Searches for Supersymmetry at the Tevatron

Introduction

Squarks and Gluinos \rightarrow Acoplanar jets

Stop / Sbottom

Charginos and Neutralinos → Trileptons

GMSB → **Di-photons** + **MET**

Off the beaten path

Conclusions

Arnd Meyer

RWTH Aachen University

July 21, 2008

The Physics Landscape

There are many possible models of new physics that could easily produce results in 1 fb⁻¹.

While SUSY may be popular, all that is certain is a high probability for some sort of new physics just around the corner :

Radiative corrections to the Higgs mass Gravitation?

Three generations?

If there is one Unification of couplings? Dark matter?

- Supersymmetry (SUSY): <u>fundamental symmetry</u>, relating bosons and fermions
- Stabilizing Higgs mass ("fine-tuning")
- m(Higgs) < 135 GeV (MSSM)
- In good agreement with expectations from EW fits
- "Running" of couplings is sufficiently modified to allow grand unification at a single scale

http://lepewwg.web.cern.ch/LEPEWWG

LSP (Lightest SUSY Particle) is candidate for dark matter

Arnd Meyer (RWTH Aachen)

- Supersymmetry (SUSY): <u>fundamental symmetry</u>, relating bosons and fermions
- Stabilizing Higgs mass ("fine-tuning")
- m(Higgs) < 135 GeV (MSSM)
- In good agreement with expectations from EW fits
- "Running" of couplings is sufficiently modified to allow grand unification at a single scale

LSP (Lightest SUSY Particle) is candidate for dark matter

Arnd Meyer (RWTH Aachen)

Spin 0	1/2	1	3/2	2
Higgs h⁰,H⁰,A,H⁺	Gluino ĝ	Gauge	Gravitino Ĝ	Graviton G
Sleptons $\tilde{1}$	Leptons	bosons		
Squarks q	Quarks			
	Gauginos $\widetilde{\chi}^{\pm}, \widetilde{\chi}^{_0}$			

Signatures depend on model assumptions (e.g. MSSM: > 100 parameters)

- R-parity conservation: \not{E}_{T} due to undetected LSP R-Parity $R_{p} = \frac{+1}{-1}$ SM
- Different models for SUSY breaking mechanism have various phenomenological consequences: jets, leptons, photons, long-lived particles
- Benchmark-Scenarios allow systematic study of supersymmetric models with realistic effort, simultaneously incorporating experimental and theoretical bounds (e.g. "Snowmass Points and Slopes")

LEP searches for charginos, sleptons, higgs: $m(X^{\pm})>103.5$ GeV, m(A)>95 GeV, m(h)>114.4 GeV Arnd Meyer (RWTH Aachen)

Spin 0	1/2	1	3/2	2
Higgs h⁰,H⁰,A,H±	Gluino ĝ	Gauge	Gravitino Ĝ	Graviton G
Sleptons 1	Leptons	bosons		
Squarks q	Quarks			
	Gauginos $\widetilde{\chi}^{\pm}, \widetilde{\chi}^{0}$		At least 32 new	particles

Signatures depend on model assumptions (e.g. MSSM: > 100 parameters)

- R-parity conservation: \not{E}_{T} due to undetected LSP R-Parity $R_{p} = \frac{+1}{-1}$ SM
- Different models for SUSY breaking mechanism have various phenomenological consequences: jets, leptons, photons, long-lived particles
- **Benchmark-Scenarios** allow systematic study of supersymmetric models with realistic effort, simultaneously incorporating experimental and theoretical bounds (e.g. "Snowmass Points and Slopes")

LEP searches for charginos, sleptons, higgs: $m(\tilde{X}^{\pm})>103.5$ GeV, $m(\tilde{A})>95$ GeV, m(h)>114.4 GeV Arnd Meyer (RWTH Aachen)

Tevatron: The DØ and CDF Experiments

DØ strengths:

Muon system with large acceptance, hermetic calorimetry **CDF strengths:** large Level 1 trigger bandwidth, central tracking

