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• Biological membranes are ubiquitous in life, and

form the envelope through which cells interact with

their surroundings.

• Lipid bilayers, which primarily consist of self-

assembled phospholipid molecules, often form closed

vesicles.

• Aside from fundamental biological studies, lipid-

based can be created artificially in the laboratory for

applications in drug design and delivery.



The thermodynamic fluctuations of the surface of

quasi-spherical membranes is the topic of this talk.



• membrane’s mechanical behavior is reasonably

well-described by the phenomenological theory of

elasticity (Canham (1970)–Helfrich(1973)’s frame-

work) and just a few continuum parameters such as

the bending moduli Kc and surface tension σ.

• To transform the basic concept of curvature en-

ergy as introduced more than forty years ago into

a systematic quantitative theoretical description re-

mained a challenge for quite some time.



The vesicle shapes obtained by minimizing the

appropriate curvature energy subject to the geo-

metric constraints formally correspond to solving a

zero temperature problem. Video microscopy re-

veals that these shapes typically exhibit visible ther-

mal fluctuations.

• Thermal fluctuations one of the cornerstones of

biophysical research on membranes.

• How can these fluctuations be described?



Due to the small bending stiffness compared with

the thermal energy scale the vesicles undergo con-

siderable undulations at physiological temperatures.



• The displacement field U(θ, φ) measures the lo-

cal deviation from a spherical reference surface.



• In practice, the differential geometry involved

is tricky, and taking care of the geometrical con-

straints is not entirely trivial.

• In phase contrast light microscopy of an ondu-

lating vesicles it is only its cross-section with the fo-

cal plane we observe. How do we establish the con-

nection between the 3-d statistical model and the

measured 2-d observed contours? This problem was

solved and studied by the Bulgarian - French collab-

oration: Faucon, Mitov, Meleard, Bivas, Bothorel in

a series of papers.



• Let have a nearly spherical lipid vesicle with fixed

volume V and fixed area ! A.

• Let r0 be the radius of a reference sphere with

the same volume V = 4
3πr

3
0.

• Let the shape of the membrane fluctuated around

the sphere with area 4πr2
0.

• Let U(θ, φ, t) be the modulus of the radius-vector

of a point on the surface of the vesicle, with polar

coordinates (θ, φ), at time t in a laboratory reference

frame, with origin O placed inside the vesicle.



• Let us define the dimensionless quantity:

U(θ, φ, t)− r0

r0
= u(θ, φ, t), (1)

• The function u(θ, ϕ, t) is decomposed in a series

of spherical harmonics:

u(θ, ϕ, t) =
nmax∑
n=0

n∑
m=−n

umn (t)Y mn (θ, φ), (2)

Y mn (θ, φ) is the orthonormal basis of

the spherical harmonics functions.

The amplitudes umn (t) = ?

What call about them theory and experiment ?



Theory(Milner and Safran (1987),Seifert (1995)):

The area constraint restricts fluctuations. This ef-

fect can be attributed somewhat phenomenologi-

cally to an ”effective” or ”entropic” surface tension

ΣMS:

〈[umn (t)]2〉 =
kT

Kc

1

(n− 1)(n+ 2)[n(n+ 1) + ΣMS]
, (3)

• Kc is the bending elasticity modulus

• In ΣMS =
r2

0
Kc
σ (dimensionless) σ is a Lagrange

multiplier which ensures the mean area of the vesi-

cle membrane to be equal to some prescribed value.



Experiment :

• flicker spectroscopy method

• micromechanical manipulation method

Bivas and co-authors: (1989),(1992), ..., Bulgar-

ian - French laboratory (1997 -2004)... up to now!

Theory and experiment: bending rigidity Kc and

“surface tension” constant” ΣMS are inferred from

fitting the experimental data on umn (t) onto the func-

tional given by upper Eq. (3) !



