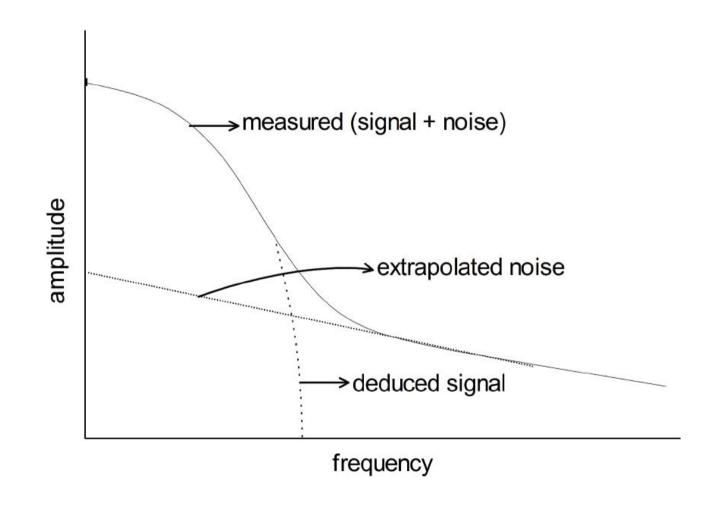
1/f Noise of the BCT Signal and White Noise Simulation

White Noise Simulation at 0.05 Hz

July 23, 2008

20 -

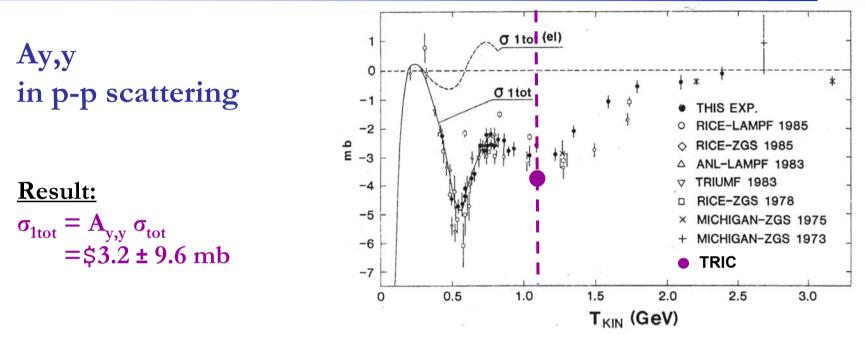
15


Amplitude 0

5

o || 0.0

0.2


Wiener-Khinchin Noise Reduction

First Test of a Novel Measuring Method for Total Cross-Sections

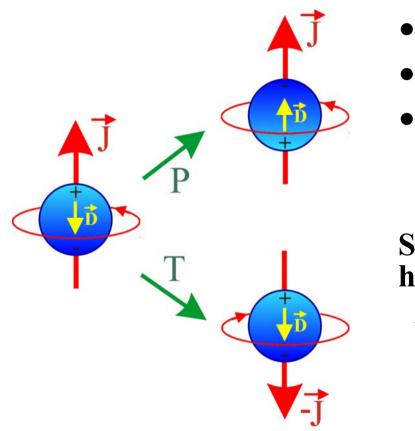
BUT: \$ Beam intensity was low by a factor10\$ A target cell will increase the density by a factor40\$ A better BCT can decrease the noise up to an factor3

Error reduces by a factor $\sqrt{10.40.3}$ \square **35**

- The TRIC experiment is a true Null-Test of TRI.
- For this experiment COSY serves as accelerator, forward spectrometer, and detector.
- The novel measurement technique works, **BUT**:
- Excellent beam cooling is essential for the experiment.
- Low frequency noise from the BCT on the measured beam intensity impairs the precision of the experiment by a factor 3.

BCTs are needed with better or even no ferrite-core.

Thank You

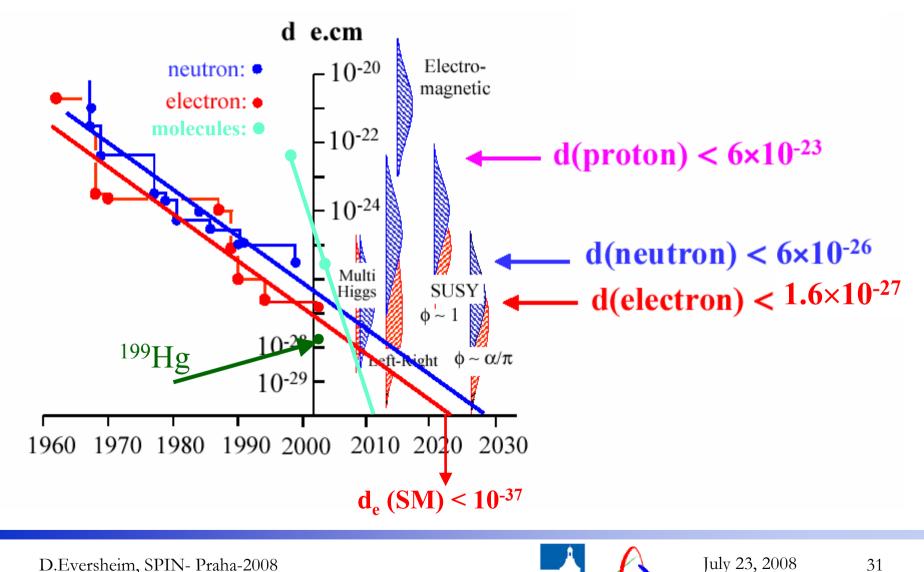

D.Eversheim, SPIN- Praha-2008

The Feasiblity of the TRIC Experiment at COSY Some Introductory Remarks

EDM violates:

