Beyond the Standard Model (or not) after LHC8

G. Ross, Dubna, February 2015

Higgs discovery! ...completes the Standard Model

Higgs discovery!

$$V(H) = -m^2 |\phi|^2 + \lambda |\phi|^4$$
$$m^2 \simeq (89 GeV^2), \lambda \simeq 0.13$$

Higgs discovery!

Degrassi et al,...

$$V(H) = -m^2 |\phi|^2 + \lambda |\phi|^4$$
$$m^2 \simeq (89 GeV^2), \lambda \simeq 0.13$$

No evidence (yet) for BSM

The discovery of the Higgs scalar has completed the Standard Model and challenged our speculations about physics beyond the Standard Model:

Full unification of fundamental forces now under pressure

Could the Standard Model be all there is ?

The discovery of the Higgs scalar has completed the Standard Model and challenged our speculations about physics beyond the Standard Model:

Full unification of fundamental forces now under pressure

Could the Standard Model be all there is ?

The hierarchy problem...

The Hierarchy problem

$$\int \frac{d}{dt} \int \frac{d}{d$$

Field theory: δm^2 not measureable ...only $m^2 = m_0^2 + \delta m^2$ "physical"

Only
$$m^2 = 0$$
 special
 $\implies \frac{d m_H^2}{d \ln \mu} = \frac{3m_H^2}{8\pi^2} \left(2\lambda + y_t^2 - \frac{3g_2^2}{4} - \frac{3g_1^2}{20} \right)$

...no hierarchy problem for SM?

(Landau pole?)

The Hierarchy problem

$$\int \frac{d}{dt} \int \frac{d}{d$$

Field theory: δm^2 not measureable ...only $m^2 = m_0^2 + \delta m^2$ "physical"

Only
$$m^2 = 0$$
 special
 $\implies \frac{d m_H^2}{d \ln \mu} = \frac{3m_H^2}{8\pi^2} \left(2\lambda + y_t^2 - \frac{3g_2^2}{4} - \frac{3g_1^2}{20} \right)$

Classical scale invariance (dimensional regularisation)

The Hierarchy problem

$$\int \frac{d}{dt} \int_{SM} \frac{$$

Field theory:
$$\delta m^2$$
 not measureable
...only $m^2 = m_0^2 + \delta m^2$ "physical"

Only
$$m^2 = 0$$
 special
 $\implies \frac{d m_H^2}{d \ln \mu} = \frac{3m_H^2}{8\pi^2} \left(2\lambda + y_t^2 - \frac{3g_2^2}{4} - \frac{3g_1^2}{20} \right)$

... but is the SM all there is?

e.g.
$$SO(10) \supset SU(5) \supset SU(3) \otimes SU(2) \otimes U(1)$$

 $g_5 \qquad g_3 \qquad g_2 \qquad g_1$
 $g_5 \qquad g_2 \qquad g_1$
 $g_1 \qquad g_2 \qquad g_1$
 $g_2 \qquad g_2$
 g_1
 $g_2 \qquad g_1$
 $g_2 \qquad g_1$
 $g_2 \qquad g_2$
 g_1
 $g_2 \qquad g_2$
 $g_2 \qquad g_1$
 $g_2 \qquad g_2$
 $g_2 \qquad g_1$
 $g_2 \qquad g_2$
 $g_3 \qquad g_2$
 $g_3 \qquad g_2$
 $g_3 \qquad g_2$
 $g_3 \qquad g_3$
 $g_3 \qquad g_2$
 $g_3 \qquad g_3$
 g_3
 $g_$

Georgi Glashow 1974

LH states SU(2) doublets

$$(16)_{L} = (10)_{L} + (\overline{5})_{L} + (1)_{L} = v_{e,R}$$

LH states SU(2) doublets

$$(16)_{L} = (10)_{L} + (\overline{5})_{L} + (1)_{L} = v_{e,R}$$

but...

$$\delta m_h^2 \propto M_X^2 \ln \left(\frac{Q^2 + M_X^2}{\Lambda^2} \right)$$

- "the real hierarchy problem"

Llewellyn-Smith, GGR

Low scale SUSY

MSSM:

 X, \widetilde{X}

SUSY GUTS: the hierarchy problem

 $\delta m^2 \propto M_{SUSY}^2$

Georgi Glashow 1974

LH states SU(2) doublets

Low scale SUSY

MSSM:

Case studies :

I. "Just" the Standard Model

II. SUSY unification

I "Just" the Standard Model

Classical scale invariance, $m_h = 0$... origin of EW breaking?

