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Consider ensemble of random matrices A 
 
 
 
 
 
 
 
where cij are taken from one and the same Gaussian 
distribution (0,1/2) with                  and  
The eigenvalue distribution in the ensemble is: 

(β =2 – GUE) 



The same joint distribution fβ (λ) appears in ensemble 
of 3-diagonal random operators (A. Edelman, I. Dumitriu, 2002) 
 
 
 
 
 
 
 
where all an,n are normally distributed and bn,n+1=bn+1,n 
are χn-distributied:  
 
            and 0µ = 2 1/ 2σ =



Instead of M one can take Mʹ,  (                          ) 

For averaged matrix <M> we get: 



Random walk and Brownian bridges on supertrees 



Spectral density of transfer matrix 

Spectral density of the transfer matrix on supertree 

–  Wigner semicircle 



at K >> 1,  λ = 2K – ε,  |ε| << 1 

• Characteristic polynomials = Hermite polynomials 

• Asymptotic behavior near the spectral edge 

• Finite size scaling of largest eigenvalue 

where a1 ≈ 2.3381 is the first zero of Airy function 
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Brownian bridges on finite supertrees 

Phase transition in c 
N = c P 
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Anomalous scaling for fluctuations of 
“elongated” 2D paths above curved domains: 

KPZ as a manifestation of large deviations 
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Stretched (N = c R) paths above the semicircle 

Linearizing curved shape, we get: 
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Above the flat line one has a random walk              
thus                ,  and finally,  

Stretched (N = c R) paths above the semicircle 

~y x
Linearizing curved shape, we get: 

2/3 1/3~ ,   ~x R y R
Stretching above algebraic curve                  provides 
generic scaling 
 
Exponent γ = 1/3 emerges for uniformly curved surface 

~x R x





1D random walk trapping in a Poissonian field: 
Lifshitz tail of 1D Anderson localization vs KPZ  
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Free energy of stretched paths: scaling approach 

Blob’s width               ,   blob’s length 1/3~sD R 2/3~sL R

1/3
2/3~ ~ ~

s

N RF R
L R

Free energy of a chain stretched above semicircle 

Gibbs measure  
1/3( )( ) ~F R RW R e e α− −=
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one gets                        and survival 
probability is (Balagurov, Vaks, 1974) 

2/3 1/3( , )( ) ~F N D c NP N e e β− −=



Free energy to be minimized over D 
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Gibbs measure of stretched  
path in curved channel 

Survival probability in 1D  
trapping in Poissonian field 

Since N = c R, one gets 

one gets                        and survival 
probability is (Balagurov, Vaks, 1974) 2/3
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Stretched KPZ exponent vs Lifshitz tail: 
Optimal fluctuation for survival probability 



Stretched KPZ exponent vs Lifshitz tail: 
Optimal fluctuation for survival probability 

Free energy F(D,R) of the stretched (N = cR) paths confined in 
a curved slit of size D, can be estimated as 
 
 
 
g* - average number of monomers in a blob. 



Stretched KPZ exponent vs Lifshitz tail: 
Optimal fluctuation for survival probability 

One can estimate g* as follows: g* ~ R αmin , where 
which gives the following expression for F(D,R): 
 
 
 
Minimizing F(D,R) with respect to D, we get equilibrium width of 
a slit D for stretched paths evading the semicircle: 
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Stretched KPZ exponent vs Lifshitz tail: 
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Conclusion / conjecture:  
A disorder-free model of stretched paths above a  

semicircle with KPZ scaling, has in a grand canonical 
formulation a Gibbs measure with a Lifshitz tail as for 

1D random walk in a Poissonian disorder 
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