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1. Introduction

The statistical model of an analysis

provides the complete description of that
analysis

The main problem — from the known probability

density  f(7.6) and X =X, to extract some information
on B paramneter

Two approaches

1.Frequentist method

2. Bayesian method

Also very important — the notion of the likelihood
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Likelihood - the probability density evaluated at the
observed value X=X

[

L(6|Zobs;i) = [ f(Zobs,il) -

1=1
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Frequents statistics — general
philosophy

In frequentist statistics, probabilities are
assoclated only with data, I.e. outcomes of
repeatable observations. The preferred
models are those for which our observations
have non small probabillities
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Quick review of probablility

Frequentist (A = outcome of outcome is A
K ( : P(A) = lin
repeatable observation):

n—C n

Subjective (A = hypothesis): P(A) = degree of belief that A is true

P(ANB)

Conditional probability: P(A|B) = P(B)

P(B|A)P(A)  P(B|A)P(A)

Bayes' theorem:  P(AB)=— P(B) . P(B|A)P(A)
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Bayesian statistics — general
philosophy

In Bayesian statistics , interpretation of
probability is extended to degree of
belief(subjective probability). Bayesian
methods can provide more natural treatment
of non repeatable phenomena :

systematic uncertainties
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Parameters estimation

Maximum likelihood principle

7 R ..
ﬁ*L(Hh"GbSJ‘) = .

—3
—

limj_ooto(T1,...71) = 0
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Normal distribution
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Bayesian method

* |In Bayes approach

—+ I v
P(0|ZTobs;i) = —= 7

OP(0|T ps ;) |
o6 0=0o

For flat prior 1m(8) = const
Bayes and likelihood coincide
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Confidence intervals

Suppose we measure X = X,

* What are possible values of 6 parameter?
* Frequentist answer:

Neyman belt construction

Alternative:

Bayes credible interval
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Neyman belt construction

T
Plri < X <x|f) =1 —a = / f(x|0)dz.
L |

(1-a) — confidence level. The choice of x, and x,
IS not unigque

l—a= P(ﬂ.‘l(ﬁ} < X < .'1?2[6"}) = P(HQ(X) < 0 < Hl(X)}._

0o(X) = maxgri(0, 2ops).
01(X) = mingra(6. xops).
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Neyman belt construction

x,(8), 6,@)

parameter 0

xl{:BD) xg:(eﬂ]

Possible experimental values x
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Neyman belt construction

o
/ f(2'|61)d2" = 3",
Tobs

obs
/ f(2'6)da" = o .
—00

! af
o +5 =a.
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Neyman belt construction

* For normal distribution Neyman belt equations
for lower limit lead to

| Tobs _ (2—Hjoy )
l—a=P(—oo <X < 2ps) = / e 202 dr=
V2ra J-
1 Lobs —Hlow
E {':‘f__d’{,i—l— ﬁ/ - T dz,f
T J—o0 obs ow
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Neyman belt equations

L= low = Tobs — TS()

1 00 y2
o = / e 2dy.
21 Js
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Maximal likelihood

Approximate estimate

—_

AL (Omaz) — InL(6)] < s2.
For normal distribution

(Tobs — I )2 5

g2
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Bayes approach

Bayes theorem

P(A[B)*P(B) = P(B|A)*P(B)
P(A|B) — conditional probability
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Bayes approach
* Due to Bayes formula

()N (2ops|ft, 0)
S ()N (wops |, o )dpd
the statistics problem is reduced to the
probability problem

P(plxops. o) =

Hup N B , ot
P, olrgs)dp =1 —a — 3.
Hlow
o0 Hiow ,.F
/ P(pt|zops, 0)dp = o, [_ - P(p|zops. o)dp = 3.
Hup
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Bayes approach

* The main problem — prior function 1(0) Is
not known

« For what prior frequentist and Bayes approaches
coincide?

- -8 = f_%bs [f(2,61) — f(a,00)lde = [ Ps(6]2ops)d6 .

61

Lobs .E’j' oo 3
PpOlaa) == [ ot 0)dn = [ f (. 0)da
Pf(€£058)
f(meS'.« 8)

Tr(0]2obs) =
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The relation between Bayes and

frequentist approaches

« Two examples
1.Example A

flx.0)=d(x—0)

Pr(0)zops) = P(xops — ) .

Wf(glmobsj =1.
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The relation between Bayes and
frequentist approaches

2.Example B

1
F(x,0) = —®(2)
f
Pp(0)20ps) = ‘fl;’gs@(?;bs)
’}’*_f(5'|:l?ﬂbs) — Tobs
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Parameter determination with
additional constraint

 Consider the case of normal distribution

N(z|p, 0% =1).

with additional constraint >0
Maximum likelihood method gives

o, x>0 ..
Hoest = 3 = 0 = max(0, xg).
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Parameter determination with
additional constraint

* How to construct the confidence interval for the p
parameter?
Cousins, Feldman method

e Maximum of
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Neyman belt construction

* The ordering principle on  r(u|x)
* As a consequence we find

R(ptlxy) = R(p)|xa),

o
f N(xlp. o =1)dr =1 — a.
I

1
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Likelihood method

* Forx, <0

October 2013



Likelihood principle

* Forx,>0

(1 —20)? < s%

max(0,—s + xg) < pu < 29+ S.