II "Just" the Standard Model

Classical scale invariance, $m_h = 0$... origin of EW breaking?

Coleman-Weinberg - dynamical symmetry breaking :

e.g. scalar elactrodynamics

$$V = \left\{ \frac{\lambda}{4!} \phi^{4} + \frac{3e^{4}}{64\pi^{2}} \phi^{4} \ln \frac{\phi^{2}}{M^{2}} \right\}$$
$$= \frac{3e^{4}}{64\pi^{2}} \phi^{4} \left(\ln \frac{\phi^{2}}{\langle \phi \rangle^{2}} - \frac{1}{2} \right)$$

 $m_{\phi}^2 = \frac{2\varepsilon_{\phi}}{8\pi^2} \langle \phi \rangle^2 \ll m_W^2$

II "Just" the Standard Model

Classical scale invariance, $m_h = 0$... origin of EW breaking?

Coleman-Weinberg - dynamical symmetry breaking :

e.g. scalar elactrodynamics

No heavy thresholds?

(real hierarchy problem)

- Neutrino masses?
- Strong CP problem?
- Baryogenesis?
- Gravity/Inflation?

No heavy thresholds?

- Neutrino masses?
- Strong CP problem?
- Baryogenesis?
- Gravity/Inflation?

Neutrino masses:

Add singlet neutrinos
$$V_{Ra}$$

 $L_{mass} = h_a \bar{l}_a v_{Ra} H + \frac{M_{ab}}{2} v_{Ra}^T C v_{Rb}$
e.g. $h_A^2 = 5.10^{-14}, h_B^2 = 5.10^{-15}, M_a = 20 GeV$
 $m_A \simeq 0.1 eV, \quad m_B \simeq 0.01 eV$

(real hierarchy problem)

 $\frac{\theta}{32\pi^2}G^a_{\mu\nu}\widetilde{G}^{a\mu\nu}, \quad \theta \le 10^{-10} ??$

• Strong CP problem:

$$\frac{\theta}{32\pi^2}G^a_{\mu\nu}\widetilde{G}^{a\mu\nu}, \quad \theta \le 10^{-10} ??$$

Make θ a dynamical variable the axion, a.... θ =0 at minimum of its potential

... complex scalar field, S

 $S = (|S| + f_a)e^{i\frac{a}{f_a}}, \quad 10^{10} \, GeV \le f_a \le 10^{12} \, GeV??$

• Strong CP problem:

$$\frac{\theta}{32\pi^2}G^a_{\mu\nu}\widetilde{G}^{a\mu\nu}, \quad \theta \le 10^{-10}??$$

$$S = \left(|S| + f_a\right)e^{i\frac{a}{f_a}}, \quad 10^{10} \, GeV \le f_a \le 10^{12} \, GeV$$

DFSZ axion: 2 Higgs doublets $H_{1,2}$, complex singlet, S

$$V(H_1, H_2) = \frac{\lambda_1}{2} |H_1|^4 + \frac{\lambda_2}{2} |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \zeta_1 |S|^2 |H_1|^2 + \zeta_2 |S|^2 |H_2|^2 + \zeta_3 S^2 H_1 H_2 + h.c.$$

$$\zeta_{1,2,3} \le 10^{-20} \left(\frac{10^{12} GeV}{f_a} \right)^2$$

Ultra weak sector:

Ultra weak sector:

$$\zeta_i$$
 multiplicatively renormalised

(Underlying shift symmetry $S \rightarrow S + \delta$)

Ultra weak sector:

$$\zeta_i$$
 multiplicatively renormalised

(Underlying shift symmetry $S \rightarrow S + \delta$)

Origin of large vev?

