Gluon polarisation from high transverse momentum hadron pairs production @ COMPASS

Luís Silva

lsilva@lip.pt

On behalf of the COMPASS Collaboration

Contents

- Motivation
- Direct measurement $\Delta G/G$
- COMPASS experiment
- High pT analysis, $Q^2 > 1 (GeV/c)^2$
- High pT analysis, $Q^2 < 1 (GeV/c)^2$
- ΔG/G results
- Conclusion and Outlook

The Nucleon Spin

 $S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma$

The naïve Quark-Parton Model (QPM) considers only the contribution from quarks

 $\Rightarrow \Delta \Sigma = 1$

Applying Relativistic Corrections

 $\Rightarrow \Delta \Sigma \approx 0.75$

Using the Ellis-Jaffe Sum rule and Hyperon decays $\Rightarrow \Delta \Sigma \approx 0.6$

Phys.Rev.D9,(1974)1444 Erratum-ibid.D10,(1974)1669.

(J.Ellis and R.Jaffe)

The Nucleon Spin

COMPASS

$$S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma$$

In 1988 EMC measured $\Delta \Sigma = 0.12 \pm 0.17$ (Phys.Lett.B206,364)

Today world data results, including COMPASS, gives:

 $\Delta \Sigma = 0.30 \pm 0.01$ (stat.) ± 0.02 (evol.) @ < μ^2 > = 3 (GeV/c)²

(using QCD NLO fits) Phys.Lett.B647, (2007)8

Where is the remaining part?

How is the nucleon spin composed?

The Nucleon Spin

$$S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$$

Adding the following contributions:

 ΔG – from gluons

 $L = L_g + L_q$ from orbital angular momenta of quarks and gluons

How much is the contribution from gluons and from L?

Spin Puzzle

Direct measurement of $\Delta G/G$

Photon-gluon fusion process (PGF)

Experiments with polarised beam and target could be sensible to gluon helicity

Direct measurement of $\Delta G/G$

Photon-gluon fusion process (PGF)

To tag this process there are two procedures concerning event selection :

• Open-charm meson (C.Franco talk)

© Provides the purest sample of PGF events, almost free from background contamination. Not much MC dependent.

😕 Low statistics.

NLO corrections can be important.

- High transverse momentum hadrons (Q²<1 and Q²>1 (GeVc)²)
 [©] Much more statistics.
 - Physical background: strongly model dependent, requires a very good agreement between Data and MC.

The COMPASS Spectrometer

High p_T Analysis, Q² >1 (GeV/c)²

SPIN PRAHA 2008

How is $\Delta G/G$ measured?

 $\Delta G/G$ from PGF process:

High p_{τ} Analysis, $Q^2 > 1 \text{ GeV}^2$

We access A^{PGF} by measuring of the helicity asymmetry of two high-p_T hadrons at large Q², this measurement includes also contribution other physical processes:

The same decomposition can be done for inclusive asymmetry :

$$A_{LL}^{incl}(x_{Bj}^{incl}) = \frac{\varDelta G}{G}(x_{g}^{incl}) a_{LL}^{incl, PGF} \left(\frac{\sigma^{PGF}}{\sigma^{Tot}}\right)_{incl} + A_{1}^{LO}(x_{C}^{incl}) a_{LL}^{incl, C} \left(\frac{\sigma^{C}}{\sigma^{Tot}}\right)_{incl} + A_{1}^{LO}(x_{Bj}^{incl}) D\left(\frac{\sigma^{LO}}{\sigma^{Tot}}\right)_{incl}$$

SPIN PRAHA 2008

MPA

$$\Delta G/G$$
 for High p_{T} , $Q^2 > 1 GeV^2$

The final formula for the gluon polarization:

$$\frac{\Delta G}{G}(x_g^{av}) = \frac{A_{LL}^{2h}(x_{Bj})}{\beta} - \frac{A_1(x_{Bj})}{\beta} D \frac{R_{LO}}{R_{LO^{incl}}} - \frac{A_1(x_C)}{\beta} \beta_1 + \frac{A_1(x_C')}{\beta} \beta_2$$

- A^{2h}_{LL} is the measured 2-h asymmetry.
- a_{II} and R are estimated using MC.
- A, are taken using a parametrisation on inclusive data. (EPJ C52 (2007)255)