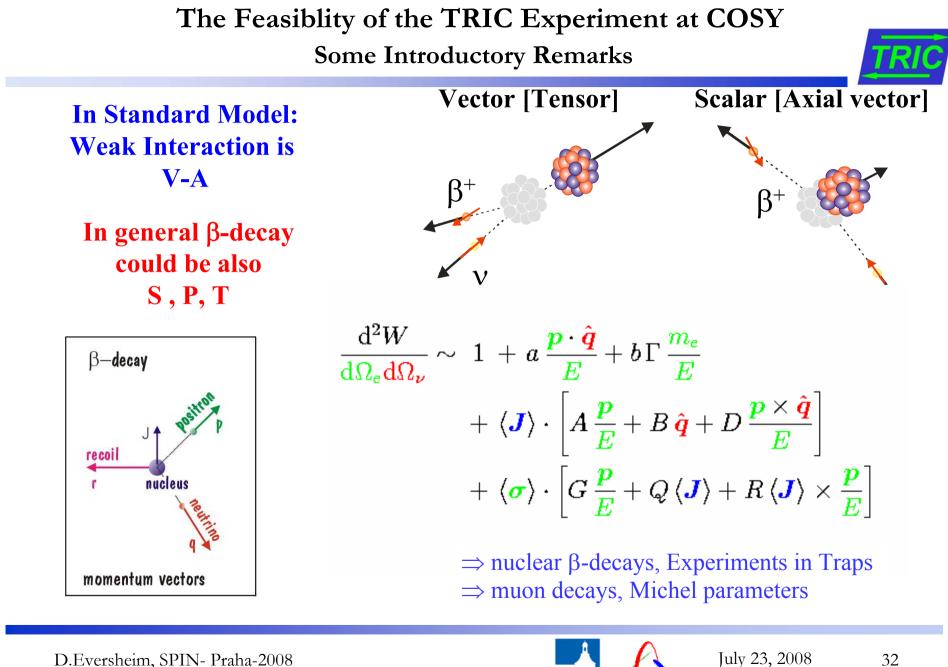
- Parity
- Time reversal
- **CP- conservation**

(if **CPT** conservation assumed)


Standard Model values are tiny, hence:

An observed EDM would be Sign of New Physics beyond Standard Theory

30


The Feasiblity of the TRIC Experiment at COSY Some Introductory Remarks

universität**bon**

D.Eversheim, SPIN- Praha-2008

31 after E.Hinds

universitätbo

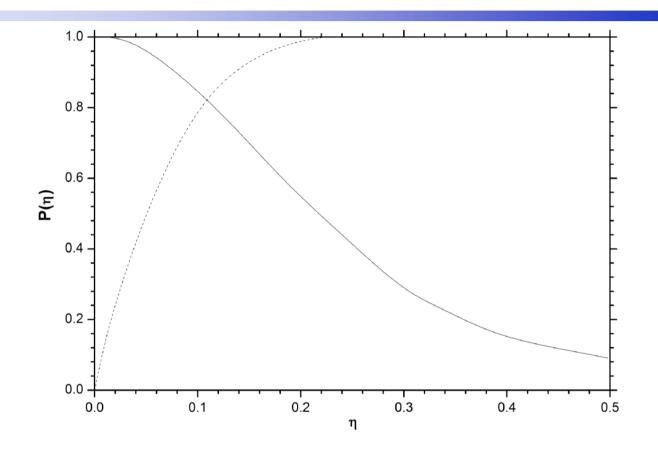
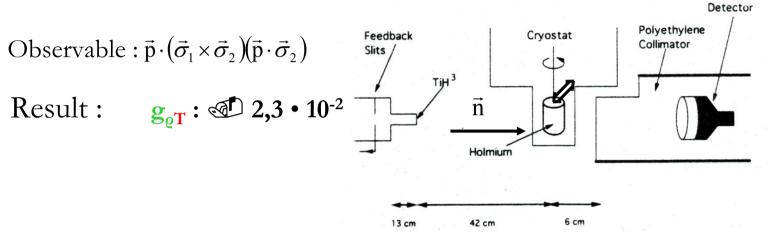


Figure 5.6: The Survival probability (full curve) and the emittance growth function (dashed curve). The dimensionless variable η increases linearly with turn number.