Start with $m = m_0 + \delta m = 0$ (Classical scale invariance)

Dimensional transmutation (Coleman Weinberg)

Coleman Weinberg in DFSZ model

$$\zeta_{2}S^{2}|H_{2}|^{2}$$

$$V_{DFSZ}(H_{1},H_{2},S) \approx \frac{\lambda_{1}}{2} \left(|H_{1}|^{2} + \frac{\zeta_{1}}{\lambda_{1}}|S|^{2} \right)^{2} + \frac{1}{64\pi^{2}} (\zeta_{2}|S|^{2})^{2} \left(-\frac{1}{2} + \ln \frac{|S|^{2}}{f_{a}^{2}} \right)$$

$$+ \frac{\lambda_{2}}{2} |H_{2}|^{4} + \zeta_{3}S^{2}H_{1}H_{2} + h.c.$$

$$V(S)$$

$$V(S)$$

$$\left(H_{1}^{2} \right) = -\frac{\zeta_{1}}{\lambda_{1}} \langle S^{2} \rangle \text{ triggers EW breaking}$$

$$(S)$$

Coleman Weinberg in DFSZ model

$$V_{DFSZ}(H_1, H_2, S) \simeq \frac{\lambda_1}{2} \left(|H_1|^2 + \frac{\zeta_1}{\lambda_1} |S|^2 \right)^2 + \frac{1}{64\pi^2} \left(\zeta_2 |S|^2 \right)^2 \left(-\frac{1}{2} + \ln \frac{|S|^2}{f_a^2} \right) + \frac{\lambda_2}{2} |H_2|^4 + \zeta_3 S^2 H_1 H_2 + h.c. \quad (\zeta_2 > \zeta_1 > \zeta_3 \text{ assumed})$$

$$\mathbf{v}_{S} = f_{a}, \quad \mathbf{v}_{H_{1}} = \frac{\zeta_{1}}{\lambda_{1}} f_{a}, \quad \mathbf{v}_{H_{2}} = \frac{\zeta_{3}}{2\zeta_{2}} \mathbf{v}_{H_{1}}$$
$$m_{H_{2}^{0}}^{2} = m_{H^{\pm}}^{2} = m_{X}^{2} = -\frac{\zeta_{2}}{2\zeta_{1}} m_{h}^{2}$$

Coleman Weinberg in DFSZ model

$$V_{DFSZ}(H_1, H_2, S) \simeq \frac{\lambda_1}{2} \left(|H_1|^2 + \frac{\zeta_1}{\lambda_1} |S|^2 \right)^2 + \frac{1}{64\pi^2} (\zeta_2 |S|^2)^2 \left(-\frac{1}{2} + \ln \frac{|S|^2}{f_a^2} \right) + \frac{\lambda_2}{2} |H_2|^4 + \zeta_3 S^2 H_1 H_2 + h.c. \quad (\zeta_2 > \zeta_1 > \zeta_3 \text{ assumed})$$

$$\mathbf{v}_{S} = f_{a}, \quad \mathbf{v}_{H_{1}} = \frac{\zeta_{1}}{\lambda_{1}} f_{a}, \quad \mathbf{v}_{H_{2}} = \frac{\zeta_{3}}{2\zeta_{2}} \mathbf{v}_{H_{1}}$$

$$m_{H_{2}^{0}}^{2} = m_{H^{\pm}}^{2} = m_{X}^{2} = -\frac{\zeta_{2}}{2\zeta_{1}} m_{h}^{2}$$

$$m_{H_{2}^{0}}^{2} = -\left(\frac{\zeta_{2}^{2}}{22\pi^{2}\zeta_{1}}\right)^{2} m_{h}^{2} \approx 13 \left(\frac{10^{12} \,\text{GeV}}{10^{12} \,\text{GeV}}\right)^{2} \left(\frac{m_{H_{2}}}{m_{H_{2}}}\right)^{4} eV^{2}$$

$$32\pi^2\zeta_1$$
) m_h ζ_s (m_h) v_s

S Pseudo-dilaton _K

Phenomenology

Collider signals

Ultra weak couplings ... just 2HD model with nearly degenerate heavy Higgs

Direct (axion-like) searches for pseudo-dilaton?

