
by N. Zh. Bunzarova and N. C. Pesheva

Institute of Mechanics - Bulgarian Academy of Sciences

Random walk theory in the case of generalized Totally 
Asymmetric Simple Exclusion Process

Теория случайных блужданий в случае обобщенного 

Полностью Aсимметрического Процесса с Простым 

Исключением



We are inspired to summarize some of our new results,  

concerning a model of aggregation and fragmentation of clusters 

of particles, obeying  a stochastic discrete-time discrete-space 

kinetics of the generalized  TASEP (gTASEP). The phase 

structure (diagram) of the model system, depending on the rates 

of input  and output of particles at the open ends of the chain, the 

gap distribution between neighboring clusters of jammed 

aggregates at large lengths L of the chains were investigated by 

using both theoretical and numerical methods. The special focus 

is on the use (application) of Random walk  theory in our 

investigation.
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 Aggregation of platelets is an important mechanism of

clumping together of blood cells, possibly forming a clot.

Platelets, also called thrombocytes, have no cell. In the

circulating blood the platelets are normally carried along

separately from each other. When the wall of a blood

vessel is injured, it activates platelets to adhere to it

immediately and to each other to form aggregates on the

damaged area. In the first stage, the platelets aggregation

is reversible, but later the process may become

irreversible.

Motivation

Aggregation and fragmentation of clusters 
of arbitrary size arises in many physical-chemical processes: 

aerosol physics, polymer growth, aggregation of platelets, protein 

aggregation and even in astrophysics.



• Irreversible aggregation 

 May play a destructive role in biochemistry. Many 
neurodegenerative disease (Alzheimer’s disease, Parkinson’s 
disease, and prion diseases) are characterized by intracellular 
aggregation and deposition  of  pathogenic  proteins. Moreover, 
the abnormal  irreversible aggregation of ribosomes leads to 
irreparable damage of protein synthesis and results in neuronal 
death after focal brain ischemia. When diseases, for example, 
atherosclerosis, damage the intima platelets adhere to it and to 
each other. The aggregates so formed may increase in size until 
they block the flow of blood. That’s why the aggregation of 
platelets is one of the direct reasons of thrombosis. 

 The ability to control protein aggregation could be an important 
tool in the drug development



TASEP has been used since 1968 to model different biochemical  

processes: kinetics of protein synthesis, molecular motors traffic, 

collective effects of genetic transcription. 



TASEP is one of the simplest exactly solved models of driven many-particle systems, with bulk particle 

conserving stochastic dynamics. Presently it found a number of applications in biological transport, 

vehicular traffic flow, forced motion of colloids in narrow channels, transport of data packets in internet, 

etc.

 We studied a new discrete-time stochastic model of aggregation and fragmentation of a clusters  of hard-core 
particles on open chains using gTASEP,  which is the ordinary TASEP with backward-ordered sequential 
dynamics (BSU),  equipped with two hopping probabilities: p and 𝒑𝒎. The second modified probability 𝒑𝒎
models a special kinematic interaction between the particles of a cluster in addition to the simple hard-core 
exclusion interaction. 



The case of attraction (p < 𝒑𝒎) reflects the natural tendency of the  
driver to  catch up with the car ahead. Thus, clusters of 
synchronously moving cars of particles appear, leading to higher 
current in the system. The limiting case of irreversible 
aggregation corresponds to the particular case 𝒑𝒎 = 1. The case 
𝒑𝒎 = 0 corresponds to TASEP with parallel  update, and 𝒑𝒎 = p to 
the backward ordered sequential one.
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We can interpret the open boundary conditions at the ends of a finite segment of the road: one can 

consider the endpoints of a portion of a single-lane road as toll pay points, operating independently 

with different efficiency, say, proportional to ෝ𝜶 at the entrance, and to 𝜷 at the exit of the considered 

road segment.



The dynamics of our model - generalized TASEP is shown schematically in three consecutive time steps 

in the figure below. 
The sites can be empty or occupied just by one particle. During each moment of discrete time t an update of 

the configuration of the whole chain with L sites takes place in L + 1 consecutive steps in a backward 

sequential order.

In gTASEP there are two hopping probabilities p and 𝒑𝒎. Each integer 

time moment t (or else configuration update) starts with the update of 

the last site of the chain: if site i = L is occupied, the particle at it leaves 

the system with probability β and stays in place with probability 1 − β. 