Typically:

Electron acceptance	$ \eta < 2.0 - 3.0$		
Muon acceptance	$ \eta < 1.0 - 2.0$		
Precision tracking (Si)	$ \eta < 2.0 - 3.0$		
Detectors are well understood and take			
data with ~80-95% efficiency			

Data Samples

Integrated Luminosity:

- **0.1 fb⁻¹ / exp.**
- **1.3 fb⁻¹ / exp.**
- $4 8 \text{ fb}^{-1} / \text{exp.}$

Run I, 1992-96 Run IIa, 2002-06 Run IIb, until 2009

19 April 2002 - 13 July 2008

Run II Integrated Luminosity

05 05 05 05 06 06 06 06 07 07 07 07 08 08

Supersymmetry – Signatures

Studied in great detail is mSUGRA: gravity mediated symmetry breaking, only 4 ¹/₂ parameters

- Scalar and gaugino mass at the GUT-scale, \mathbf{m}_{0} and $\mathbf{m}_{1/2}$
- Trilinear coupling parameter A

 $-\tan \beta$, ratio of the higgs vacuum expectation values at the electroweak scale

- sign(µ), higgsino mass
 parameter

and/or many jets

and/or many leptons from cascade decays

(but: can be soft)

Arnd Meyer (RWTH Aachen)

Search Strategies

Generic sparticle production

- Probe large regions of parameter space
- Search for sparticles with unusual properties
 - Small mass differences or couplings
 - Also: different SUSY breaking mechanisms
- SUSY Higgs
- Indirect searches
 - Rare decays
- Global ("model independent") searches

All limits are at 95% CL

Supersymmetry: Squarks and Gluinos

Hadron collider: large squark-gluino cross sections

 $(R_{p} conserved)$

Low m₀, m(squark)<m(gluino) (at least 2 jets)

Medium m₀, m(squark)~m(gluino) (at least 3 jets)

High m₀, m(squark)>m(gluino)

(at least 4 jets)

Arnd Meyer (RWTH Aachen)

Arnd Meyer (RWTH Aachen)

July 21, 2008

Squarks and Gluinos: Mass Limits

Squarks and Gluinos: Limits in m₀ vs. m_{1/2}

July 21, 2008

Stop (and Sbottom)

- Third generation "special"
 - Stop could be the lightest squark
- Pair production through strong interaction
- Numerous search channels
- Depend on dominant decay mode

<u>Dileptons</u> ee, eμ, μμ +2b+MET	<u>Heavy flavor+MET</u> bb+MET cc+MET	<u>Stable, charged</u> particles
---	---	-------------------------------------

Stop in $e\mu$ + 2b + MET

- Stop pair production: Two isolated leptons, missing E_{T} , two b-jets (can be soft)
- Decay mode stop \rightarrow b $\ell \tilde{v}$
- Sneutrino is NLSP
- Update in eµ channel
 - Highest dilepton branching fraction
 - Low backgrounds

$\sum \mathbf{p}$ (into)	$p_T(\mu) + p_T(e) + MET (GeV)$					
$\geq p_{\rm T}$ (jets)	0-70		70-120		>120	
(GeV)	Data	Bkgd	Data	Bkgd	Data	Bkgd
0-15	1	0.3±0.3	15	13±2	12	19 ± 2
15-60	1	0±0	6	4.2±0.9	11	8±1
60-120	0	0±0	1	1.6±0.6	8	9±1
>120	0	0.0 ± 0.0	0	0.9±0.4	6	7±1

Arnd Meyer (RWTH Aachen)

several chargino/neutralino mass points

no evidence of stop signal

150

200

t Mass (GeV)

250

300

350

0

100

ee

μμ

eμ

11

Stop in cc + MET

- Decay mode stop $\rightarrow c + \tilde{\chi}_1^0$
 - $m_{\tilde{t}} < m_b + m_{\tilde{\chi}_1^+}$
 - $m_{\tilde{t}} < m_W + m_b + m_{\tilde{\gamma}_1}$
- Search for acoplanar charm jets (using b-tagging based on lifetime)