EDM of an elementary particle :

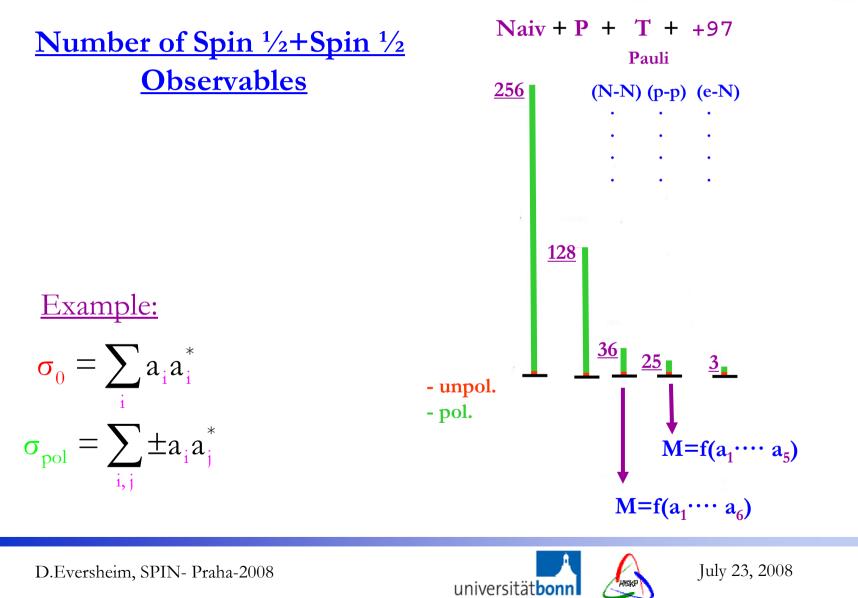
needed: i) Quantization axis (Spin $\vec{\sigma}$)	Quantity	T	Ρ
ii) Electric field E	p č	- \vec{p}	- \vec{p}
Observable : $\vec{\sigma} \cdot \vec{E}$	σ	- σ	$\vec{\sigma}$
	Ē	Ē	-Ē
P-odd/T-odd experiment	\vec{B}	- B	$\vec{\mathbf{B}}$


Upper limit :
$$\approx 6 \cdot 10^{-26} \, \text{e} \cdot \text{cm} \, (\text{n-EDM})$$

Deduced Strength for P-even/T-odd : g_{oT} : ~1.5 • 10⁻³

5.9 MeV Neutron Transmission Experiment through ¹⁶⁵Ho

J.E.Koster et al., Phys. Rev. C 49 (1994) 710


- Since the tensor polarization in ¹⁶⁵Ho is generated by one valence nucleon, the effect is diluted by the other 164 nucleons
 - Therefore:

Restrict experiment to most simple Spin1-Spin¹/₂ system, i.e. $\vec{p} - \vec{d}$ scattering at COSY (as an internal experiment)

The Feasiblity of the TRIC Experiment at COSY The Quantity of Interest for a True P-even/T-odd Null-Test

The Feasiblity of the TRIC Experiment at COSY The Quantity of Interest for a True P-even/T-odd Null-Test

25 Observables for Identical Particles (Spin 1/2 + Spin 1/2)

$$\sigma = I_{0000} = \sigma C_{nnnn} = \frac{1}{2} \{ |a|^2 + |b|^2 + |c|^2 + |d|^2 + |e|^2 \}$$

$$\sigma C_{nn00} = \sigma A_{00nn} = \frac{1}{2} \{ |a|^2 - |b|^2 - |c|^2 + |d|^2 + |e|^2 \}$$

$$\sigma D_{n0n0} = \sigma D_{0n0n} = \frac{1}{2} \{ |a|^2 + |b|^2 - |c|^2 - |d|^2 + |e|^2 \}$$

$$\sigma K_{0nn0} = \sigma K_{n00n} = \frac{1}{2} \{ |a|^2 - |b|^2 + |c|^2 - |d|^2 + |e|^2 \}$$

$$\sigma C_{1111} = \sigma C_{mmmm} = \frac{1}{2} \{ |a|^2 + |b|^2 + |c|^2 + |d|^2 - |e|^2 \}$$

$$\sigma P \equiv \sigma P_{n000} = \sigma P_{0n00} = \sigma A_{00n0} = \sigma A_{00n0} =$$

$$= \sigma C_{nnn0} = \sigma C_{nn0n} = \sigma M_{n0nn} = \sigma N_{0nnn} = \frac{\text{Re } a^* e}{\sigma C_{1111}} = \sigma C_{1111} = -\sigma C_{1111} = -\sigma C_{1111} =$$

$$= \sigma C_{1111} = \sigma C_{1111} = -\sigma C_{1111} = -\sigma C_{1111} =$$

$$= \sigma C_{1111} = \sigma C_{1111} = -\sigma C_{1111} = -\sigma C_{1111} =$$

$$= \sigma C_{1111} = \sigma C_{1111} = -\sigma C_{1111} = -\sigma C_{1111} =$$

$$= \sigma C_{1100} = \sigma C_{1101} = -\sigma C_{1101} = -\sigma C_{1101} = \sigma C_{1011} =$$

$$\sigma D_{m0m0} = \sigma D_{0m0m} = \sigma C_{nlnl} = \sigma C_{lnln} = Re (a^* b + c^* d)$$

$$\sigma C_{mnl0} = \sigma C_{mm0l} = -\sigma M_{10mn} = -\sigma N_{0lnm} = Im (a^* b + c^* d)$$

$$\sigma D_{1010} = \sigma D_{010l} = \sigma C_{nmm} = \sigma C_{mnmn} = Re (a^* b - c^* d)$$

