∆G/G Open-Charm results from COMPASS

SYMMETRIES AND SPIN (SPIN - PRAHA - 2008)

Celso Franco (*LIP – Lisboa*) on behalf of the COMPASS collaboration

Outline

- Nucleon spin structure:
 - Physics motivation
- The COMPASS experiment:
 - Spectrometer + polarised target
 - Ring Imaging Cherenkov (RICH) for particle identification
- COMPASS analysis and results on $\Delta G/G$:
 - Open-Charm channel

Nucleon spin structure

• Nucleon spin $\rightarrow \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$

quarks gluons orbital angular momentum (quarks/gluons)

• Assuming the static quark model wave function: $|p\uparrow\rangle = \frac{1}{\sqrt{18}} \Big\{ 2|u\uparrow u\uparrow d\downarrow\rangle - |u\uparrow u\downarrow d\uparrow\rangle \\ -|u\downarrow u\uparrow d\uparrow\rangle + (u\leftrightarrow d) \Big\}$

$$\Delta u = \langle p \uparrow | N_{u\uparrow} - N_{u\downarrow} | p \uparrow \rangle = \frac{3}{18}(10 - 2) = \frac{4}{3}$$
$$\Delta d = \langle p \uparrow | N_{d\uparrow} - N_{d\downarrow} | p \uparrow \rangle = \frac{3}{18}(2 - 4) = -\frac{1}{3}$$

• $\Delta \Sigma = \Delta u + \Delta d = 1$

 \Rightarrow Up and down quarks carry all the nucleon spin

Spin crisis

- However, applying relativistic corrections (and assuming SU(3) symmetry):
 - ΔΣ ~ 0.60
- Where is the remaining part of the nucleon spin? $(\Delta G?L_{a(G)}?)$
 - <u>Gluons solved the nucleon missing momentum problem</u>:
 - Will they be the solution too for this missing spin? \Rightarrow Measure ΔG !
- **Experimental** $\Delta \Sigma$ (from polarised DIS):

- Another reason for measuring gluon spin contribution:
 - <u>Due to gluon axial anomaly</u>, if ΔG is large (~2.5), it could explain why $\Delta \Sigma$ was found so small

The COMPASS experiment at CERN

Common Muon and Proton Apparatus for Structure and Spectroscopy

momentum: 160 (GeV/c)
longitudinal polarisation: P
luminosity:~5.10³²cm⁻²s⁻¹
intensity: 2.10⁸ μ⁺/spills
spills: 4.8 s/16.8 s

•

The COMPASS spectrometer

Polarised target (2002-2004)

- Target material: ⁶LiD Solenoid field: 2.5 T
- Polarisation: $P_T > 50\%$ ³He/⁴He: $T_{min} \sim 50 \text{ mK}$

- **Dynamic nuclear polarisation:**
 - High electron polarisation (high magnetic moment)
 - Microwave irradiation of material, for simultaneous flip of electron and nucleon spin
 - After spin flip, electron relaxates to lower energy state

- Dilution factor: $f \sim 0.4$

- Nucleon has long relaxation time (low magnetic moment)

Target upgrade for 2006 data

- Larger solenoid acceptance
 - 70 mrad \Rightarrow 180 mrad
- 3 target cell for false asymmetries reduction

 \Rightarrow "same" acceptance (*u* and *d* cells) for asymmetry extraction

Particles identification: RICH (2002-2004)

- π, K separation until ~50 (GeV/c)
 80 m³ filled with C₄F₁₀: n = 1.00153
- 116 VUV spherical mirrors (21 m³)
- 5.3 m² photodetectors: 82944 pixels

RICH upgrade for 2006 data

Open-Charm DIS production The photon-gluon fusion process (PGF)

How to measure ΔG ?

• Polarised collision in DIS:

- After gluon tag (reconstructing charmed mesons):
 - Measure raw asymmetries for gluon spin information!

Gluon polarisation from Open-Charm channel

Why measure gluon spin from Open-Charm?

- cc production is dominated by the PGF process, and <u>free from physical</u> <u>background</u> (ideal for probing gluon polarisation)
 - In our center of mass energy, the contribution from intrinsic charm (*c quarks not comming from hard gluons*) in the nucleon is negligible

X_{Bj}

0.5

OCOMPASS range of x_{Bi}

Open-Charm basic selection

- **Open-Charm events considered** (from c quarks fragmentation):
 - $D^0 \rightarrow K\pi$ (BR: 4%)
 - $D^* \to D^0 \pi_{S} \to K \pi \pi_{S} (30\% D^0 \underline{tagged with} D^*)$
- K and π are identified by RICH \Rightarrow <u>D⁰ invariant mass reconstructed!</u>
- In case of D^{*}, π_s sample is cleaned (slow pions: p < 8 (GeV/c)):
 ⇒ Rejecting electrons with RICH enhances S/B
- Basic kinematic cuts for combinatorial background suppression:
 - Reject colinear events with virtual photon (meson angular cut)
 - Reject events with very small z_{D} (expected to be ~ 0.5 in PGF)
- After selecting events (counting N_{cell} events)
 - What is missing for $\Delta G/G? \Rightarrow S/S+B$ and a_{II}

