ADVANCED STUDIES INSTITUTE SYMMETRIES AND SPIN (SPIN-Praha-2008)

Prague, July 20 - July 26, 2008

Transverse Spin Physics at FAIR

Marco Maggiora

Dipartimento di Fisica "A. Avogadro" and INFN - Torino, Italy

The future FAIR facility

Key Technical Features

Cooled beamsRapidly cycling superconducting magnets

Primary Beams

•10¹²/s; 1.5 GeV/u; ²³⁸U²⁸⁺
•Factor 100-1000 present in intensity
•2(4)x10¹³/s 30 GeV protons
•10¹⁰/s ²³⁸U⁷³⁺ up to 25 (- 35) GeV/u

Secondary Beams

Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
Antiprotons 3 (0) - 30 GeV

Storage and Cooler Rings

- •Radioactive beams
- •e A collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

HESR - High Energy Storage Ring

- Production rate 2x10⁷/sec
- P_{beam} = 1 15 GeV/c
- N_{stored} = $5 \times 10^{10} \overline{p}$
- Internal Target

High resolution mode

- $\delta p/p \sim 10^{-5}$ (electron cooling)
- Lumin. = 10^{31} cm⁻² s⁻¹

High luminosity mode

- Lumin. = $2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- $\delta p/p \sim 10^{-4}$ (stochastic cooling)

The PANDA Detector

HESR: asymmetric collider layout

Asymmetric double-polarised collider mode proposed by PAX people:

- APR (Antiproton Polariser Ring): polarising antiprotons, p > 0.2 GeV/c
- CSR (Cooled Synchrotron Ring): polarised antiprotons, p = 3.5 GeV/c
- HESR: polarised protons, p = 15 GeV/c

The PAX detector

Polarized Antiproton experiments Forward detector Scintillation hodoscope **Drift chambers** Cerenkov P 3.5 GeV/c Silicon detector P 15 GeV/c Vacuum pipe EM calorimeter Magnet coils Asymmetric collider ($\sqrt{s}=15$ GeV): 1 m. polarized protons in HESR (p=15 GeV/c) polarized antiprotons in CSR (p=3.5 GeV/c)

A common goal: the nucleon structure

- A complete description of nucleonic structure requires:
 - quark and gluon distribution functions (PDF)
 - quark fragmentation functions (FF)
- (a) leading twist and (a) NLO; including k_T dependence:
 - Transverse Momentum Dependent (TMD) PDF and FF
- Physics objectives:
 - Drell-Yan (DY) di-lepton production
 - electromagnetic form factors
 - Generalised Parton Distribution (GPD) =>
 Generalised Distribution Amplitudes (GDA)

Collinear kinematics: κ_T -independent Parton Distributions

Partonic distributions $q = q_+^+ + q_-^+$ $g = g_+^+ + g_-^+$ helicity distributions $\Delta q = q_+^+ - q_-^+$ $\Delta g = g_+^+ - g_-^+$

Unpolarized $q(x,Q^2), g(x,Q^2)$ and long. polarized $\Delta q(x,Q^2)$: well known Gluon $\Delta g(x,Q^2)$: under investigation

Transversity $h_1(x)$

 $\delta q(x)$: a chirally-odd, helicity flip distribution function $\delta g(x)$: there's no gluon transversity distribution; transversely polarised nucleon shows transverse gluon effects at twist-3 (g_2) only

SOFFER INEQUALITY

An upper limit: $|h_1(x)| \le \frac{1}{2} |f_1(x) + g_1(x)|$

- can be violated by factorisation at NLO
- inequality preserved under evolution to lager scales only