Cosmology

If inflation scale below PQ phase transition

- no cosmological constraints
- If inflation scale above PQ phase transition
- potential Polonyi problem:

$$V(S_{I}) \sim +\frac{1}{64\pi^{2}} (\zeta_{2} | S_{I} |^{2})^{2} \left(-\frac{1}{2} + \ln\frac{|S_{I}|^{2}}{f_{a}^{2}}\right)$$

 $\Delta_I < 10^5 \left(\frac{10^{12} \, GeV}{f_a}\right)^{1/2} \left(\frac{m_{H_2}}{m_h}\right) GeV$

Coughlan et al

(stored energy after inflation)

$$V(S_{t}) \sim + \frac{1}{64\pi^{2}} (\zeta_{2} | S_{t} |^{2})^{2} \left(-\frac{1}{2} + \ln \frac{|S_{t}|^{2}}{f_{a}^{2}} \right) \quad \text{(stored energy after inflation)}$$

$$\boxed{m_{s, thermal}^{2} \approx \frac{\zeta_{2}}{6} T^{2}}{\rho_{s} \propto T^{4}}$$

$$\boxed{T \sim \Lambda_{QCD}, m_{s, thermal} = 0}{\rho_{s} \propto T^{3}}$$

$$\boxed{S + X \rightleftharpoons SM}$$

$$\boxed{\rho_{s} \rightarrow 0, \quad \Omega_{a} ?}$$

Baryogenesis - via neutrino oscillation

Akhmedov, Rubakov, Smirnov

$$L_{mass} = h_a \bar{l}_a v_{Ra} H + \frac{M_{ab}}{2} v_{Ra}^T C v_{Rb}$$

- V_{Ra} produced via Yukawa interactions $L_A = L_B = L_C = 0$

- V_{Ra} oscillate CP, $L_{A,B,C} \neq 0$, $L_A + L_B + L_C = 0$
- $V_{RA,B}$ in thermal equilibrium by t_{EW} when sphalerons inoperative

-
$$\Delta_{LAB} = L_A + L_B$$
 $\xrightarrow{Sphalerons}$ $\Delta B = \Delta_{LAB} / 2$

ARS demonstrate mechanism viable over range of parameters but V_R not dark matter - need axion as dark matter

• Gravity/Inflation

Scale invariance

Spontaneous symmetry breaking $\implies M_P$

Hierarchy problem?

$$\delta m_h^2 \sim \frac{1}{(2\pi)^4} G_N M_P^2 \rightarrow 0$$
 (Dimensional regularisation)

Inflation

Chaotic -
$$L \supset \lambda(s)s^4, \xi_S s^2 R$$

• Gravity/Inflation

Scale invariance

Spontaneous symmetry breaking $\implies M_P$

Hierarchy problem?

$$\delta m_h^2 \sim \frac{1}{(2\pi)^4} G_N M_P^2 \rightarrow 0$$
 (Dimensional regularisation)

Inflation

Chaotic -
$$L \supset \lambda(s)s^4, \xi_s s^2 R$$

Jordan frame

$$\begin{aligned}
\sqrt{-g^J}L^J &= -\frac{\xi_s}{2}s^2R + \frac{(\partial s)^2}{2} + \lambda(s)s^4 \\
g^E_{\mu\nu} &= \Omega(s)^2 g_{\mu\nu}, \quad \Omega(s)^2 = \frac{\xi_s s^2}{M_P^2} = \frac{s^2}{v_s^2} \\
\text{Einstein frame} \quad \sqrt{-g^E}L^E &= -\frac{1}{2}M_P^2R + \frac{(\partial s_E)^2}{2} + \lambda(s_E)M_P^4
\end{aligned}$$