$$\sigma C_{lnm0} = \sigma C_{nl0m} = -\sigma M_{m0ln} = -\sigma N_{0mnl} = -Im (a^* b - c^* d)$$

$$\sigma C_{um0} = \sigma C_{m0nl} = -\sigma M_{10mn} = -\sigma N_{0mnl} = Re (a^* c + b^* d)$$

$$\sigma C_{um0} = \sigma C_{nn0l} = -\sigma M_{10mm} = -\sigma N_{0mnn} = Im (a^* c + b^* d)$$

$$\sigma C_{um0} = \sigma C_{ln0nl} = -\sigma M_{10mm} = -\sigma N_{0mnn} = Re (a^* c - b^* d)$$

$$\sigma C_{um0} = \sigma C_{ln0m} = -\sigma M_{m0nl} = -\sigma N_{0mnn} = Re (a^* c - b^* d)$$

$$\sigma C_{um0} = \sigma C_{m0m} = -\sigma M_{n0ml} = -\sigma N_{0mnn} = Re (a^* d + b^* c)$$

$$\sigma C_{lmn0} = \sigma C_{m10n} = -\sigma M_{n0lm} = -\sigma C_{nmmn} = -Im (a^* d + b^* c)$$

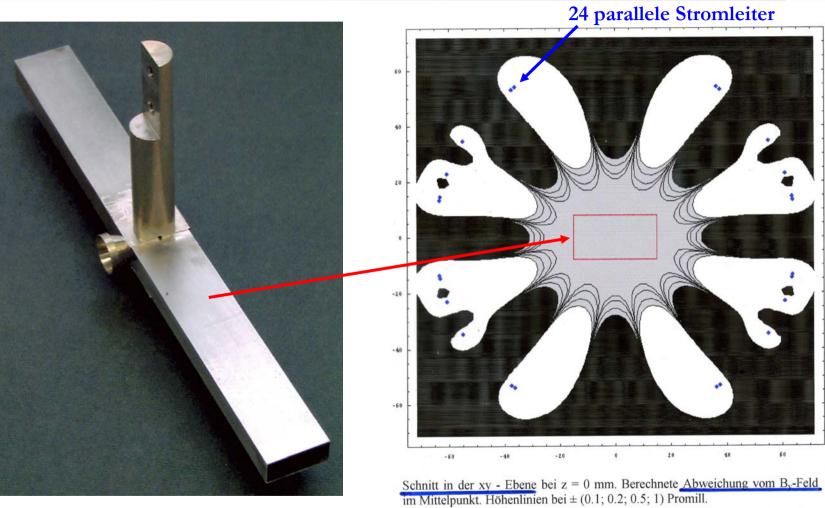
$$\sigma C_{lm0} = \sigma C_{m0nn} = -\sigma C_{nmmn} = -\sigma C_{nmmn} = -Re (a^* d - b^* c)$$

$$r C_{mn0} = \sigma C_{lm0n} = -\sigma M_{n0ml} = -\sigma N_{0mm}$$

$$r C_{mn0} = \sigma C_{m0nn} = -\sigma M_{n0mn} = -\sigma C_{nmm}$$

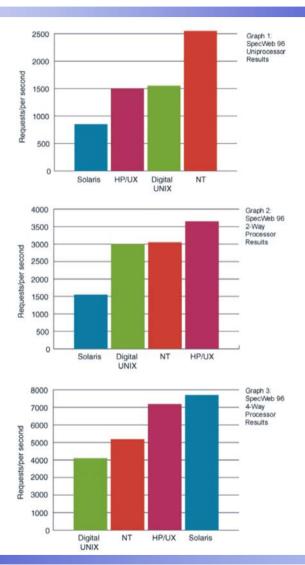
$$C_{limim} = C_{mlml} = -1 + D_{n0n0} + C_{lill}$$

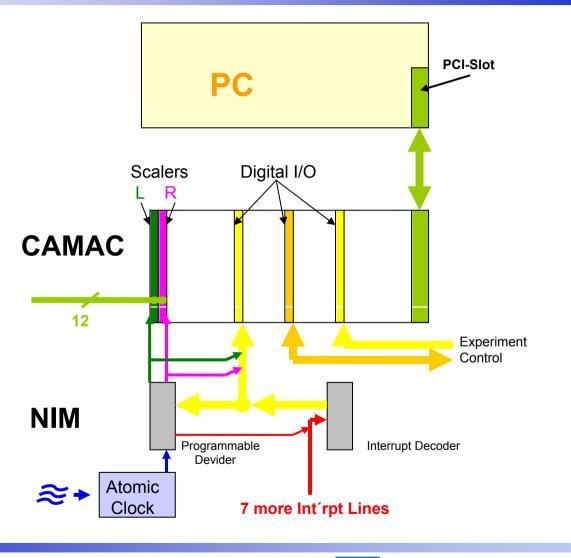
$$C_{limm} = C_{mmll} = 1 - A_{00nn} - C_{llll}$$


$$C_{limml} = C_{mlim} = -1 + K_{0nn0} + C_{llll}$$

[Bistricky et al, J. de Phys. 39]