TMD: κ_T -dependent Parton Distributions

TMD: κ_{T} -dependent Parton Distributions

Leading-twist correlator depends on

five more distribution functions:

$$\begin{split} \Phi(x_a, \boldsymbol{k}_{\perp a}) &= \frac{1}{2} \left[f_1 \not h_+ + f_{1T}^{\perp} \underbrace{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} n_+^{\nu} k_{\perp a}^{\rho} (P_T^A)^{\sigma}}_{M} + \left(P_L^A g_{1L} + \frac{\boldsymbol{k}_{\perp a} \cdot \boldsymbol{P}_T^A}{M} g_{1T}^{\perp} \right) \gamma^5 \not h_+ \right. \\ &+ \left. \left(h_{1T} i \sigma_{\mu\nu} \gamma^5 n_+^{\mu} (P_T^A)^{\nu} + \left(P_L^A h_{1L}^{\perp} + \frac{\boldsymbol{k}_{\perp a} \cdot \boldsymbol{P}_T^A}{M} h_{1T}^{\perp} \right) \frac{i \sigma_{\mu\nu} \gamma^5 n_+^{\mu} k_{\perp a}^{\nu}}{M} \right. \\ &+ \left. \left(h_1^{\perp} \frac{\sigma_{\mu\nu} k_{\perp a}^{\mu} n_+^{\nu}}{M} \right] \,. \end{split}$$

TMD: κ_{T} -dependent Parton Distributions

Drell-Yan Di-Lepton Production — $\overline{p}p \rightarrow \ell^+ \ell^- X$

Drell-Yan Asymmetries — $\overline{p}^{\uparrow}p^{\uparrow} \rightarrow \ell^{+}\ell^{-}X$

Uncorrelated quark helicities \Rightarrow access chirally-odd functions

Ideal because:

- h₁ not to be unfolded with fragmentation functions
- chirally odd functions not suppressed (like in DIS)

lepton plane (cm) Collins-Soper frame: ^[1]Phys. Rev. D16 (1977) 2219.

Drell-Yan Asymmetries — $p^{\uparrow}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$

PROBLEMATIC MEASUREMENT

[1] Martin et al, Phys.Rev. D60 (1999) 117502.
 [2] Barone, Colarco and Drago, Phys.Rev. D56 (1997) 527.

Double Spin Asymmetries $-\overline{p}^{\uparrow}p^{\uparrow} \rightarrow \ell^+ \ell^- X$

$$\overline{h}_{1}^{\overline{a}}(\mathbf{X}_{1}) \Box h_{1}^{a}(\mathbf{X}_{2}) \Rightarrow \mathbf{A}_{TT} = \frac{\sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\overline{\ell}X\right) - \sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\overline{\ell}X\right)}{\sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\overline{\ell}X\right) + \sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\overline{\ell}X\right)} \propto \sum_{a} e_{a}^{2} h_{1}^{a}(\mathbf{X}_{1}) h_{1}^{a}(\mathbf{X}_{2})$$

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow J/_{\Psi} \rightarrow \ell^+ \ell^- X$

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow J_{\Psi} \rightarrow \ell^+ \ell^- X$

QCD higher order contributions might be sizeable at smaller M but cross-sections only are affected, NOT A_{TT}: K-factors are almost spin indipendent^[1]

^[1] Shimizu et al., hep-ph/0503270.

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow J/_{\Psi} \rightarrow \ell^+ \ell^- X$

Moreover QCD contributions to A_{TT} : drop increasing energy^[1]

^[1] Shimizu et al., hep-ph/0503270.

At higher energy (s ~ 200 GeV²) perturbative corrections^[1] are sensibly smaller in the safe region even for cross-sections

^[1]H. Shimizu et al., Phys. Rev. D71 (2005) 114007

Phase space for Drell-Yan processes

Drell-Yan Asymmetries — $\overline{p}p \rightarrow \mu^+ \mu^- X$

 $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\left(1+\lambda\cos^2\theta+\mu\sin^2\theta\cos\varphi+\frac{\nu}{2}\sin^2\theta\cos2\varphi\right)$

NLO pQCD: $\lambda \sim 1$, $\mu \sim 0$, $\upsilon \sim 0$

Lam-Tung sum rule: $1 - \lambda = 2\nu$

• reflects the spin-1/2 nature of the quarks

insensitive top QCD-corrections

Experimental data ^[1]: $\upsilon \sim 30 \%$

^[1] J.S.Conway et al., Phys. Rev. D39 (1989) 92.