Isolated particles and the first particle of a cluster on the right  may 

move one site to the right with probability p (or to stay at place with 1-

p). Particles, which belong to a cluster (except the head particle), may 

move one site to the right (provided the particle in front of them has 

moved at the same time step) with a modified probability 𝒑𝒎 (or to 

stay at place with 1- 𝒑𝒎). When 𝒑𝒎 > p (”attraction” interaction) the 

particles have higher probability to stay in clusters than to split. The 

left boundary condition is also modified accordingly to ensure 

consistency with the update rules. If site i = 1 was empty at the 

beginning of the current update, a particle enters the system with 

probability α, or site i = 1 remains empty with probability 1 − α. If site 

i = 1 was occupied at the beginning of the current moment of time, but 

became empty under its current update, then ෝ𝜶= min{α ෝ𝒑 /p,1} 



Known results in particular cases
Phase diagrams of gTASEP in the particular cases of pm = p (the ordinary TASEP with BSU) and pm = 1 (irreversible 

aggregation). Density profiles are shown at representative points of the different phases of the respective phase 

diagrams.

L = 400, p = 0.6 

Ordinary TASEP with BSU (pm = p): two points in the LD 

phase, α = 0.2, β = 0.6 (AII) (blue), α = 0.2, β = 0.1 (AI) –

(cyan); coexistance α = 0.2, β = 0.2 – (black); MC phase α = 

0.6,β = 0.8 – (green), and two points in HD phase, α = 0.2,β = 

0.1 (BI)– (magenta), α = 0.6,β = 0.2 (BII)– (red).

gTASEP in the limit case of irreversible aggregation (pm = 1) 

at fixed ejection probability β = 0.3: two values of α from 

phase MPII: α = 0.1 – (green), and α = 0.2 – (magenta), the 

coexistence line of phases MPII and MP+CF, appearing when 

α = β = 0.3 – (black), and phase MP+CF at α = 0.4 –(orange) 

and α = 0.5 – (blue). A point form MPI phase is shown, 

appearing when α = 0.2 and β = 0.8 – (purple). The density 

profiles in the CF phase are not shown to avoid overcrowding 

the figure.



RANDOM WALK THEORY FOR THE GAP EVOLUTION

Irreversible aggregation 𝒑𝒎 =1

One often uses the dual representation of configurations in terms of empty sites positions, instead 
of particle coordinates. In our case, such a representation leads to a peculiar dynamics of the inter-
cluster gaps: (1) gaps may appear only at the first site of the chain; (2) gaps disappear when two 
consecutive clusters merge or when the rightmost cluster leaves the system and the one following it 
reaches the last site of the chain; (3) as long as two consecutive gaps exist, the distance between 
them remains constant  (because of particle conservation in the bulk, the number of particles in a 
cluster between two gaps remains fixed). The width of each gap performs a random walk, with an 
initial state having one or several neighboring empty sites, and ends up when the random walk 
reaches to the origin.

When β ≠ p, the size of the rightmost gap performs an asymmetric random walk: its right edge 
belongs to the cluster which moves to the right with the ejection probability β and its left edge 
moves to the right with probability p. Therefore, after each update, the gap width increases by one 
site with probability pg = β(1 - p), decreases by one site with probability qg = p(1 – β), and remains 
the same with probability r = 1 - pg - qg = 1- β - p +2 β p.



This case takes place in the domain MP I, when β > p, 
hence, for the rightmost gap pg > qg . All the gaps on the 
left of it perform symmetric random walks.

In the domain MP II, where β < p,  the random walk of 
the rightmost gap is performed with pg < qg . All the 
gaps on the left of it perform symmetric random walks.

1. Growing rightmost gap

2. Short-living rightmost gap



3. Critical gaps

When β = p , the widths of all the existing gaps perform symmetric random walks, starting from the 

corresponding initial conditions.

The time evolution of the rightmost gap affects the behavior of the local density profile near the chain 

end.

In regions MPI and MPII (α < p and β > α) the bulk 

particle density is 𝝆𝒃 = α/p, and at the last site 𝝆𝑳 = α/β. 