Event selection

- Interaction vertex which contains an incoming and a scattered muon and at least 2 outgoing hadrons
- For Deep Inelastic Scattering variables: Q²>1 (GeV/c)² and 0.1 < y < 0.9
- Each hadron is required to have: $p_{\tau} > 0.7 \text{ GeV/c}$
- For the pair of hadrons is required an invariant mass m > 1.5 GeV/c² and $z_1 + z_2 < 0.95$

Years	2002	2003	2004	all years
Statistics	49585	170943	286685	507213

Monte Carlo Simulation

SPIN PRAHA 2008

Data – Monte Carlo comparison, Q²>1(GeV/c)²

high- p_T sample (x,y and Q²)

The agreement between data and MC is good

SPIN PRAHA 2008

Luís Silva (Isilva@lip.pt)

)MPAS

Data – Monte Carlo comparison, Q²>1(GeV/c)²

high- p_T sample: hadron variables: p_{T1} , p_{T2}

OMPAŠ

Weighting method

The idea is to enhance the PGF events sample and to reduce the physical background.

• A weight is applied on event-by-event basis:

$$W = fDP_b\beta$$

• Therefore for every event we have to know:

$$\begin{split} R_{PGF}, R_C, R_{LO}, R_{PGF}^{incl}, R_C^{incl}, R_{LO}^{incl}, \\ a_{LL}^{PGF}, a_{LL}^{PGF, incl}, a_{LL}^C, a_{LL}^{C, incl}, \\ x_C, x_G, f, D, P_b \end{split}$$

 f, D, P_b are directly obtained from data; the rest has to be estimated/parameterised.

Weighting method

Using a Neural Network to assign to each event a probability of originating from each of the three processes (LO, PGF or Compton).

- MC is used to train the Neural Network (NN).
- A parametrization is constructed.
- A weight is built from the parametrization.
- Data is weighted in an event-byevent basis.

Fractions R

We parametrise fractions R (probabilities). Two variables O_1 and O_2 are used (R sum up to 1).

 $R_i = \frac{\sigma^i}{\sigma^{Tot}}$

22 Jul 2008

SPIN PRAHA 2008

Systematics errors Study

What has been checked?

- False asymmetries:
- Neural Network stability:
 - Several training MC samples
- Systematic errors due to MC:
 - Parton shower radiation on/off and tuning
- $\delta P_b, \delta P_t, \delta f$
- A₁ parametrisation
 - Different parametrisations were used

$\delta(\Delta G/G)_{false}$	0.011	
$\delta(\Delta G/G)_{NN}$	0.006	
$\delta(\Delta G/G)_{MC}$	0.040	
$\delta(\Delta G/G)_{f,Pb,Pt}$	0.006	
$\delta(\Delta G/G)_{A1}$	0.008	
Total	0.045	

High p_T Analysis, Q² <1 (GeV/c)²

SPIN PRAHA 2008

SPIN PRAHA 2008

- X_{Bi}< 0.05

 $- \sum p_{\tau}^2 > 2.5 \text{ GeV}^2$ 0└<u>-</u> 10⁻³ 10⁻² 10⁻¹

~90 % of our statistics in this sample

High p_{τ} Analysis, $Q^2 < 1 (GeV/c)^2$

Processes Contribution for high p_{τ} , Q²<1 (GeV/c)²

PGF and Background events:

MC Generator PYTHIA

OMPASS

 Same background as Q² > 1 (GeV/c)² case

 Additional background from resolved photon events

 Additional processes sensitive to gluons in the nucleon

SPIN PRAHA 2008

Data – Monte Carlo comparison, Q²<1 (GeV/c)²

The agreement between MC and data is good

Results, Q²<1 (GeV/c)²

SPIN PRAHA 2008

Luís Silva (lsilva@lip.pt)

Conclusions and Outlook

- Recent results on $\Delta G/G$ from COMPASS high p_T analysis have been presented
- These measurements are consistent with zero @ $x_{d} \approx 0.1$

- 2006 and 2007 data to be analyzed
- Increase statistics for 2006 and 2007 data due to the new COMPASS magnet

Spares

SPIN PRAHA 2008

Uncertainty for γ , $Q^2 < 1 \text{ GeV}^2$

Contribution from resolved photons

- Problem: polarised PDFs of the photon is not measured !
 - \rightarrow use unpolarised PDFs to constrain polarised

$$-q^{\gamma}(x,Q^2) < \Delta q^{\gamma}(x,Q^2) < q^{\gamma}(x,Q^2)$$

This leads to 2 extreme (max & min) scenarios

additional uncertainty band.

Glück, Reya, Sieg, Eur. Phys. J. C20 (2001) 271