The surface tension

The area functional of the membrane S(V) :

S(V) := 4πr2
0 + ∆S(V), (4)

• ∆S(V) is the excess area of the membrane .

• V is used as a shorthand for the real value func-

tions (u−2
2 , u−1

2 , . . . , unmaxnmax),

∆S(V) =
R2

2

[ nmax∑
n=2

n∑
m=−n

(n− 1)(n+ 2)(umn )2
]
. (5)



When the area functional S(V) deviates (after

stretching or compression) from the optimal area

S0 the membrane experiences a surface tension

σ(V) = Ks
S(V)− S0

S0
, (6)

where Ks is the area compressibility modulus.



The Hamiltonian:

H(V) = Hc(V) +Hs(V), (7)

where

Hc(V) =
1

2
Kc

nmax∑
n=2

n∑
m=−n

(n−1)n(n+ 1)(n+ 2)(umn )2 (8)

and

Hs(V) =
S0

2Ks
[σ(V)]2. (9)

Note:

σ(V) := L

[ nmax∑
n=2

n∑
m=−n

(n− 1)(n+ 2)(umn )2
]



The Bogoliubov inequalities:

In the case

0 ≤ f [H]− f [Happ(Σ)] ≤ 〈H −Happ(Σ)〉Happ(Σ), (10)

where f [H] is the free energy of the Hamiltonian

H and f [Happ(Σapp)] is the free energy of a presum-

ably simpler Hamiltonian Happ(Σapp), depending on

a variational parameter Σ:



The self-consistent equation:

Σ = σ0 + C
nmax∑
n=2

2n+ 1

n(n+ 1) + Σ
, (11)

σ0 =
r2

0

Kc
Ks

4πR2 − S0

S0
, (12)

C = γKs
r2

0

Kc
, γ ≡

1

8π

kT

Kc
. (13)



The fitting functional:

〈(umn )2〉Happ(Σapp)

=
kT

Kc

1

(n− 1)(n+ 2)[n(n+ 1) + Σapp]
. (14)

• Here, the MS effective surface tension ΣMS =

r2
0
Kc
σ is replaced by Σapp

• In MS theory σ was a Lagrange multiplier



The physical meaning of Σapp:

Σapp ≡
r2

0

Kc
〈σ(V)〉Happ(Σapp)

, (15)

where σ(V) is the true (not normalized) tension of

the membrane !

Recall:

σ(V) = Ks
S(V)− S0

S0
, (16)



The solution of the self-consistent equation

The problem:

nmax∑
n=2

2n+ 1

(n+ 1/2)2 + Σ− 1/4
≈ ln

N

Σ
+

Σ

N

+O

(
1

N1/2

)
+O

(
1

Σ

)
+O

([
Σ

N

]2)
, N ≈ n2

max

(17)



The self-consistent equation may be presented

(up to the used approximations) in the form:

xex =
(

1

C
−

1

N

)
Neσ0/C, (18)

where

x =
(

1

C
−

1

N

)
Σapp. (19)

Eq. (18) can be solved in terms of the Lambert

function W(x). Recall that by definition W(xex) = x

Σapp =
(

1

C
−

1

N

)−1
W

[(
1

C
−

1

N

)
ΣMSexp

(
−

ΣMS

N

)]
.

(20)



Two limiting cases:

i)

Σapp = Cln

(
ΣMS

C

)
,

ΣMS

C
>> 1, (21)

or

ii)

Σapp = ΣMS,
ΣMS

C
<< 1, (22)



The fitting functional:

〈(umn )2〉 =
8πγ

(n− 1)(n+ 2)
{
n(n+ 1) + γKs ln ΣMS

γKs

},
(23)

where Ks = R2

Kc
Ks is the dimensionless area com-

pressibility modulus. Let us recall that the above

equation becomes valid provided that the condition

ΣMS

γKs
>> 1, γ ≡

1

8π

kT

Kc
. (24)

is fulfilled.



Thank you for the attention !