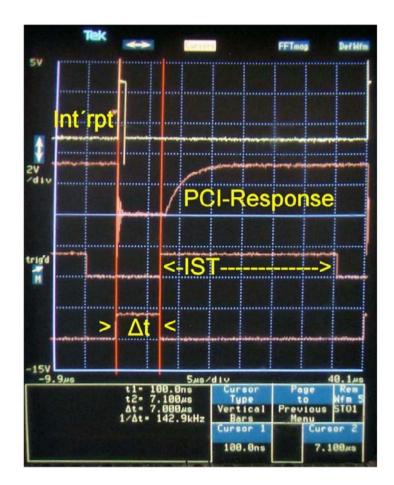
The Feasiblity of the TRIC Experiment at COSY Some Experimental Details



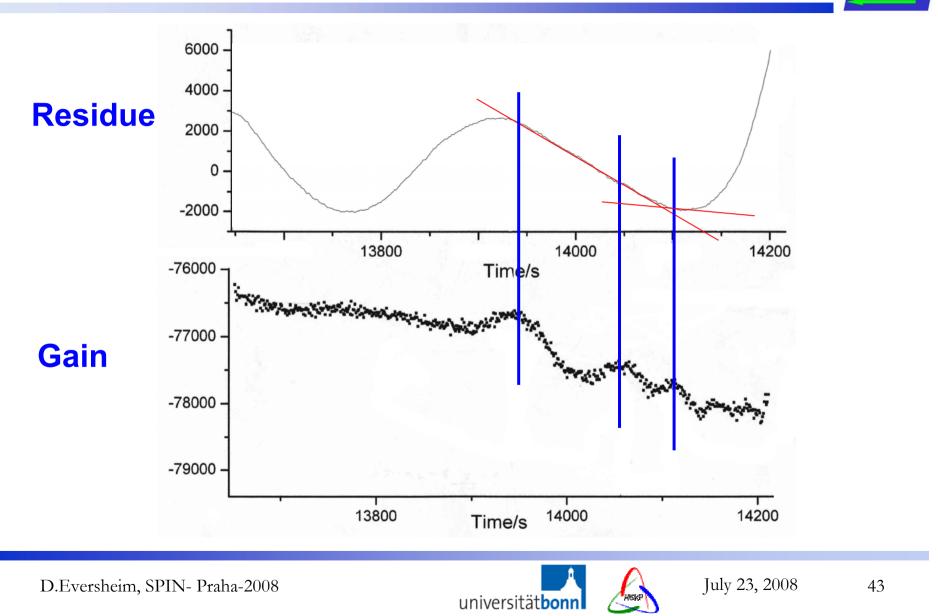

The Feasiblity of the TRIC Experiment at COSY Operating System Performance

The Feasiblity of the TRIC Experiment at COSY Same or **Origin, Excel, Word Processing,** . . . **Remote PC** Dynamic Data Exchange 50 MB Data Buffer Double Hard-WIN XP **Graphical User Interface** Hard-Buffer Drive Drive Double Buffer Control **Real Time** Kernel IST DIR Bridge - CPU PCI CAMAC **HardWare** Interface July 23, 2008 D.Eversheim, SPIN- Praha 40 2008

The Feasiblity of the TRIC Experiment at COSY Principle of "Dead-Time Less" Data Acquisition


D.Eversheim, SPIN-Praha-2008

41


The Feasiblity of the TRIC Experiment at COSY Interrupt Response

The Feasiblity of the TRIC Experiment at COSY The Gain Riddle

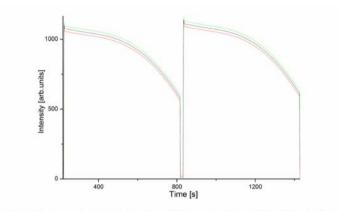


Figure 5.10: The red (lower) and green (upper) lines are due to the addition of a modulated current $(\pm \delta I)$ to the beam current. The black (middle) curve is the average of the upper and the lower curves.

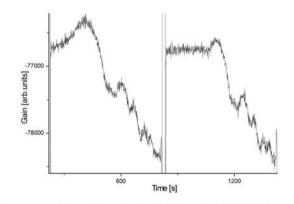


Figure 5.11: The difference between two neighboring data points. Non-linearities are revealed in this plot.

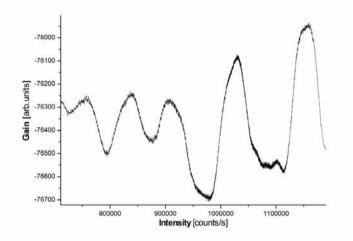
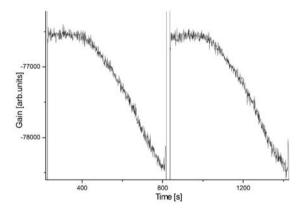
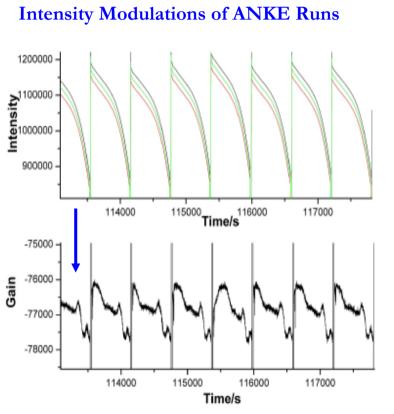
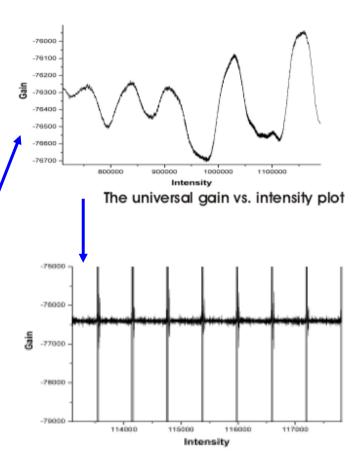


Figure 5.12: The universal gain curve constructed from all available data.