A simple model

$$\sqrt{-g^{E}}\mathscr{L}^{E} = \sqrt{-g^{E}} \left[\frac{\mathscr{L}_{\rm SM}}{\Omega(s)^{4}} - \frac{1}{2} \bar{M}_{\rm Pl}^{2} R + \frac{(\partial s_{E})^{2}}{2} + \frac{(\partial \sigma_{E})^{2}}{2} + \frac{i}{2} \bar{\psi}_{E}^{c} \not\!\!\!D \psi_{E} + \mathscr{L}_{Y_{E}} - V_{E} + \mathcal{L}_{Y_{E}} - \mathcal{L}_{Y_{$$

$$\mathscr{L}_{Y_E} = \frac{1}{2} y_S v_s \bar{\psi}_E^c \psi_E + \frac{1}{2} y_\sigma \sigma_E \bar{\psi}_E^c \psi_E \equiv \frac{1}{2} m_\psi \bar{\psi}_E^c \psi_E + \frac{1}{2} y_\sigma \sigma_E \bar{\psi}_E^c \psi_E,$$
$$V_E = \frac{1}{4} \lambda_S v_s^4 + \frac{1}{4} \lambda_{S\sigma} v_s^2 \sigma_E^2 + \frac{1}{4} \lambda_\sigma \sigma_E^4 \equiv \Lambda + \frac{1}{2} m_\sigma^2 \sigma_E^2 + \frac{1}{4} \lambda_\sigma \sigma_E^4,$$

Kannike et al 1502.01334

Summary - I

"JSM" requires ultra-weak sectors - chiral and shift symmetries

• DFSZ axion + dimensional trasmutation \implies f_a

...consistent with classical scale invariance (not KSVZ model)

• Requires two Higgs doublets (type II couplings), light pseudo-dilaton $m_{H_2^0}^2 = m_{H^{\pm}}^2 = m_X^2 = R^2 m_h^2$ $m_{ISI} \simeq 0.9 \left(\frac{10^{12} GeV}{f_a} \right) R^2 eV$ h \approx SM Higgs

 $\hfill SSB$ generates M_P and Coleman Weinberg generates hierarchy and inflation

Summary - I

"JSM" requires ultra-weak sectors - chiral and shift symmetries

• DFSZ axion + dimensional trasmutation \implies f_a

...consistent with classical scale invariance (not KSVZ model)

Requires two Higgs doublets (type II couplings), light pseudo-dilaton

 $m_{H_2^0}^2 = m_{H^{\pm}}^2 = m_X^2 = R^2 m_h^2$ $m_{ISI} \simeq 0.9 \left(\frac{10^{12} GeV}{f_a}\right) R^2 eV$ h \approx SM Higgs

But...

(i) No unification of forces and matter.

(II) In Wilsonian sense quadratically divergent terms seem physical

II. SUSY Unification

$$m_h^2 = M_Z^2 + \frac{3m_t^2 h_t^2}{4\pi^2} \left(\ln\left(\frac{m_{stop}^2}{m_t^2} + \delta_t\right) + \dots \approx 126 \, GeV \right)$$

$$\delta m_{H_u}^2 \simeq -\frac{3y_t^2}{4\pi^2} \left(m_{stop}^2 + \frac{g_s^2}{3\pi^2} m_{gluino}^2 \log\left(\frac{\Lambda}{m_{gluino}}\right) \right) \log\left(\frac{\Lambda}{m_{stop}}\right)$$

ATLAS SUSY Searches* - 95% CL Lower Limits

.

