

Status and expectations for first physics with LHCb

M. Needham On behalf of the LHCb collaboration Symmetries and Spin July 20th - 26th Prague

Outline

- Introduction to LHCb
- Tour of the detector
- First Physics in 2008
- B_s mixing phase: β_s (Key 2009 measurement)
- Rare B decays
 - $B_s \rightarrow \mu^+ \mu^-$ (Key 2009 measurement)
- Angle γ
- Summary

Searching for New Physics

- Expect New Physics at the TeV scale
- Two complementary approaches to discovering it:
- Direct searches (ATLAS + CMS)
- Indirect searches (LHCb)
- Look for effect of virtual particles in loop processes
- Indirect searches very important in development of Standard Model
 - Suppression of $K_L \rightarrow \mu^+ \mu^-$ (GIM mechanism) charm

LHCb

b

Dedicated B physics experiment at the LHC:

- 10¹² bb pairs produced in the acceptance per year
- All B species produced: B_d , B_s , B_u , B_c , Λ_b
- B production correlated and peaked in the forward direction
- LHCb luminosity of 2×10^{32} cm⁻²s⁻¹ by focussing the beam less
- Maximizes probability of one interaction per crossing

Key Ingredients

The Detector

Tour of the Detector

MC Simulation

Optimise the experiment+ test physics sensitivities

Vertex Locator

- 21 stations
- Silicon Strip detectors
- \bullet Strips measuring r and φ
- Sensitive area ~ 8 mm from beam
- 5 µm hit resolution
- 30 μ m impact parameter resolution
- Detector halves retracted/inserted each fill

Tracking System

Large Silicon Detector before Magnet + 3 stations [straws + Silicon] after magnet

Tracking System

Particle Identification

Particle Identification

Calorimeters

- Calorimeter system : Preshower, ECAL, HCAL
- Detection of electrons, π^0 , γ
- Level 0 trigger: high E_T electron and hadron, photon

PreShower/SPD:

• 12k scintillator pads

Shaslik ECAL:

- Pb/Scintillator, 25 X₀
- 6k cells
- $\sigma/E \sim 10\%/\sqrt{E \oplus 1\%}$

Tile HCAL (only for trigger)

- Fe/Scintillator, 5.6 λ_0
- 1.5k channels
- σ/E ~ 80%/√E ⊕ 10%

Muon System

Muon system:

- Level 0 trigger: High Pt muons
- Flavour tagging

- Arranged in 5 stations;
- Inner part M1: 24 triple GEM chambers;
- Outer part M1, M2-M5: 1100 MWPCs

L0, HLT and L0×HLT efficiency (normalized to offline selected)

Flavour Tagging

- Fragmentation K[±] accompanying B_s
- π^{\pm} from $B^{**} \rightarrow B^{(*)}\pi^{\pm}$

Figure of merit: $\epsilon D^2 = \epsilon (1-2\omega)^2$: tagging power ϵ : tagging efficiency ω : wrong tagging fraction Opposite side

- High Pt leptons
- K^{\pm} from $b \rightarrow c \rightarrow$ s
- Vertex charge
- Jet charge

Tag	B _d	B _s
Muon	1.1	1.5
Electron	0.4	0.7
Kaon opp.side	2.1	2.3
Jet/ Vertex Charge	1.0	1.0
Same side $p\pi$ / K	0.7 (πp)	3.5(K)
Combined (Neural Net)	~ 5.1	~9.5

Detector Commissioning

- Detector commissioning progressing with cosmics
- Time alignment of calorimeters, muons, Outer Tracker
- Regular readout of major components
- Ramp up to data taking with beam gas in August
 - This data will allow first alignment + calibration

Cosmic track Triggered by calorimeters Seen in the tracker

Physics Program

Physics Program

Minimum bias physics Charmonium production

2009: Luminosity 2×10^{32} cm⁻²s⁻¹ 140 days, 14 TeV **B** Physics Run

2010+: Luminosity 2 -5 $\times 10^{32}$ cm⁻²s⁻¹ 140 days

collect total of ~10 fb⁻¹

Full Physics program

Calibration CP ($\sin 2\beta$, Δm_s ,...)