In the phase MP+CF  (β < α < p) the road is completely 

jammed from the bulk up to the last site. We have proved 

the result 𝝆𝟏
𝑴𝑷+𝑪𝑭= 1−(1/α−1/p)β



The nature of the boundary perturbed MP+CF phase

A distinguishing feature of the boundary 

perturbed phase MP+CF is the appearance 

of inter-cluster gaps only at finite distance 

from the left end of the chain. At that, the 

time evolution of the gap configurations 

dramatically varies with time from 

situations shown on the left-hand side 

space-time plot, where one sees completely 

filled configurations,  to the one shown on 

the right-hand side. 



Evolution of single-gapped configurations

We can estimate analytically the probability P(1) (of completely jammed configuration) in the 

case when the appearance of a vacancy at the first site of a CF configuration is a rare event. 

That event happens when: (i) a particle of the completely filling cluster leaves the system from 

its right end, which takes place with probability β, and leads to the deterministic translation of 

all the remaining L−1 particles by one sight to the right; (ii) the resulting vacancy of the first 

site is not immediately filled by a particle from the left reservoir, which takes place with 

probability (1−ෝ𝜶̂) ≪ 1. Thus, the appearance of a vacancy at the first site of a CF configuration 

will take, on the average  ഥ𝑵= [(1−ෝ𝜶)β] − 1 ≫ 1  updates.

We have to evaluate the average lifetime (in number of updates) ഥ𝒏 of the gap in the different 

asymptotic regimes. If ഥ𝒏 < ഥ𝑵, an estimate of the probability P(1) is given by the ratio

P(1) ≃
ഥ𝑵− ഥ𝒏

ഥ𝑵



Growing gap 

Consider the case when the boundary α = p of the CF phase is approached from 

region MPI, i.e., at β > p. In this case 𝒑𝒈 > 𝒒𝒈 and the gap asymptotically grows 

with the number n updates. It will exist until its edges reach the end of the chain, 

that is ഥ𝒏~ L. Such a long gap, propagating through the whole chain, appears on 

the average after ഥ𝑵~
𝟏

𝜷(𝒑−𝜶)
updates. The crucial assumption is that ത𝑛 ≪ ഥ𝑁, and 

no other long-living gaps appear during the considered time interval.  In such a 

case we obtain, P(1) ≃ 1 - 𝛂𝟏L(p - 𝛂). The important result here is the appearance 

of the finite-size scaling variable L(p − α). This result was confirmed by the data 

collapse method for different chain lengths L.



Short-living gap

When the boundary of the CF phase is approached from the boundary perturbed 
MP+CF phase, i.e., at β < p, one has pg < qg and the gap between the newly 
growing cluster and the cluster which is leaving the system from its right 
boundary closes in a finite number of time steps. An upper estimate can be given 
by the result for a random walk on an infinite chain with initial state at site i = 1 
and one absorbing state at the origin i = 0:

ഥ𝒏 <  𝒒𝒈
𝟏

pg − 𝒒𝒈
= 

𝟏

p − 𝜷
.

Obviously, in this case P(1) ≈ 1 - ഥ𝒏 /ഥ𝑵 → 1, as α → p, at β < p.



Critical Gap



RW



THE GENERIC CASE OF ATTRACTION  𝒑𝒎 > p
We analytically approach the question of how the completely filled phase (CF) at pm = 1 is destroyed, when 

0 < 1 − pm ≪ 1, and transformed into new phases typical for pm < 1.   We used  Random walk theory.

With the aid of Random walk theory, supported by the 

Monte-Carlo simulations, the properties of the phase 

transitions between the three stationary phases are assessed.

The topology of the modified phase diagram, the shift of the triple point (α𝒄(p, pm), 
𝜷𝒄 (p, pm)) under the change of    pm ∈ [p, 1] at fixed p

We analyzed, within the Random walk theory, the evolution  
of a single gap between two large clusters of particles in  
different regions of CF phase. 



RANDOM WALK THEORY FOR THE GAP EVOLUTION

in the case of attraction  𝒑𝒎 > p

Time evolution of configuration gaps

We find out the probability of a single gap appearance under boundary conditions corresponding to

the CF phase and consider the first step in the time evolution of the gap width. The problem is rather

complicated because the probability of appearance of a gap is position dependent in contrast to the

case of pm = 1, because when β ≠ p, the gap width performs a special, position dependent random walk.

Here the gap appears at sites 2 ≤ i ≤ L (as the result of the left boundary condition) .