Status: Moriond 2014

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	$\int \mathcal{L} dt$ [fb	⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{10}^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^1 \rightarrow q W^{\pm} \tilde{\chi}_{1}^0 \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM} (\text{bino NLSP}) \\ \text{GGM} (\text{bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino NLSP}) \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets 	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.7 20.3 4.8 4.8 5.8 10.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 ^{ra} gen. § med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{n} \tilde{\chi}_{0}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{0} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	š 1.2 TeV m($\tilde{\chi}_1^0)$ <600 GeV š 1.1 TeV m($\tilde{\chi}_1^0)$ <350 GeV š 1.34 TeV m($\tilde{\chi}_1^0)$ <400 GeV \tilde{g} 1.3 TeV m($\tilde{\chi}_1^0)$ <600 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^{-1} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow k \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow k \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \rightarrow k \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \rightarrow k \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \text{medium} \text{GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	$\begin{array}{c} 0\\ 2 e, \mu (\mathrm{SS})\\ 1\text{-}2 e, \mu\\ 2 e, \mu\\ 2 e, \mu\\ 0\\ 1 e, \mu\\ 0\\ 0\\ 1 e, \mu\\ 0\\ 3 e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-ta 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 GeV 1308.2631 ATLAS-CONF-2013-007 1403.4853 1403.4853 1403.4853 1403.4853 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,\mathbf{R}}\tilde{\ell}_{L,\mathbf{R}},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu}(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}((\tilde{\nu}\nu),\ell\tilde{\nu}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\tilde{Z}\chi_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	2 e, µ 2 e, µ 2 τ 3 e, µ 2-3 e, µ 1 e, µ	0 0 - 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} & & & & & & & \\ & & & & & & & & \\ +m(\tilde{\chi}_1^0) & & & & & & & \\ +m(\tilde{\chi}_1^0) & & & & & & & \\ +m(\tilde{\chi}_1^0) & & & & & & & \\ +m(\tilde{\chi}_1^0) & & & & & & & & \\ +m(\tilde{\chi}_1^0) & & & & & & & & \\ s \mbox{ decoupled } & & & & & & \\ \end{tabular}$
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(e,$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 ,μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.2 ns ATLAS-CONF-2013-069 00 s ATLAS-CONF-2013-057 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 471)=108 GeV ATLAS-CONF-2013-092
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}^{\dagger}_{1}\tilde{\chi}^{-}_{1}, \tilde{\chi}^{\dagger}_{1} \rightarrow W \tilde{\chi}^{0}_{1}, \tilde{\chi}^{0}_{1} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ \tilde{\chi}^{\dagger}_{1}\tilde{\chi}^{-}_{1}, \tilde{\chi}^{\dagger}_{1} \rightarrow W \tilde{\chi}^{0}_{1}, \tilde{\chi}^{0}_{1} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{l}_{1}t, \tilde{l}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	Yes Yes Yes Yes Yes	4.6 4.7 20.7 20.7 20.3 20.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , µ (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 350-800 GeV m(χ)<80 GeV, limit of<687 GeV	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = 8$ full c	8 TeV data		10 ⁻¹ Mass scale	∍ [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

II. SUSY Unification

$$m_{h}^{2} = M_{Z}^{2} + \frac{3m_{t}^{2}h_{t}^{2}}{4\pi^{2}} \left(\ln\left(\frac{m_{stop}^{2}}{4\pi^{2}} / m_{t}^{2}\right) + \delta_{t} \right) + \dots \approx 126 \, GeV \qquad \Lambda \sim M_{GUT} ?$$

$$\delta m_{H_{u}}^{2} \approx -\frac{3y_{t}^{2}}{4\pi^{2}} \left(m_{stop}^{2} + \frac{g_{s}^{2}}{3\pi^{2}} m_{gluino}^{2} \log\left(\frac{\Lambda}{m_{gluino}}\right) \right) \log\left(\frac{\Lambda}{m_{stop}}\right) \qquad ? \qquad \text{Little hierarchy problem}$$

LHC8 - SUSY unification under pressure

Little hierarchy problem

e.q. MSSM: 105 +(19) Parameters $M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$ $m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\tilde{m}^2}{M_Z^2} \sim 100$ (Unless light stop $m_{\tilde{t},LHC} > 250 \text{ GeV}$)

Correlations between SUSY breaking parameters \Rightarrow and/or additional low-scale states

Little hierarchy problem

e.g. MSSM: 105 +(19) Parameters

$$M_{Z}^{2} = \sum_{\tilde{q},\tilde{l}} a_{i} \widetilde{m}_{i}^{2} + \sum_{\tilde{g},\tilde{W},\tilde{B}} b_{i} \widetilde{M}_{i}^{2} + \dots$$

$$m_{\tilde{q}} > 0.6 - 1TeV \implies \Delta > a \frac{\widetilde{m}^{2}}{M_{Z}^{2}} \sim 100$$
(

(Unless light stop $m_{\tilde{t}.LHC} > 250 \ GeV$)

⇒ Correlations between SUSY breaking parameters and/or additional low-scale states

Fine Tuning measure:

$$\Delta(\gamma_i) = \left| \frac{\gamma_i}{M_Z} \frac{\partial M_Z}{\partial \gamma_i} \right|,$$

$$\Delta_{\rm m} = Max_{\gamma_i} \Delta(\gamma_i), \quad \Delta_q = \left(\sum \Delta_{\gamma_i}^2\right)^{1/2}$$

$$\gamma_i = \widetilde{m}_i, \widetilde{M}_i, \dots$$

Ellis, Enquist, Nanopoulos, Zwirner Barbieri, Giudice

Fine tuning from a likelihood fit:

.