Optimize selection vs. m(stop)

stop mass	background	data	$ \begin{array}{c} $
95-130 GeV	85.3±1.8 +12.8 - 13.0	83	
135-145 GeV	59.0±1.6 +8.5 -8.8	57	$40 = 56^{\circ}$ LEP $\theta = 56^{\circ}$ LEP $\theta = 0^{\circ}$
150-160 GeV	66.6±1.1 +9.6 -10.0	66	20 0 40 60 80 100 120 140
		PIR6	m_{f} (GeV)

PLB 665, 1 (2008)

Sbottom in Gluino Production

- Pair production of gluinos
- Gluino decays to sbottom + bottom
- Sbottom decays to bottom + neutralino
- Search for events with multiple jets (at least one b-tagged) and MET

	Large ⊿m	Small ⊿m
Background	22.7 ± 4.6	22.0 ± 3.6
Data	25	19

 $M(\tilde{g})$ [GeV/c²]

Charginos / Neutralinos: Trilepton Final State

- Gaugino pair production via EW interaction
 - ♦ Small cross sections, ~0.1 0.5 pb
- Charginos and neutralinos decay via gauge bosons or sfermions to LSP and SM particles.
- R-parity conserving models \Rightarrow LSP stable
- LSP escapes detection in the detector
- SUSY signature
 - 2 electrons or muons
 - Third lepton
 - Large missing E_T

Very clean signature, but small cross sections

Charginos / Neutralinos: Trileptons

CDF	Background	Data
3 tight	0.49±0.04±0.08	1
2 tight, 1 loose	0.25±0.03±0.03	0
1 tight, 2 loose	0.14±0.02±0.02	0
Total trilepton	0.88±0.05±0.13	1
2 tight, 1 track	3.22±0.48±0.53	4
1 tight, 1 loose, 1 trk	2.28±0.47±0.42	2
Total dilepton+track	5.5±0.7±0.9	6

Three search techniques

- 3 identified leptons (l=e or μ)
- 2 leptons + isolated track
- Two same sign leptons
- Allows for some additional acceptance

• Taus and low
$$p_{T}$$
 leptons

DØ	Background Data		
eel	1.8±0.8	0	
μμ <i>l</i>	0.3+1.3-0.3	2	
eμ <i>l</i> 0.9±0.4 0			
μ ⁺ μ ⁺ 1.1±0.4 1			
l = lepton or track			

2.0 fb⁻¹

Charginos / Neutralinos: Limits

 $M(\tilde{\chi}_1^{\pm}) > 145 \text{ GeV}$ mSUGRA, no slepton mixing

 $M(\widetilde{\chi}_1^{\pm}) > 140 \text{ GeV}$ mSUGRA

GMSB in Di-photons

- <u>Gauge Mediated SUSY Breaking</u>: Gravitino G is LSP Possible scenario: neutralino NLSP, $\tilde{\chi}_1^0 \rightarrow \chi \tilde{G}$

GMSB in Di-photons

PLB 659, 856 (2008)

"Other" SUSY

No dark matter candidate or addition to basic SUSY or

Arnd Meyer (RWTH Aachen)

. . .

R-Parity Violation

R-parity: $R_P = (-1)^{3B+L+2S}$ + 1 SM - 1 SUSY **S** Spin **B** Baryon number i,j,k = 1,2,3 **L** Lepton number Generation indices

Violation of R-parity -> 45 additional parameters (Yukawa couplings)

Experimentally and theoretically constrained (p decay etc.)

```
LSP no candidate for dark matter in RPV models
```

Arnd Meyer (RWTH Aachen)

Can cause small BF or long lifetimes

Or resonances

B

RPV Sneutrinos

- Single sneutrino production
- RPV for production and decay
 - Different couplings λ'_{311} and λ_{132}
- Search for eµ resonance

PRL 100, 241803 (2008)