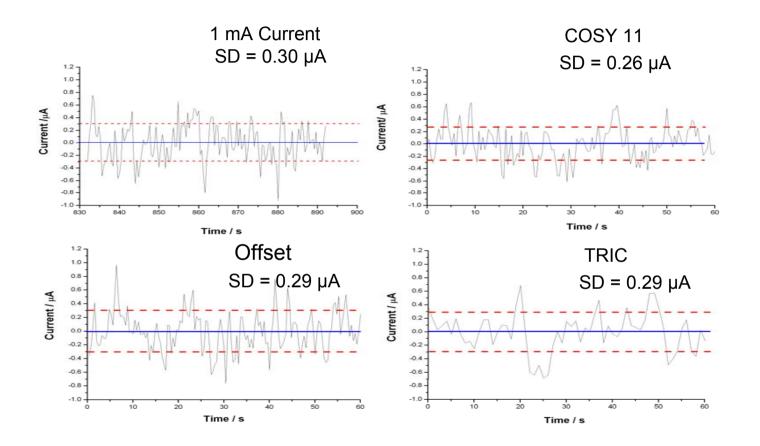



Figure 5.13: The corrected gain curve of figure 5.11 using the universal gain curve.


July 23, 2008

The Feasiblity of the TRIC Experiment at COSY Gain Correction Scheme

Above: Data with modulated current input Below: Gain derived from the above plot



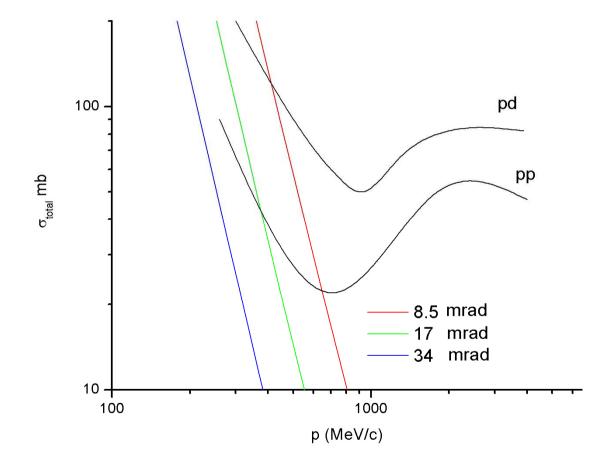
The completely corrected gain

Standard Deviations

The Standard deviations of residues compare and are well within the limits

Comparison with other Experiments

Experiment	Mean Slope [nA/s]	σ _{Residuals} [μΑ]	Expected $\overline{\sigma}^{\text{Slope}}$ [nA/s]	σ ^{Slope} [nA/s]	σ ^{Slope} _{Distr.} [nA/s]	М [h]	σ ^τ [h]	$\sigma^{ au}_{ ext{Distr.}}$ [h]	$\frac{\sigma^{\text{Slope}}_{\text{Distr.}}}{\overline{\sigma}^{\text{Slope}}}$	$\frac{\sigma_{\text{Distr.}}^{\tau}}{\overline{\sigma}^{\tau}}$
TRIC	-2.86	0.36	0.1	0.1	1.22	47.8	2.86	13.2	12.5	4.76
COSY11	-72	0.37	1.7	0.8	11.9	8.3	0.09	0.9	16.7	10
ANKE	-2916	0.52	3.7	3.57	149	1.29	0.001	0.04	50	50


Comparison with other Data

Experiment	Mean Slope [nA/s]	σ _{Residuals} [μΑ]	Expected $\overline{\sigma}^{\text{Slope}}$ [nA/s]	σ ^{Slope} [nA/s]	σ ^{Slope} _{Distr.}	М [h]	$\overline{\sigma}^{\tau}$ [h]	$\sigma^{ au}_{ ext{Distr.}}$ [h]	$\frac{\sigma^{Slope}_{Distr.}}{\overline{\sigma}^{Slope}}$	$\frac{\sigma^{\tau}_{\text{Distr.}}}{\overline{\sigma}^{\tau}}$
TRIC	-2.86	0.36	0.1	0.1	1.22	47.8	2.86	13.2	12.5	4.76
COSY11	-72	0.37	1.7	0.8	11.9	8.3	0.09	0.9	16.7	10
ANKE	-2916	0.52	3.7	3.57	149	1.29	0.001	0.04	50	50
10mA \$100pts	-0.2	0.33	1.7	1.1	5.3				4.8	
\$1000pts	-0.09	0.39	0.05	0.04	0.5				12.5	
Model Spectrum \$100pts	-2.09	0.35		1.23	1.16				0.94	
\$1000pts	-2.17	0.35		0.04	0.04				1	