Key measurements: βs , $Bs \rightarrow \mu \mu$

CP + rare decays

2013+: Upgrade ? to run at luminosity 2×10^{33} cm⁻²s Collect 100 fb⁻¹

Physics Program

 γ with loops and trees B_s mixing phase ϕ_s $B \rightarrow \mu\mu$, $B \rightarrow K^* \mu\mu$ Radiative penguins: $B \rightarrow K^*\gamma$, $B_s \rightarrow \phi\gamma$

Key Measurements

$$β$$
 with B → J/ψ K_s
 $α$ with B → $ρπ$
B_c and Λ_b physics
Other rare B decays
....

Minimum bias physics

Charm Physics

W, Z, production [constrain PDF]

Higgs search

Exotics: Neutralino, Hidden valley particles

Other B Physics

More than B Physics

First Physics

First Physics

- Start "Physics" with first 10 TeV collisions
 - 2 bunches on 2 bunches
- Increase luminosity gradually (zero external crossing angle)
- Target luminosities (for 9×10^{10} protons per bunch, $\beta^* = 6$ m)

	Scheme	coll. pairs	non-coll. bunches	Lumi at IP8
2x2		1	1	1.7 ´1029 cm-2 s-1
43x43		19	24	3.3 ´1030
156x156	;	68	88	1.2 ´1031

• Expected integrated luminosity in 2008: ~5 pb⁻¹

First Physics

Sample will contain ~500, 000 reconstructed K_s and 2000 J/ ψ

- Alignment, calibration of tracking/PID
- Studies of single particle production, generator tuning
- K_s , Λ production + polarization + hyperon production $\Xi^- \rightarrow \Lambda \pi^-$, $\Omega^- \rightarrow \Lambda K^-$
- Vector meson production (K^*, ϕ)

J/ψ Production

B Physics: First steps

Significant samples should be available when high pt muon/hadron trigger are commissioned

Angle $\boldsymbol{\gamma}$

- Study background with $B \rightarrow D(K\pi)\pi$
- Vertex, mass resolutions + lifetimes with $B(D) \rightarrow hh$

For Bs $\rightarrow \mu\mu$

• Methods for calibrating mass, PID demonstrated

For $B \rightarrow K^* \mu \mu$

- Muon efficiency at low momentum understood
- Experience with angular fits of $\psi(2S) \rightarrow J/\psi \pi \pi$

Channel	Yield / 5 pb ⁻¹
B→D(Kπ)X	31k
B+→D(Kπ)π ⁺	1700
$B \rightarrow D^* \mu \nu$	23k
B→ J/ψK*	2.3k
$B_s \rightarrow J/\psi \phi$	330
B→ K*γ	150

Radiative Penguin decays

- Calibrate calorimeter
- First $b \rightarrow s \gamma$ decays seen

B_s Mixing Phase: β_s

β_s with b \rightarrow ccs

- Key measurement for 2009
- β_s , Bs oscillation mixing phase (analogue of sin $2\beta_d$)
- β_s is small in the SM: $\phi_s = -\arg(V_{ts}^2) = -2 \beta_s = -2\lambda^2 \eta \sim -0.04$ radian
- Sensitive probe for new physics: $\phi_s = \phi_s^{SM} + \phi_s^{NP}$
- Measure from time dependent asymmetry in b \rightarrow ccs transitions
- For measurement need Δm_s as input

$$\begin{array}{c} \mathbf{s} \\ \mathbf{B}_{\mathbf{s}} \\ \hline V_{\mathbf{cs}} \\ \mathbf{b} \\ \hline V_{\mathbf{cb}}^{*} \\ \hline V_{\mathbf{cb}}^{*}$$

β_s : Measurement

- $B_S \rightarrow J/\psi \phi$ counter part of the golden mode $B_d \rightarrow J/\psi K_s$
- High yield: 125 k signal events per 2fb⁻¹ (before tagging)
- Vector-Vector final state: Admixture of CP eigenstates
 - Angular analysis needed

• Pure CP eigenstates (e.g. $B_S \rightarrow J/\psi \eta$) can also be added

•No angular analysis needed but total statistics lower (27k 2fb⁻¹)

β_s : Physics Reach

2009: 0.5 fb⁻¹: sensitivity ~0.042 using $B_S \rightarrow J/\psi \phi$ (cf SM value 2 $\beta_s \sim$ - 0.04)