Expected polar distribution for DY dilepton production

Perfect agreement with pQCD exptectations!

^[1] McGaughey, Moss, JCP, Annu. Rev. Nucl. Part. Sci. 49 (1999) 217.

Angular distributions for \overline{p} and $\pi^- - \pi - N, \overline{p} N @ 125 \text{ GeV/c}$

Angular distribution in CS frame

 π -N $\rightarrow \mu + \mu^{-}X$ @ 252 GeV/c -0.6 < cos9 < 0.6 4 < M < 8.5 GeV/c²

E615 @ Fermilab

Conway et al, Phys. Rev. D39 (1989) 92

Angular distribution in CS frame

E615 @ Fermilab π -N $\rightarrow \mu + \mu^{-}X$ @ 252 GeV/c

30% asymmetry observed for π^-

Conway et al, Phys. Rev. D39 (1989) 92

Does it come from a nuclear effect?

NA10 @ CERN π -N $\rightarrow \mu + \mu^{-}X$ @ 286 GeV/c

Remarkable and unexpected violation of Lam-Tung rule

υ involves transverse spin effects at leading twist ^[2] If unpolarised DY σ is kept differential on k_T , cos2φ contribution to angular distribution provide: $h_1^{\perp}(x_2, \kappa_{\perp}^2) \times \overline{h}_1^{\perp}(x_1, \kappa_{\perp}'^2)$

^[2] D. Boer et al., Phys. Rev. D60 (1999) 014012.

^[1] NA10 coll., Z. Phys. C37 (1988) 545

• $v > 0 \rightarrow$ valence h_1^{\perp} has same sign in π and N

- $V(\pi W \rightarrow \mu^+ \mu^- X) \sim h_1^{\perp}(\pi)_{valence} \propto h_1^{\perp}(p)_{valence}$
- $V(pd \rightarrow \mu^+\mu^-X) \sim h_1^{\perp}(p)_{valence} \ge h_1^{\perp}(p)_{sea}$
- V > 0 → valence and sea h₁[⊥] has same sign, but sea h₁[⊥] should be significantly smaller
 [1] L. Zhu et al, PRL 99 (2007) 082301;
 [12 D. Boer, Phys. Rew. D60 (1999) 014012.

Unpolarised Drell-Yan — $\overline{p}p \rightarrow \mu^+\mu^-X$

 $s = 30 \, \text{GeV}^2$

Perturbative corrections^[1] are expected to be large in the PANDA energy range

Unpolarised DY cross-section allow the investigation of:

- limits of the factorisation and perturbative approach
- relation of perturbative and not perturbative dynamics in hadron scattering
- ^[1]H. Shimizu et al., Phys. Rev. D71 (2005) 114007

Drell-Yan Asymmetries —
$$\overline{p}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$$

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} \propto \left(1 + \cos^2\theta + \frac{\nu}{2}\sin^2\theta\cos^2\varphi + \rho \left|S_{1T}\right|\sin^2\theta\sin(\varphi - \varphi_{S_1}) + \cdots\right)$$

 $\lambda \sim 1, \mu \sim 0$

$$A_{T} = \left| S_{1T} \right| \frac{2\sin 2\theta \sin(\varphi - \varphi_{S_{1}})}{1 + \cos^{2}\theta} \frac{M}{\sqrt{Q^{2}}} \frac{\sum_{a} e_{a}^{2} \left[x_{1} f_{1}^{a\perp}(x_{1}) f_{1}^{\overline{a}}(x_{2}) + x_{2} h_{1}^{a}(x_{1}) h_{1}^{\overline{a}\perp}(x_{2}) \right]}{\sum_{a} e_{a}^{2} f_{1}^{a}(x_{1}) f_{1}^{\overline{a}}(x_{2})}$$