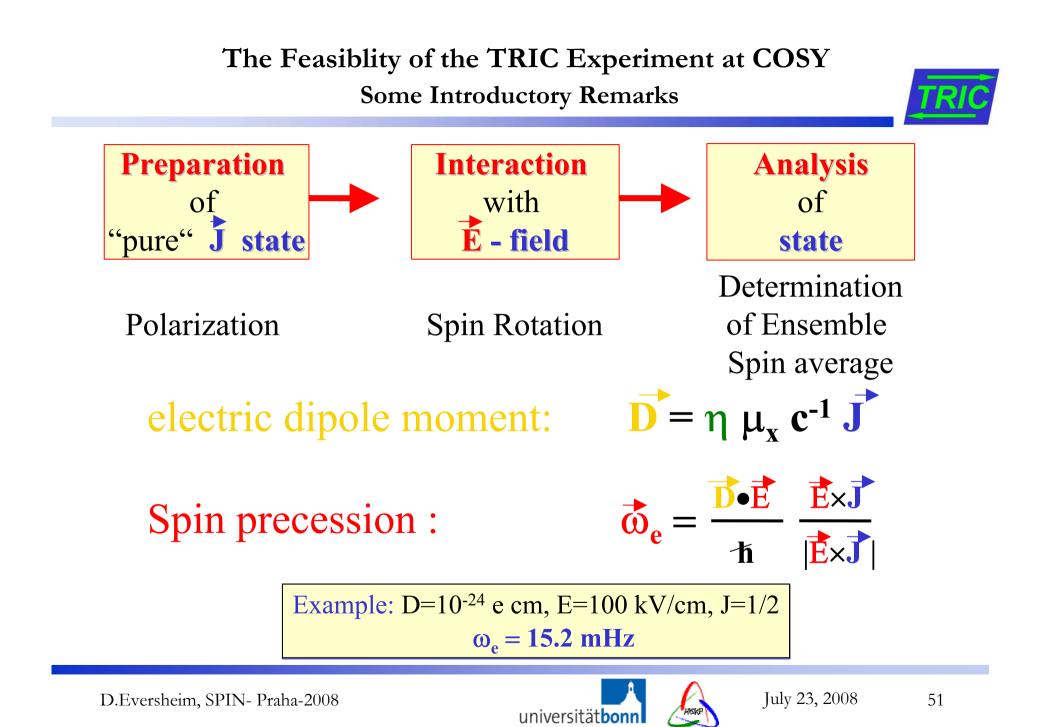
The Feasiblity of the TRIC Experiment at COSY Present precision

Starting from :	$\delta(\Delta T) = \left -S \right \cdot \delta A_{y,xz} \cong \frac{1}{\sqrt{2}} \cdot \frac{\delta I}{I}$	with:	$\sigma_0 = 80 \text{mb}$ $\rho d = 3 \cdot 10^{11} \text{Protons} / \text{cm}^2$
giving for a 20 min.			$P_{x}, P_{yz} = 1$
measurement:	$S_{}$ of DD N_20 10 ⁻⁵		$N = 1200s \cdot 10^{6} Hz = 1.2 \cdot 10^{9} turns$
	$S = \sigma_0 \cdot \rho d \cdot P_y P_{xz} \cdot N = 2.9 \cdot 10^{-5}$		$I_0 = 32 \text{mA}$ (Space charge limit $2 \cdot 10^{11}$)

The BCT resolution is 0.5μ A for 1s measurement:

$$\delta I / I(@20 min) = \frac{0.5 \mu A}{32 m A} \cdot \frac{1}{\sqrt{1200}} = 4.5 \cdot 10^{-7}$$

This results in:


$$\delta A_{y,xz} \cong \frac{1}{\sqrt{2}} \cdot \frac{\delta I}{I} \cdot \frac{1}{S} = 0,011$$

Use of a targetcell (, 180) and measuring for 10 days ($\div\sqrt{720} \rightarrow \delta A_{y,xz} \Box 2.2 \cdot 10^{-6}$)

Combining data at present is worse by a factor 4: $\rightarrow \delta A_{y,xz} = 8.8 \cdot 10^{-6}$

The Feasiblity of the TRIC Experiment at COSY Some Introductory Remarks

	limit on edm		improvement	new physics
particle	d [e cm] (95% C.L.)	system	factor	limits $[e \text{ cm}]$
e	1.9×10^{-27}	205 Tl	>1	10^{-27}
μ	1.05×10^{-19}	rest frame E	10^{3}	10^{-22}
τ	3.1×10^{-16}	$(e^+e^- \rightarrow \tau^+\tau^-\gamma)$	10^{4}	10^{-20}
p	6.5×10^{-23}	205 Tl-F	10^{4}	5×10^{-26}
n	7.5×10^{-26}	ultracold neutrons	>1	5×10^{-26}
Λ	1.5×10^{-16}	rest frame E	10^{7}	10^{-23}
¹⁹⁹ Hg	2.1×10^{-28}	¹⁹⁹ Hg	>1	10^{-28}
Ξ^0	?	as Λ	?	10^{-23}