Decay Mode	Yield (2 fb ⁻¹)	σ (2β _s)
$J/\psi~\eta(\gamma\gamma)$	8.5 k	0.109
$J/\psi\eta(\pi\pi\pi)$	3 k	0.142
J/ψ η'(πππ)	2.2 k	0.154
$J/\psi~\eta'(~ ho\gamma)$	4.2 k	0.08
$\eta_c ~ \phi$	3 k	0.108
$D_s^+ D_s^-$	4k	0.133
All CP eigenstates	-	0.046
$J\!/\psi~\phi$	130 k	0.023
All	-	0.021

Sensitivity with 2 fb⁻¹ and $\Delta m_s = 17$ ps⁻¹, $2\beta_s = -0.04$, $\Delta\Gamma/\Gamma = 0.15$

Rare Decay Program

$B_s \rightarrow \mu^+ \mu^-$

- Key measurement for 2009
- Flavour Changing neutral current
- Highly suppressed in SM:
 - BR(B_s \rightarrow µµ) =(3.35±0.32) x10⁻⁹
- Can be enhanced in SUSY
 - BR(B_s $\rightarrow \mu\mu$) $\propto \tan^6\beta/M_{\rm H}^2$
- Currents limits from Tevatron ~2 fb⁻¹:
 - CDF BR < $4.7 \ 10^{-8} \ 90 \ \% \ CL$
 - D0 BR < 7.5 10^{-8} 90 % CL

- 2 fb⁻¹: 3σ evidence
- 2 fb⁻¹: 6σ evidence

$$B_s \rightarrow \mu^+ \mu^-$$

- High statistics + trigger efficiency
- Main issue is background rejection
- Largest background is $b \rightarrow \mu$, $b \rightarrow \mu$.
- Exploit good mass resolution ~ 20 MeV

80

 $B_d \rightarrow K^* \mu^+ \mu^-$

• 2009: 0.5 fb-1 expect 2000 events

• B factories total ~ 1000 events by then

В°-

• Probes the exclusive $b \rightarrow s\gamma$ radiative penguin Measure time dependent CP asymmetry:

$$A_{CP}(t) = \frac{\Gamma(\overline{B}_s \to \phi\gamma) - \Gamma(B_s \to \phi\gamma)}{\Gamma(\overline{B}_s \to \phi\gamma) + \Gamma(B_s \to \phi\gamma)} = \frac{A_{dir} \cos \Delta mt + A_{mix} \sin \Delta mt}{\cosh\left(\frac{\Delta\Gamma t}{2}\right) + A_{\Delta} \sinh\left(\frac{\Delta\Gamma t}{2}\right)}$$

Interference can only occur for final states with same photon polarization

In SM b \rightarrow s γ is predominantly (O(m_s/m_b)) left handed Interference +hence mixing induced CP violation suppressed

<u>SM</u>: $A_{dir} \approx 0, \ A_{mix} \approx \sin 2\psi \sin 2\beta$ $A_{\Delta} \approx \sin 2\psi \cos 2\beta$ $\tan \psi = |b \rightarrow s \gamma_{R}| / |b \rightarrow s \gamma_{L}|$, $\cos 2\beta \approx 1$

Channel	Yield (2 fb ⁻¹)	B/S
Bs→φγ	11k	<0.55

Statistical precision after 1 year (2 fb⁻¹) $\sigma(A_{dir}) = 0.11$, $\sigma(A_{mix}) = 0.11$ (requires tagging) $\sigma(A_{\Delta}) = 0.22$ (no tagging required)

Measures fraction "wrong" $\boldsymbol{\gamma}$ polarization Suppressed in SM

Angle γ a) Im $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ $\eta(1-\lambda^2/2)$ $\eta(1-\lambda^2/$

Several independent strategies to extract γ

Angle **y**

From tree amplitudes : $B_s \rightarrow D_s K$

From tree amplitudes : $B \rightarrow DK$ (ADS /GLW methods)

From penguins : $B \rightarrow h h$ Sensitive to New Physics

 γ from $B_s \rightarrow D_s K$

- Interference between tree level decays via mixing
- Insensitive to New Physics
- Determines γ in a clean way
- Measures $\gamma + 2\beta_s$
- β_s from $B_s \rightarrow J/\psi \phi$
- Main background $B_s \rightarrow D_s \pi$
 - 10 times higher branching ratio
- Suppressed using Kaon identification by RICH

Channel	Yield (2 fb-1)	B/S (90% C.L.)
Bs→DsK	6.2 k	[0.08-0.4]
Bs→Dsπ	140 k	[0.08-0.3]

 γ from $B_s \rightarrow D_s K$

 $B_s \rightarrow D_s K$, $B_s \rightarrow D_s \pi$ have same topology combine samples to fit Δm_s , $\Delta \Gamma_s$ and mistag rate together with CP phase $\gamma + \phi_s$.