Invariant mass spectra on 2002-2006 data

Σ (= S/S+B) as an Open-Charm event probability

- Events with small $\Sigma \Rightarrow$ low weight
 - Mostly combinatorial background selected
- With Σ in the weight, the kinematical cuts can be loose:
 - More background events
 - Preserve signal events
- Events with large $\Sigma \Rightarrow$ high weight
 - Mostly Open-Charm events selected

D⁰-tagged events with 0.92 < Σ

COMPASS Preliminary

Possibility to include a new Open-Charm channel in the analysis for statistical error improvement

Why is better to have (S/S+B) for every event?

Σ (= S/S+B) effect in D⁰ mass spectra

How to parameterize Σ ?

- $\Sigma_{\rm p} = S/B$ is defined and parameterized for every event:
 - Σ_{p} is built *(iteratively)* over some kinematic variables and RICH response:
 - $(\Sigma_p)_{initial} = 1$
 - Each variable is divided in mass bins (binning needed for statistical gain)
 - Fit all D⁰ and D* mass spectra inside each bin of each variable
 - \sum_{p} is a justed (for every event inside each bin) to $(S/B)_{fit}$
 - After convergence, parameterization is checked:
 - No artificial peak produced in wrong charge mass spectra
 - <u>Mass dependence</u> \Rightarrow Included in Σ after convergence of Σ_{n}

• $(\Sigma = \sum_{p} / \sum_{p+1})$ in the weight

probability for a given event to be background or Open-Charm

S/B improvement with the parameterization

Partonic (photon-gluon) asymmetry a

• a₁₁ is dependent on full knowlege of partonic kinematics

•
$$a_{LL} = \frac{\Delta \sigma^{PGF}}{\sigma_{PGF}} (y, Q^2, x_g, z_C, \phi)$$

- Can't be experimentally obtained! \Rightarrow only one charmed meson is reconstructed
- a_{LL} is obtained from Monte-Carlo *(in LO)*, to serve as input for a Neural Network parameterization on reconstructed kinematical variables: y, x_{Bi} , q^2 , z_D and p_{TD}
- $\Delta G/G$ is obtained event by event also in LO

Parameterized a_{LL} (by NN), shows a strong correlation with the generated one (comparison with generated a_{LL} using AROMA)

Method for $\Delta G/G$ and polarised A_{R} extraction

• The number of events comes from asymmetries in the following way:

$$N_{u,d} = a \phi n (S+B)(1+P_T P_\mu f (a_{LL} \frac{S}{S+B} \frac{\Delta G}{G} + a_{LL}^B \frac{B}{S+B} A_B))$$

a cceptance, ϕ = muon flux, n = number of target nucleons

- We have 4 cell configurations (2 cells oppositely polarised + field reversal for acceptance normalization):
 - Weight the 4 N_{u,d} equations by ω_s and by $\omega_B = P_{\mu} \cdot f \cdot D(y) \cdot (B/S+B)$

$$< \Sigma_{k=1}^{N_{cell}} \omega_{i}^{k} > = \hat{a}_{cell,i} (1 + (<\beta_{cell,S} > \omega_{i})A_{S} + (<\beta_{cell,B} > \omega_{i})A_{B}) = f_{cell,i}$$

$$(cell = u, d, u', d') \qquad (\Delta G/G) \qquad (i = S, B)$$

$$\hat{a} = a \phi n \sigma = a \phi n (\sigma_{PGF} + \sigma_{B}) = a \phi n (S + B)$$

$$\beta_{S} = P_{B}P_{T} f a_{LL} \frac{S}{S+B} \qquad \beta_{S} = P_{B}P_{T} f D \frac{B}{S+B}$$

$$8 eq. with 10 unknowns$$

How to solve equations for simultaneous $\Delta G/G$ and $A_{\rm B}$ extraction?