"Nuisance" variable

$$L(\operatorname{data} | \gamma_i) \propto \int d\mathbf{v} \delta(m_Z - m_Z^0) \delta\left(\mathbf{v} \cdot \left(-\frac{m^2}{\lambda}\right)^{1/2}\right) L(\operatorname{data} | \gamma_i; \mathbf{v})$$
$$= \frac{1}{\Delta_q} \delta(n_q(\ln \gamma_i - \ln \gamma_i^S)) L(\operatorname{data} | \gamma_i; \mathbf{v}_0)$$
Fine tuning not optional!

Probabilistic interpretation:

$$\chi_{new}^2 = \chi_{old}^2 + 2\ln\Delta_q \qquad \Delta_q \ll 100$$

CMSSM:

$$\gamma_i = \mu_0, m_0, m_{1/2}, A_0, B_0$$

CMSSM: pre Higgs

$$\gamma_i = \mu_0, m_0, m_{1/2}, A_0, B_0$$

Gauge unification required

Relic density restricted

- $1 \quad h^0$ resonant annihilation
- 2 \tilde{h} t-channel exchange
- $3 \hspace{0.1in} \widetilde{ au} \hspace{0.1in}$ co-annihilation
- $4 \quad t$ co-annihilation
- 5 A^0 / H^0 resonant annihilation

CMSSM: post Higgs

1000

$$\gamma_i = \mu_0, m_0, m_{1/2}, A_0, B_0$$

Gauge unification required

Relic density restricted

 $1 \quad h^0$ resonant annihilation

Beyond the CMSSM

Further

New (heavy) states- Singlet extensions

$$W = W_{\rm Yukawa} + \lambda SH_u H_d + \frac{\kappa}{3}S^3 \qquad {\rm NMSSM}$$

 $\delta V = \lambda^2 \left| H_u H_d \right|^2$

$$W = W_{\text{Yukawa}} + (\mu + \lambda S)H_uH_d + \frac{\mu_S}{2}S^2 + \frac{\kappa}{3}S^3 + \xi S \qquad \text{GNMSSM}$$

$$\delta V = \frac{\mu}{\mu_{s}} (|H_{u}|^{2} + |H_{d}|^{2}) H_{u} H_{d} \qquad \mu, \mu_{s} = O(m_{3/2}), \quad Z_{4,8R}$$

Fine tuning in the CGNMSSM $(\lambda \le 0.7)$

$$\Delta_{Min} = 60 \ (500), \quad m_h = 125.6 \pm 3 GeV$$

LHC8 SUSY bounds DM relic abundance DM searches

Stau co-annihilation

GGR, Schmidt-Hoberg , Staub

Correlation between SUSY breaking parameters

...non-universal gaugino masses

$$16\pi^{2} \frac{d}{dt} m_{H_{u}}^{2} = 3\left(2 |y_{t}|^{2} (m_{H_{u}}^{2} + m_{Q_{3}}^{2} + m_{\overline{u}_{3}}^{2}) + 2 |a_{t}|^{2}\right) - 6g_{2}^{2} |M_{2}|^{2} - \frac{6}{5}g_{1}^{2} |M_{1}|^{2}$$

 \mathbf{i}

New focus point: cancellation between M_3 and M_2 contributions if $|M_2|^2 \simeq |M_3|^2$ at M_{SUSY}

Horton, GGR

(Also improves precision of gauge coupling unification)

Shifman, Roszkowski Krippendorf, Nilles, Ratz, Winkler

Natural ratios? e.g.:

GUT: $SU(5): \Phi^N \subset (24 \times 24)_{symm} = 1 + 24 + 75 + 200; SO(10): (45 \times 45)_{symm} = 1 + 54 + 210 + 770$

	13 1 1	13 13 11 11
Representation	$M_3: M_2: M_1$ at M_{GUT}	$M_3: M_2: M_1$ at M_{EWSB}
1	1:1:1	6:2:1
24	2:(-3):(-1)	12:(-6):(-1)
75	1:3:(-5)	6:6:(-5)
200	1:2:10	6:4:10