γ from $B^{\pm} \rightarrow DK^{\pm}$ (ADS)

Measure relative rates of $B^- \rightarrow D(K\pi) \ K^-$ and $B^+ \rightarrow D(K\pi) \ K^+$

- Two interfering tree B-diagrams, one colour-suppressed ($r_B \sim 0.077$)
- D^0 , anti- D^0 reconstructed in same final state (interference term accessing γ)
- Two interfering tree D-diagrams, one Double Cabibbo-suppressed $(r_D^{K\pi} \sim 0.06)$

• Reversed suppression of the D decays relative to the B decays results in more equal amplitudes

- Large interference effects
- Simple counting experiment (no tagging, no proper time) measure:

γ from $B^{\pm} \rightarrow DK^{\pm}$ (ADS)

$$\begin{split} &\Gamma(B^{-} \to (K^{-}\pi^{+})_{D} K^{-}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} - \delta_{D}^{K\pi} - \gamma\right), \quad (1) \\ &\Gamma(B^{-} \to (K^{+}\pi^{-})_{D} K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} + \delta_{D}^{K\pi} - \gamma\right), \quad (2) \\ &\Gamma(B^{+} \to (K^{+}\pi^{-})_{D} K^{+}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} - \delta_{D}^{K\pi} + \gamma\right), \quad (3) \\ &\Gamma(B^{+} \to (K^{-}\pi^{+})_{D} K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} + \delta_{D}^{K\pi} + \gamma\right), \quad (4) \\ \end{split}$$

Channel	Yield (2 fb ⁻¹)	B/S
$B \to D(hh) K$	7.8 k	1.8
$B \rightarrow D(K\pi) K$, Favoured	56 k	0.6
$B \rightarrow D(K\pi) K$, Suppressed	0.71k	2
$B \rightarrow D(K3\pi) K$, Favoured	62k	0.7
$B \rightarrow D(K3\pi) K$, Suppressed	0.8k	2

 $\sigma(\gamma) = 5^{\circ}$ to 13° depending on strong phases.

Also under study: $\sigma(\gamma)$ $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K_s \pi \pi$ $8^0 - 12^\circ$ $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow KK \pi \pi$ 18° $B^0 \rightarrow DK^{*0}$ with $D \rightarrow KK, K\pi, \pi\pi$ $6^\circ - 12^\circ$ $B^{\pm} \rightarrow D^*K^{\pm}$ with $D \rightarrow KK, K\pi, \pi\pi$ (high background)O

<u>Overall</u>: expect precision of $\sigma(\gamma) = 5^{\circ}$ with 2 fb⁻¹ of data

LHCb ГНСр

γ from B \rightarrow hh

- $B^0 \rightarrow \pi^+\pi^-$ originally proposed for measurement of angle $\alpha = \pi \beta \gamma$
- But extraction of α compromised by influence of penguin diagrams

• Measure time-dependent CP asymmetries for $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

 $A_{\rm CP}(t) = A_{\rm dir} \cos(\Delta m t) + A_{\rm mix} \sin(\Delta m t)$

• Extract four asymmetries:

$$\begin{split} A_{\rm dir}({\rm B}^0 &\to \pi^+\pi^-) &= f_1(d,\,\theta,\,\gamma) \\ A_{\rm mix}({\rm B}^0 &\to \pi^+\pi^-) &= f_2(d,\,\theta,\,\gamma,\,\beta) \\ A_{\rm dir}({\rm B}_{\rm s} &\to {\rm K}^+{\rm K}^-) &= f_3(d',\,\theta',\,\gamma) \\ A_{\rm mix}({\rm B}_{\rm s} &\to {\rm K}^+{\rm K}^-) &= f_4(d',\,\theta',\,\gamma,\,\beta_{\rm s}) \end{split}$$

 $de^{i\theta}$ = ratio of penguin and tree amplitudes in $B^0 \rightarrow \pi^+\pi^$ $d'e^{i\theta'}$ = ratio of penguin and tree amplitudes in $B_s \rightarrow K^+K^-$