²⁰⁵Tl: $d = -585 d_e$

Table 1: Current limits on edm's, converted to a common 95% confidence limit. The improvement factor indicates how much the measurement needs to be improved to yield new physics limits. No data in the charmed sector

Precession frequency ω due to a particle with anomalous magnetic moment a = q/2 - 1 and edm d

$$\begin{split} \omega &= & -\frac{e}{m} \left[a \mathbf{B} - a \frac{\gamma}{\gamma + 1} \mathbf{v} (\mathbf{v} \cdot \mathbf{B}) - \left(a - \frac{1}{\gamma^2 - 1} \right) \mathbf{v} \times \mathbf{E} \right] \\ &- \frac{d}{2} \left[\mathbf{E} - \frac{\gamma}{\gamma + 1} \mathbf{v} (\mathbf{v} \cdot \mathbf{E}) + \mathbf{v} \times \mathbf{B} \right] \end{split}$$

 199 Hg: d \propto nucl \times atom

Theoretical input needed

D.Eversheim, SPIN- Praha-2008

52

EDM Limits as of June 2004

		v 1
Particle	/ / /	Method
е	$< 1.6 imes 10^{-27}$	Thallium beam ¹
μ	$< 1.05 imes 10^{-18}$	Tilt of precession plane in magnetic moment experiment 2
au	$(-2.2 < d_\tau < 4.5) \times 10^{-17}$	BELLE $e^+e^- \to \tau\tau$ events ³
n	$< 6.3 imes 10^{-26}$	Ultra-cold neutrons 4
р	$(-3.7\pm6.3) imes10^{-23}$	120kHz thallium spin resonance ⁵
Λ	$(-3.0\pm7.4) imes10^{-17}$	Tilt of precession plane in magnetic moment experiment ⁶
$ u_{e,\mu}$	$< 2 \times 10^{-21}$	Inferred from magnetic moment limits ⁷
ν_{τ}	$< 5.2 imes 10^{-17}$	Z decay width ⁸

- Large number of Possibilities to
 - Find Physics Beyond Standard Theory
 - Determine Standard Model important Parameters

Urgent issues to be solved in Theory and Experiment

In the area of Fundamental Symmetries and Interactions there is large overlap between Astro-, Particle-, and Nuclear- Physics

- ⇒ Fields merge
- ⇒ Low energy Precision and High Energy Direct approaches are complementary

Enourmous benefit from a High Power Proton machine expected

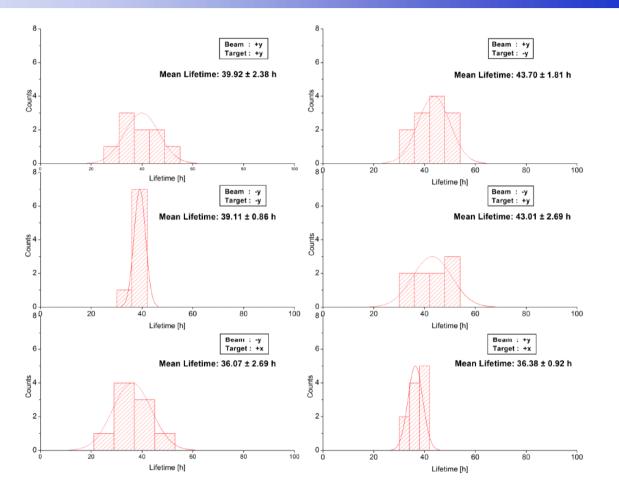
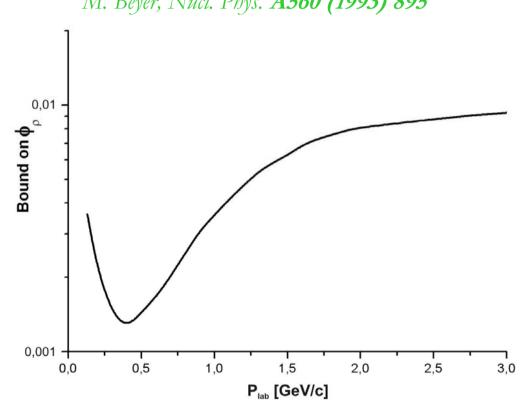


Figure 5.2: The distribution of the unweighted lifetimes of all the polarization setups.



55

The Feasiblity of the TRIC Experiment at COSY Some Experimental Details

Theoretical bound on TRV by rho exchange

M. Beyer, Nucl. Phys. A560 (1993) 895

Beam/Target	Without	With
	parabolic subtraction	parabolic subtraction
- y/ + y	41.29 ± 0.59	41.98 ± 0.54
+ y/ - y	41.54 ± 0.64	45.13 ± 0.75
Mean	41.41 ± 0.43	43.56 ± 0.46
- y/ - y	41.87 ± 0.59	44.56 ± 0.67
+ y/ + y	41.38 ± 0.62	42.28 ± 0.65
Mean	41.62 ± 0.42	43.42 ± 0.46
- y/ +x	37.98 ± 0.48	41.52 ± 0.54
+ y/ +x	35.46 ± 0.44	40.12 ± 0.65
Mean	36.72 ± 0.33	40.82 ± 0.42

Table 5.7: The Lifetime values in hours obtained using the global fitting method.