Even unpolarised \overline{p} beam on polarised p, or polarised \overline{p} on unpolarised p are powerful tools to investigate κ_T dependence of QDF

D. Boer et al., Phys. Rev. D60 (1999) 014012.

Transverse Single Spin Asymmetries: correlation functions

All these effects may may lead to Single Spin Asymmetries (SSA):

$$A_{N} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

Transverse Single Spin Asymmetries in Drell-Yan

Transverse Single Spin Asymmetries in Drell-Yan

Hyperon production Spin Asymmetries

 Λ production in unpolarised pp-collision:

Several theoretical models:

• Static SU(6) + spin dependence in parton

fragmentation/recombination^[1-3]

• pQCD spin and transverse momentum of hadrons in fragmentation ^[4]

^[1] T.A.DeGrand et al., Phys. Rev. D23 (1981) 1227.
^[2] B. Andersoon et al., Phys. Lett. B85 (1979) 417.
^[3] W.G.D.Dharmaratna, Phys. Rev. D41 (1990) 1731.
^[4] M. Anselmino et al., Phys. Rev. D63 (2001) 054029.

Analysing power
Depolarisation

$$A_{N} = \frac{1}{P_{B} \cos \theta} \frac{N_{\uparrow}(\phi) - N_{\downarrow}(\phi)}{N_{\uparrow}(\phi) + N_{\downarrow}(\phi)}$$
Data available for D_{NN}:

$$10 \text{ GeV}^{2} \qquad D_{NN} < 0$$

$$30 - 40 \text{ GeV}^{2} \qquad D_{NN} < 0$$

$$400 \text{ GeV}^{2} \qquad D_{NN} > 0$$
Key to distinguish between these models
$$D_{NN} @ 200 \text{ GeV}^{2} \text{ MISSING}$$

Hyperon production Spin Asymmetries

Polarised target: $\overline{p}p^{\uparrow} \rightarrow \overline{\Lambda} + \Lambda$.

^[1] complete determination of

the spin structure of reaction

WEEKER BEEKER

Transverse target polarisation

Existing data: PS185 (LEAR)^[2]

[1] K.D. Paschke et al., Phys. Lett. B495 (2000) 49.[2] PS185 Collaboration, K.D: Paschke et al., Nucl. Phys. A692 (2001) 55.

Models account correctly for cross sections. Models do not account for D_{NN}^{Λ} or K_{NN}^{Λ} .

NEW DATA NEEDED

Crossing GPD to GDA

The real goal in a process is the matrix element!

In exclusive channels *crossing* allow to:

- measure the same matrix elements with completly different experiments and probes
- replacing Mandelstam *t* by *s* GPDs (General Parton Distributions) become GDAs (General Distribution Amplitudes)

Accessing GDA in $\overline{p}p \rightarrow \gamma\gamma$

Data sample: *large energies and angles*

suppressed

soft part

dominant mechanism

Other processes with the QCD handbag diagram

- small Q²: like wide angle (large pT) crossed-channel Compton scattering
- large Q²: additional degrees of freedom

٠

Roadmap for GDAs

1. reject events with more than 2 primary final state particle

Ask theoreticians for predictions (spin observables can be defined for γ^* and ρ)

Space-Like an Time-Like Electromagnetic form factors

- FFs are analytical functions.
- One Photon Exchange (OPE): FFs are function of the virtual photon squared momentum transfer: $t = q^2 = -Q^2$

Sachs Form Factors

Nucleon current operator (Dirac and Pauli): $\Gamma^{\mu}(q) = \gamma^{\mu} F_{1}(q^{2}) \frac{i}{2M_{N}} \sigma^{\mu\nu} q_{\nu} F_{2}(q^{2})$

$$\tau = \frac{q^2}{4M_N^2} \qquad G_E(q^2) = F_1(q^2) + \tau F_2(q^2)$$
$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