- Assume U-spin flavour symmetry (d \Leftrightarrow s) d = d' and $\theta = \theta'$
- Take ϕ_d from $B_d \rightarrow J/\psi K_s$ and ϕ_s from $B_S \rightarrow J/\psi \phi$ solve for γ
- 4 observables , 3 unknowns (can relax U-spin assumptions)

γ from B \rightarrow hh

Channel	Yield (2 fb ⁻¹)	B/S
Β→ππ	36k	0.5
B₅→KK	36k	0.15

 $\sigma(\gamma) \sim 10^{\circ}$ with 2 fb⁻¹ $\sigma(\gamma) \sim 5^{\circ}$ with 10 fb⁻¹ θ, θ' free in the fit Assume d = d' (at 20 % level)

Summary

- LHCb will collect high statistics samples of B hadrons
 - Including B_s and b baryons
- Detector installed and being commissioned for physics this summer
- First physics in 2008 with 5 pb⁻¹
 - Alignment and detector calibration
 - Particle multiplicities
 - Ks and Λ production
 - Charmomium physics
 - Preparation for B physics measurements in 2009

<u>LHCb</u> ГНСр

Summary

- Key measurements with 0.5 fb⁻¹ in 2009:
 - β_s [precision ~0.04]
 - Bs \rightarrow mm [exclusion down to SM model expectation]
- Full physics program in 2010+: aim to collect 10 fb⁻¹ by ~ 2013+
 - Angle γ precision ~ 5° with 2 fb⁻¹
 - Search for new physics in photon polarization in radiative penguin decays
 - Precision measurement of forward-backward asymmetry in $B \rightarrow K^* \mu \mu$
 - Δm_s precision of 0.01 ps⁻¹
 - $sin 2\beta$ precision of 0.01 with 10 fb⁻¹
 - α with B $\rightarrow \rho \pi$ precision of 10°
 - Charm physics: D⁰ mixing, direction CP violation in D⁰ \rightarrow KK, D⁰ $\rightarrow \mu\mu$
 - Z, W production at high rapidity
 - And much more

LHCb offers an excellent opportunity to spot New Physics signals beyond the Standard Model

Backup

sin2 β with B⁰ \rightarrow J/ ψ K_s

Time dependent CP asymmetry in will one of the first CP measurements at LHCb.

- 236k signal events / 2 fb⁻¹
- B/S= 0.6 (bb)
- $\sigma_{\text{stat}}(\sin(2\beta)) = 0.020 \text{ in } 2 \text{ fb}^{-1}$
- cf ~0.019 expected from B-Factories with 2ab⁻¹

With 10 fb⁻¹: σ (sin(2 β)) ~ 0.010 Can also push further the search for direct CP violating term cos($\Delta m_d t$)

LHCb ГНСр

Charm Physics

LHCb will collect large tagged $D^* \rightarrow D^0 \pi$ sample

- Used for PID calibration
- Dedicated D* trigger for this purpose.
- Tag flavour with pion from $D^{*\pm} \rightarrow D0 \pi^{\pm}$

D*-tagged signal yield in 2 fb ^{₋1} (from b hadrons only)		
$D^0 \rightarrow K^- \pi^+$ right sign	12.4 M	
$D^0 \rightarrow K^+\pi^-$ wrong sign	46.5 k	
D ⁰ →K ⁺ K ⁻	1.6 M	

Interesting measurements:

• Time-dependent D⁰ mixing with wrong-sign D⁰ \rightarrow K⁺ π^- decays

• $\sigma_{\text{stat}}(x'2) \sim 0.14 \text{ x}10^{-3}$, $\sigma_{\text{stat}}(y') \sim 2 \text{ x}10^{-3}$ with 2 fb⁻¹

- Direct CP violation in D0 \rightarrow K⁺K⁻
 - $A_{CP} < 10^{-3}$ in SM, up to 1% with New Physics
 - Expect $\sigma_{\text{stat}}(A_{\text{CP}}) \sim 0.001 \text{ with } 2 \text{ fb}^{-1}$
- $D^0 \rightarrow \mu^+ \mu^-$
 - BR $< 10^{-12}$ in SM, up to 10^{-6} with New Physics
 - Expect to reach $\sim 5 \times 10^{-8}$ with 2 fb⁻¹