 $\eta_{_{3}}$: 1 : $\eta_{_{1}}$

 $2.7\eta_3:1:0.5\eta_1$

Fine tuning in the (C)MSSMNon-universal gaugino masses $\Delta_{min} = 60 (500), \quad m_h = 125.6 \pm 3 GeV$ LHC8 SUSY bounds
DM relic abundance
DM searches

Fine tuning in the (C)GNMSSM

$$\Delta_{Min} = 20$$
, $m_h = 125.6 \pm 3 GeV$

LHC8 SUSY bounds DM relic abundance DM searches

1

Masses v/s fine tuning

M_{gluino}

M_{gluino}

Heavy LSP reach

Heavy LSP reach

Dark matter

Summary - V

 $GUT_{S} \implies SUSY-GUTS$ (hierarchy problem) Gauge coupling unification Fine tuning sensitive to SUSY spectrum ...scalar and gaugino focus points $\Lambda^{CMSSM} > 350^{\times}$ $\Delta^{(C)MSSM} > 60^{\checkmark}$ $\Delta^{CGMSSM} > 60^{\times} \qquad \Delta^{(C)GNMMS} > 20^{\vee}$ c.f. $\Delta_{Low \ scale}^{CMSSM} = (10 - 30), \quad m_{\tilde{t}} = (1 - 5)TeV$

Summary - II

 $GUT_{S} \implies SUSY-GUTS$ (hierarchy problem) Gauge coupling unification Fine tuning sensitive to SUSY spectrum ...scalar and gaugino focus points $\Lambda^{(C)MSSM} > 60^{\checkmark}$ $\Lambda^{CMSSM} > 350^{\times}$ $\Delta^{(C)GNMMS} > 20^{\checkmark}$ $\Lambda^{CGMSSM} > 60^{\times}$ c.f. $\Delta_{Low \ scale}^{CMSSM} = (10 - 30), \quad m_{\tilde{\tau}} = (1 - 5)TeV$

Whither SUSY?

....well motivated SUSY models remain to be tested Compressed spectra, TeV squarks and gluinos LHC14? Natural SUSY

Summary BSM after LHC8

JSM v/s SUSY-GUTs

Both require new (light) states

More Higgs and/or Higgs interactions, pseudo-dilaton.. SUSY partners

Fine tuning limits \Rightarrow LHC 13/14 discovery(?)

Grand Unification still viable - but must find SUSY

Gravity/Inflation *may* be consistent with scale invariance

- two stops and one (left-handed) sbottom, both below 500 700 GeV.
- two Higgsinos, *i.e.*, one chargino and two neutralinos below 200 350 GeV. In the absence of other [lighter] chargino/neutralinos, their spectrum is quasi-degenerate.
- a not too heavy gluino, below 900 GeV 1.5 TeV.

Papucci, Ruderman, Weiler 1110.6926

"Natural" SUSY

$$\delta m_{H_{u}}^{2}|_{\text{stop}} = -\frac{3}{8\pi^{2}}y_{t}^{2}\left(m_{Q_{3}}^{2} + m_{U_{3}}^{2} + |A_{t}|^{2}\right)\log\left(\frac{\Lambda}{\text{TeV}}\right)$$

$$\swarrow \qquad ?$$

$$\sqrt{m_{\tilde{t}_{1}}^{2} + m_{\tilde{t}_{2}}^{2}} \lesssim 600 \text{ GeV}\frac{\sin\beta}{(1+x^{2})^{1/2}}\left(\frac{\log\left(\Lambda/\text{TeV}\right)}{3}\right)^{-1/2}\left(\frac{\tilde{\Delta}^{-1}}{20\%}\right)^{-1/2}$$

...but

- Focus points can reduce sensitivity to $m_{\tilde{t}}, m_{\tilde{g}}$
- Additional fine tuning needed to get large $\tan\beta$

$$\implies \qquad m_{\tilde{t}} \ge 800 \ GeV$$
$$\implies \qquad \tan \beta \le 15 - 30$$

5th Force limits