• **Possible acceptance changes with time are the same for both cells** (also the muon flux is the same for both cells):

 $10 \Rightarrow \underline{8 \text{ unknowns}}: 6 \hat{a}, A_{s} \text{ and } A_{B} \rightarrow \frac{\hat{a}_{u,S} \hat{a}_{d',S}}{\hat{a}_{u',S} \hat{a}_{d,S}} = 1 \quad , \quad \frac{\hat{a}_{u,B} \hat{a}_{d',B}}{\hat{a}_{u',B} \hat{a}_{d,B}} = 1$

• Signal and background events are affected in same way before and after a field reversal:

$$8 \Rightarrow \underline{7 \text{ unknowns}}: 5 \hat{a}, A_{s} \text{ and } A_{B} \longrightarrow \left| \frac{\hat{a}_{u,S}}{\hat{a}_{u,B}} = \frac{\hat{a}_{u',S}}{\hat{a}_{u',B}} \right|, \quad \frac{\hat{a}_{d,S}}{\hat{a}_{d,B}} = \frac{\hat{a}_{d',S}}{\hat{a}_{d',B}}$$

• Unknowns are obtained by a χ^2 minimization:

$$X^{2} = (\overrightarrow{N} - \overrightarrow{f})^{T} \operatorname{Cov}^{-1} (\overrightarrow{N} - \overrightarrow{f})$$

Results

Systematic errors

- Possible errors of experimental systematics (*false asymmetries*), Σ and a_{LL} in weights definitions:
 - Results in an error which is proportional to $\Delta G/G$
- Σ was obtained in different mass windows (*around the peak*), different fit functions were used, different order for the variables on which the parameterization is applied, and different number of iterations
- **a**_{LL} was estimated with different values for the charm quark mass and different pdf
 - For a nominal analysis with weight w^0 , and uncertainty in the weight w^i , the spread in $\Delta G/G$ is given by the spread of: $\langle w^0 w^i \rangle / \langle (w^0)^2 \rangle$

All systematic contributions for ∆G/G	Source	\mathbf{D}^{0}	\mathbf{D}^{*}
	Beam polarisation	0.025	0.025
	Target polarisation	0.025	0.025
	Dilution factor	0.025	0.025
	False asymmetry	0.05	0.05
	Σ	0.07	0.01
	a _{LL}	0.05	0.03
	Total	0.11	0.07

Conclusions

• Our new △G/G measurement shows a significant statistical improvement as compared with our previous result:

•
$$(\Delta G/G)_{new}$$
 = -0.49 ± 0.27 ± 0.1

 $(a) < x_g > = 0.11$ $< \mu^2 > = 13 (GeV/c)^2$

•
$$(\Delta G/G)_{old} = -0.47 \pm 0.44 \pm 0.15$$

- Main reasons for this new result:
 - 2006 data included
 - New cut cleaning electrons from D^{*} (π_s more pure for p < 8 (GeV/c))
 - Parameterization of signal strength
 - Improved tracking
- Gluon polarisation is obtained directly from data in a model independent way!

Conclusions II

COMPASS, open charm, prel., 02-06 • Gluon polarisation compatible COMPASS, high p_, Q²<1 (GeV/c)², prel., 02-04 COMPASS, high p_, Q²>1 (GeV/c)², prel., 02-04 with zero within 2σ HERMES, high p_{\perp} , all Q^2 HERMES, single high $\textbf{p}_{_{T}}$ hadrons, all \textbf{Q}^2 , prel. **D** 0.8 SMC, high p_{\perp} , $Q^2>1$ (GeV/c)² fit with $\Delta G>0$, $\mu^2=3(GeV/c)^2$ 0.6 **Future studies:** fit with $\Delta G < 0$, $\mu^2 = 3 (GeV/c)^2$ 0.4 • 2007 data • NLO analysis -0 • Neural Network event -0.2 selection, with multidimentional parameterization of Σ -0.4 -0.6 • RICH sub-threshold D⁰ events -0.8 recovery • D^{*} bump events recovery 10⁻² **10⁻¹** X

• Small values of ∆G are preferred!

SPARES

QCD analysis of the world data on structure function g₁

Method

- In NLO QCD: $g_1(x,Q^2) = \frac{1}{2} < e^2 > [C_q^S \otimes \Delta \Sigma + C_q^{NS} \otimes \Delta q^{NS} + 2n_f C_G \otimes \Delta G]$
- **DGLAP** evolution equations:

- Parton distributions are parameterized at Q_0^2 $(\Delta \Sigma, \Delta q_{3}, \Delta q_{8}, \Delta G) = \eta \frac{x^{\alpha}(1-x)^{\beta}(1+\gamma x)}{\int_0^1 x^{\alpha}(1-x)^{\beta}(1+\gamma x) dx}$
- DGLAP evolution until measured Q²
 - Fit all data together

•

$$\chi^{2} = \Sigma_{i=1}^{N} \frac{[g_{1}^{calc}(x,Q^{2}) - g_{1}^{exp}(x,Q^{2})]}{[\sigma_{stat}^{exp}(x,Q^{2})]^{2}}$$

ΔG from QCD fits

230 points from 9 experiments: 43 from COMPASS

