In memory of V.B. Prieszhev

N.Tonchev - ISSP, Sofia
e in collaboration with I.Bivas - ISSP, Sofia
e Phys. Rev. E, v.100, p.022416 (2019)

Dubna - September 10, 2019



e Biological membranes are ubiquitous in life, and
form the envelope through which cells interact with

their surroundings.

e Lipid bilayers, which primarily consist of self-
assembled phospholipid molecules, often form closed

vesicles.

e Aside from fundamental biological studies, lipid-
based can be created artificially in the laboratory for

applications in drug design and delivery.



T he thermodynamic fluctuations of the surface of

quasi-spherical membranes is the topic of this talk.



e membrane’s mechanical behavior iIs reasonably
well-described by the phenomenological theory of
elasticity (Canham (1970)—Helfrich(1973)’s frame-
work) and just a few continuum parameters such as

the bending moduli K. and surface tension o.

e To transform the basic concept of curvature en-
ergy as introduced more than forty years ago into
a systematic quantitative theoretical description re-

mained a challenge for quite some time.



The vesicle shapes obtained by minimizing the
appropriate curvature energy subject to the geo-
metric constraints formally correspond to solving a
zero temperature problem. Video microscopy re-
veals that these shapes typically exhibit visible ther-

mal fluctuations.

e T hermal fluctuations one of the cornerstones of

biophysical research on membranes.

e How can these fluctuations be described?



Due to the small bending stiffness compared with
the thermal energy scale the vesicles undergo con-

siderable undulations at physiological temperatures.



e The displacement field U(6, ) measures the lo-

cal deviation from a spherical reference surface.



e In practice, the differential geometry involved
IS tricky, and taking care of the geometrical con-

straints is not entirely trivial.

e In phase contrast light microscopy of an ondu-
lating vesicles it is only its cross-section with the fo-
cal plane we observe. How do we establish the con-
nection between the 3-d statistical model and the
measured 2-d observed contours? This problem was
solved and studied by the Bulgarian - French collab-
oration: Faucon, Mitov, Meleard, Bivas, Bothorel in

a series of papers.



e Let have a nearly spherical lipid vesicle with fixed

volume V and fixed area ! A.

e Let ro be the radius of a reference sphere with

the same volume V = %wr%.

e Let the shape of the membrane fluctuated arounc

the sphere with area 4nr3.

e Let U(0,¢,t) be the modulus of the radius-vector
of a point on the surface of the vesicle, with polar
coordinates (6, ¢), at time ¢ in a laboratory reference

frame, with origin O placed inside the vesicle.



e Let us define the dimensionless quantity:

U, 9:8) =10 _ 9.6, 0), (1)
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e The function u(6,p,t) is decomposed in a series

of spherical harmonics:

Nmax n

uwl, o) = 3 D, u (Y0, ), (2)

n=0 m=—n

Y (60, ¢) is the orthonormal basis of

the spherical harmonics functions.
The amplitudes «]'(t) = 7?

What call about them theory and experiment ?



Theory(Milner and Safran (1987),Seifert (1995)):
The area constraint restricts fluctuations. This ef-
fect can be attributed somewhat phenomenologi-

cally to an " effective” or " entropic’” surface tension
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o K. IS the bending elasticity modulus
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e In ¢ = %U (dimensionless) & is a Lagrange

multiplier which ensures the mean area of the vesi-

cle membrane to be equal to some prescribed value.



Experiment

e flicker spectroscopy method

e Micromechanical manipulation method

Bivas and co-authors: (1989),(1992), ..., Bulgar-

lan - French laboratory (1997 -2004)... up to now!

Theory and experiment: bending rigidity K. and
“surface tension” constant” > ,;¢ are inferred from
fitting the experimental data on «!"*(¢) onto the func-

tional given by upper Eq. (3) !



The surface tension

The area functional of the membrane S(V) :
S(V) := 4nr§ + AS(V), (4)

e AS(V) is the excess area of the membrane .

e ) IS used as a shorthand for the real value func-

tions (uy?,ust, ... ulimar),
R2 Nmax -
ASW) = X S (- D422 (5)

n=2 m=—-—n



When the area functional S(V) deviates (after
stretching or compression) from the optimal area

So the membrane experiences a surface tension

S(V) — 8o
So

where K is the area compressibility modulus.

o(V) = Ks (6)




T he Hamiltonian:

H(V) = Hc(V) + Hs(V), (7)

where

H(V) =K S S (n—Dnln+1)(n+2)w™? (8)

n=2 m=—-—n

and

HS(V) — (9)

Note:

(V) =L <[an S (n_l)(n+2)(um)2})

2m=-—m



T he Bogoliubov inequalities:

In the case

0 < f[H] — f[Happ(E)] < (H — Happ(S)) (5 (10)

where f[H] is the free energy of the Hamiltonian
H and f[Happ(Xapp)] is the free energy of a presum-
ably simpler Hamiltonian Hgp,(Xapp), depending on

a variational parameter >_:



T he self-consistent equation:

L __ Nmax 2,n_|_ 1
nin+1)+ X’
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(12)

(13)



The fitting functional:

((uﬁ)2> Happ(Zapp)
kT 1

T Ke(n—1)(n+2)[nn+ 1) + Zapp)

(14)

e Here, the MS effective surface tension > ;¢ =

2
TO - —

e In MS theory o was a Lagrange multiplier



The physical meaning of > ,,:

2
> app = ?o (a(V))

C

Happ(Zapp) ’ (15)

where o(V) is the true (not normalized) tension of

the membrane !

Recall:

S(V) — So

o(V) = Ks (16)



T he solution of the self-consistent equation

The problem:

nmag on + 1 N <
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+0(i) +o(B) +o([5] ). w=rhu

(17)




The self-consistent equation may be presented

(up to the used approximations) in the form:

1 1 — A
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Eq. (18) can be solved in terms of the Lambert

function W(z). Recall that by definition W(ze®*) =z
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or

Two limiting cases:

— . (X
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The fitting functional:

8my
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((up)?) =

where K, = %KS IS the dimensionless area com-
pressibility modulus. Let us recall that the above
equation becomes valid provided that the condition

> 1 kT
MS 5> 1, = _— > (24)
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is fulfilled.