July 21, 2008

Long-lived Stop

- Generic search for CHAMPS charged, massive, stable particles
- In SUSY for example long-lived stop escapes detector before decay
- Signature: slow-moving, muon-like particle
 - Measure mass:

time of flight \rightarrow velocity + momentum \rightarrow mass

- No standard model background
 - Use data to estimate background in signal region
- M(stop) > 250 GeV

Long-lived Neutralinos

- **GMSB SUSY**
 - $\tilde{\chi}_1^0 \to \tilde{G}\gamma$ (same as diphoton)
 - $\tilde{\chi}_1^0$ is long-lived
- Search for γ +jets+MET events
- Measure arrival time of photon
 - Optimize for $\tau = 5$ ns

Data:

SM:

 $\tilde{\boldsymbol{G}}$

"Stopping Gluinos"

"Stopping Gluinos"

- Gluinos hadronize into <u>*R*-hadrons</u>. Charged R-hadrons can lose all their kinetic energy through ionization and come to rest ("split SUSY" \rightarrow heavy squarks, light gauginos)

 - ~500 "stopped gluinos" in 2 fb⁻¹ for m(gluino) = 300 GeV

"Stopping Gluinos"

Backgrounds (a selection):

 Cosmic muons, beam halo, detector effects, diffractive events, ... mostly estimated from data

Additional difficulties:

 Energy depositions are out-of-time relative to bunch crossing (→ signal shaping and discrimination)

- Trigger

- Data compatible with background expectation
- Intervals in jet energy translated into gluino mass for a certain LSP mass

$$E = (M_g^2 - M_{LSP}^2)/2M_g$$

Other SUSY Searches

- Numerous BSM Higgs searches
- **B**_s (and B_d) into $\mu\mu$
- Squarks in jets+tau+MET
- Stop in b+tau
- Stop admixture to top in lepton + jets
- Long-lived neutralinos decaying to dimuons
- 2nd generation slepton resonances
- RPV SUSY in trileptons
- Long-lived charginos and staus
- Long-lived particles decaying into electron or photon pairs

Conclusions

- A vibrant program searching for supersymmetry continues have shown new(er) results in selected areas of "standard" and "non-standard" SUSY
- With 4 fb⁻¹ collected, updates promising
- All results and more available at http://www-d0.fnal.gov/Run2Physics/WWW/results.htm http://www-cdf.fnal.gov/physics/exotic/exotic.html

Backup

Stop and Sbottom in cc(bb) + MET

- Pair production of stop or sbottom
 stop $\rightarrow c + \widetilde{\chi}_1^0$ sbottom $\rightarrow b + \widetilde{\chi}_1^0$
- Signature
 - two energetic jets + MET
 - one heavy flavor tagged jet

Optimize selection for each channel in three mass regions

stop	<100	100-120	>120
bkgd	137±6.2±14.6	94.9±5.0±9.9	42.7±2.6±4.6
data	151	108	43
sbottom	<140	140-180	>180
bkgd	55.0±4.2±5.9	17.8±1.7±1.6	4.7±2.1±0.5
data	60	18	3

PRD 76, 072010 (2007)

Charginos / Neutralinos: Outlook

Fit of an MSSM to experimental data (CDM, m_w^2 , $(g - 2)_\mu^2$, BF(b $\rightarrow s_\gamma^2$), $sin^2\theta_{eff}^2$)

 $m(\tilde{X}^{\pm}) \simeq 200 \text{ GeV}$ for $\tan \beta = 10$

Expected sensitivity (Tevatron combined)

 $m(\tilde{\chi}^{\pm}) \simeq 200 \text{ GeV}$ with 2 fb⁻¹ in (optimistic) "3I-max"-scenario

Ellis, Heinemeyer, Olive, Weiglein

Squarks / Gluinos at the LHC

For large masses: expect S / B > 10, i.e. sensitivity depends mostly on signal,

m₀ (GeV)

Inclusive SUSY search (mSUGRA) at the LHC