- t < 0 : scattering, space-like
- Fourier transfor of charge and magnetisation

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 E'_e \cos^2 \frac{\theta}{2}}{4E^3_e \sin^4 \frac{\theta}{2}} \left[G^2_E + \tau \left(1 + 2\left(1 + \tau\right) \tan^2 \frac{\theta}{2} \right) G^2_M \right] \frac{1}{(1 + \tau)}$$

rectime like

- t > 0: annihilation, time-like
- at threshold, $\tau = 1$
- $G_E(4 M_p^2) = G_M(4 M_p^2)$
- G_E , G_M analytical continuation of nonspinflip and spinflip spacelike FF

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \sqrt{1 - \frac{1}{\tau}}}{4q^2} \left[\left(1 + 2\cos^2\theta \right) \left| G_M \right|^2 + \frac{1}{\tau} \sin^2\theta \left| G_E \right|^2 \right]$$

Sachs Form Factors

- \bullet all measurements cannot determine separately $G_{\rm E}\,$ and $G_{\rm M}\,$
- only the ratio can be determined:

$$R(q^2) = \mu_p \frac{G_E^p(q^2)}{G_M^p(q^2)}$$

• SL-FF show linear deviation from dipole:

$$\mu_p G_{Ep} \neq G_{Mj}$$

• significant difference between SL-FF at data extracted with the Rosenbluth tecnique or with the "Polarisation transfer" technique: possible effect from TPE interference with OPE diagram?

Sachs Form Factors

Sachs TL-FF in the HESR fixed target scenario (PANDA)

Sachs TL-FF Spin Observables in $\overline{p}^{(\uparrow)}p^{\uparrow} \rightarrow e^+e^$ $e(\vec{k}_1 = \vec{k})$ $\swarrow e^{\dagger}(\vec{k}_{0}=-\vec{k})$ Analyzing power, A $\frac{d\sigma}{d\Omega}(P_y) = \left(\frac{d\sigma}{d\Omega}\right)_{\sigma} [1 + \mathcal{A}P_y],$ • relative G_E and G_M phase in the TL region $\mathcal{A} = \frac{\sin 2\theta Im G_E^* G_M}{D_* / \tau}, \ D = |G_M|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} |G_E|^2 \sin^2 \theta$ Double spin observables $\left(\frac{d\sigma}{d\Omega}\right)_{z}A_{xx} = \sin^{2}\theta\left(|G_{M}|^{2} + \frac{1}{\tau}|G_{E}|^{2}\right)\mathcal{N},$ • indipendent G_E - G_M $\left(\frac{d\sigma}{d\Omega}\right)_{\tau}A_{yy} = -\sin^2\theta \left(|G_M|^2 - \frac{1}{\tau}|G_E|^2\right)\mathcal{N},$ separation Rosenbluth separation $\left(\frac{d\sigma}{d\Omega}\right)_{z} A_{zz} = \left[(1 + \cos^2 \theta) |G_M|^2 - \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \mathcal{N},$ test in TL region $\left(\frac{d\sigma}{d\Omega}\right)_{z}A_{xz} = \left(\frac{d\sigma}{d\Omega}\right)_{z}A_{zx} = \frac{1}{\sqrt{\tau}}\sin 2\theta ReG_{E}G_{M}^{*}\mathcal{N}.$

The hunt for the nucleon structure @ FAIR

Drell-Yan dilepton production

- double spin DY is the dream option
- new physics from unpolarised DY since the very beginning
- extense SSA program in DY and in hadron production

Generalised Distribution Amplitudes

- \bullet investigation of the TPE diagramm al large $p_{\rm T}$
- \bullet large $p_{\rm T}$ lepton and meson production
- test on factorisation (GDA + HB diagram)

Time-Like Electromagnetic Form Factors

- TL-FF investigation
- test on Rosenbluth separation in the TL region
- separate estimation of G_E and G_M
- accessing single and double spin asymmetries

Collaborations: PANDA & PAX

Question time

THANK YOU!