The gap width increases by one site with probability

decreases by one site with probability

and remains the same with probability



RW

We average the gap width evolution over the initial probabilities given by  

and conclude that on the average a single-site gap will grow after the first time step of its evolution when  

When  pm → 1  and L is fixed, or L → ∞ so that                 1  this condition simplifies to β > p. However, for 

fixed values of pm close to 1,           will decrease to zero as L → ∞.  

On the ground of our Random walk theory and the computer simulations, we conjecture that the simple 

criteria β > p for growing gaps, and β < p for decreasing gaps, hold true. 



Thus, our expectation, confirmed by the computer simulations, is that

in the upper region (p < α ≤ 1] × (p < β ≤ 1] of the CF phase a

maximum-current phase will appear. Its local density profile satisfies

the inequalities ρ1 = 1 > ρl/2 > ρL, which follow from the conditions ෝ𝜶 = 1,

and the larger probability of gap formation near the end of the chain.

In the lower region (p < α ≤ 1]×(0 < β < p] of the CF phase the gaps are

scarce, small and short-living, which is indicative of a high-density

phase. Again, the left-hand side of the local density profile bends

upward to ρ1 = 1.



Phase diagram and phase transitions

We performed Monte Carlo simulations of the gTASEP

on open chains of mainly L = 800 and L = 1600 sites and 

compare the behavior of the current, J, and the local 

density at the midpoint of the chain, p1/2, under two 

modified hopping probabilities pm = 0.6 and pm = 0.9 as a 

function of the input rate α, at chain length L = 800 sites, 

fixed p = 0.6 and output rate β = 0.8.

Our results indicate that the unusual phase transition, 

found in at pm = 1 across the boundary α = p becomes a 

continuous one.



We summarize our results to conjecture a generic phase diagram of the gTASEP with pm < 1 with the 

same topology as in the case of the TASEP with BSU, but with (p,pm)-dependent triple point (αc,βc). with 

the increase of pm at fixed p = 0.6.

We exemplify the phase diagram of the gTASEP in the particular case of p = 0.6 and pm = 0.99 and 

the shift of the triple point (αc,βc) with the increase of pm at fixed p = 0.6.

The main difference between the phase diagrams for pm = 1 and pm < 1 turned out to be the 

dependence of the critical probabilities σc(p,pm) on pm, at fixed p.



Additional information can be found in the different gaps evolution regimes in 

regions LDI and HDI:

In both cases α < p, which implies ෝ𝜶< 1, so that gaps can appear at the first site i = 1 and evolve

throughout the chain; however, in LDI the gaps are wide and long living, while in HDI they are

small, scarce and very short living, The typical gaps pattern in LDII (HDII) is similar to the one

shown for LDI (HDI). These features may explain the large difference in the particle densities in the

low-density and high-density phases.

We emphasize that the gTASEP

does not satisfy the particle-hole

symmetry inherent to the standard

versions of TASEP.
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Main results

1. We proposed  and studied a new one-dimensional model of irreversible aggregation on finite open 
chains, based on a special discrete-time TASEP-like kinetics.

2. We have obtained a phase diagram with a novel topology in the case of irreversible aggregation.

3. We have analyzed, within the Random walk theory, the evolution of a single gap between two large 
clusters of vehicles. Three qualitatively different regimes were established when the injection rate 
approaches from the left the boundary α = p with the CF phase: (i) the lifetime of the rightmost gap 
in the jammed configuration is of size O(L) in the MP phase; (ii) macroscopic jams, separated by 
short-living gaps of length O(1), exist in the MP+CF phase; and (iii) there is a critical regime when 
the macroscopic jams are divided by gaps of intermediate lifetime of the order O(L 1/2) when the 
triple point α = β = p is approached. 

4. We studied the generalized TASEP in the regime of particle attraction (pm > p) when cluster 
aggregation and fragmentation is allowed in the system. and illustrated.

5. With the aid of Random walk theory we analytically approach the question of how the completely 
filled phase (CF) at pm = 1 is destroyed, when 0 < 1 − pm ≪ 1, and transformed into new phases 
typical for pm < 1.  

6. On the grounds of our RW theory and the computer simulations, we have conjectured that the 
simple criteria β > p, for growing gaps, and β < p, for decreasing gaps, hold true.
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