October 2013



Bayes approach

* We choose 11(u) = 6(M)

So prior function is zero for negative u
automatically

* The equation for the credible interval
determination

[ h e—3(n=20)* g,
Jp

> 1.9
/ e~ 2Y dy

o — N

=1 — .
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Confidence intervals for Poisson

distribution
* The generalization of Neyman belt construction is

N pre H
Y P(n|A)>1-a. P(rip) = —;
=i
Klopper-Pearson interval Alow < A < Ayp
Y P(n|how) = 5.
N=MNgpe

Nobs
Y P(n|Ay) =a.
n=>0

o +6 =«
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Poisson distribution

The Kloper-Pearson interval is conservative and it
does not have the coverage property. Coverage Is
the probability that interval covers true value with
the probability 1 —«a. Besidesfor Ay = Now

P(nobs| Aup = Aiow) = a—1

So we have negative probability - contradiction
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Stevens interval

« To overcome these problems Stevens (1952)
suggested to introduce new random variable U.
Modified equations are

o
Y P Now) + (1 = U) - P(nghs|Niow) = 3
N=mNgps+1
ﬂ'obs_l
Z P(n|Aup) + U - P(nobs|Aup) = o
n=>0
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Stevens equations

* One can derive Stevens equations using the
regularization of discrete Poisson
distribution(S.Bityukov,N.V.K). Namely let us
Introduce Poisson generalization

00
Py(x, \) = Z Oo(x —n)P(n|\).
n=0

* The integral © |
/ O(x —n)dx
T

* |s not well defined
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Stevens interval

Let us introduce the regularization

O(x —n) =+ Opeg(x,n|0n, Yn)

. i 1 | ]
&reg(;l?. -n.lfj'.n. H.*ﬂ) — IR . (—9(:1-' —n — '-/}'n) + {9(;}_,‘ —n + ﬁrn)) .
- In
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Stevens interval

* We can use Neyman belt construction for
regularized distribution and we find

o0
Y P(nNiow) + (1 = U(¥ngse - Onigw ) P (Nobs| Niow) = 53

N=nNgps+1

Mobs—1

Z P(n|Aup) + U(Yng,.r On,,, )P (Mobs| Aup) = a
n=0

Fat)

in

On + Tn

U(Yn:0n) =
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Stevens interval

In the limit of the regularization removement
we find

Z P(n|Aiow) + (1 — Ul(nobs. MNow ) ) P(Mobs | Alow) = ,.-"_'3’-; :

Z P(n|Aup) + U(ngbs: Aup) P(Mobs| Aup) = o

ri=>0

-~

I( iy In
U(n,A)) = lim.,, s5.)-0 5 <1.

't
II|' ?1
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Likelihood method

* The use of likelihood method gives
d

T L(N[108) [AArnas = 0
L(\|nghs) = _T.EI;SI (\)obs o=,
 The solution is
Amaz = Tlobs-
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Likelihood method

2AnL(Amaz = Nops|Mobs) — 2NL(A|ngps) < 52

2[(A — Nobs) + Nobs(In Nops — INA)] < s2,

/\an{nﬂbsﬁ 5) <A< )\u-p(ﬂ-obsi. 3)*
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Bayes approach

* The basic equations are
T(A)P(neps|A)

P(An —
(| 720bs) [2° 7 (M) P (nghs | N AN
Au
" P(Alngps)dA = 1 — av.
}\Iaw

 Due to identities

Npps

.9
A P(nobs|A\)dA = Y~ P(n|Ayp).
up =)

>0

Alow _
/ﬂ PlnapslNdA =S P(n[Niow).

n=mghs+1
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Bayes approach

Upper Klopper-Pearson limit coincides
with Bayesian limit for flat prior and lower limit

const

corresponds to prior T(\) = =
The Stevens equations for U(n.\) non
dependent on A

are equivalent to Bayes approach with prior
function

, . . _ n
T(Nnops, U) = [U + (1 — U) TS] ,
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Uncertainties In extraction of an
upper limit

F_—-_—-"
2
:
.
3
2
2
r
E
i
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Modified frequentist definition
* We require(S.Bityukov,N.V.K.,2012) that

1—4 > P_(ngps|\icp) = a

P_(ngps| A ) = Z ("EP_(??OE;S + k[N,
(Nops|A) = Z P(nops|A)s

» Qur definition is equivalent to Baves
. approach with prior function ~ 7(\) = >_ G\,
k

n!

I, = :
: (n+ k)!
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Signal extraction for nonzero
background

« Consider the case

A= Np + s,
Ay = Leyoyp
Ae = Logeg

 Cousins-Feldman method

n4
Y P(n|xy + A)

n=n_
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Nonzero background

 Likelihood ordering

R P(n|Ap + Ag)
- P(?'il/‘\b -+ )“s,best) |

Plus Neyman construction

no
Y P(n|dp+ X)) >1—a.

n=n1
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CLs method(T.Junk,A.Read)

« Upper bound

Npps
P(n < ngps|A\p + As) = Z P(n|Ap + As) > a.
n=>0

* CLg method

P(n < nops|Ap + As)
P(n < ngps| o)

(X,

* |In Bayes approach it corresponds to the

replacement
O(\) —  const-0(A— Ap).
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Bayes method

1

P(Ag|nobs: Ap) = P(1obs|Ap + Ag)T(Ap, Ag) - foc;- P(ngps| Ay + M)T(Ap, AL )N,
. U "ohs g M . g /WG

 For flat prior

|

P(""Sh?ﬂb.ﬂ‘)\b) — P(?.?GbSI/\b + )"S) : [‘DLP(” b I)\)(f)\
JAp obs -

* We can interprete this formula in terms of
conditional probability
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Bayes method

« Namely the probabillity that parameter A lies in
the interval [A, A+dA] provided A=A, is determined
by the formula

P(Xngps)dX — P(Angps)dA
, — T o0
P(A 2 Xo) / P(ngps| N )N
® )\b

P(A‘”'Gb&?* A 2 x\b)f{/\ =

that coincides with the previous Bayes formula
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Systematics

» 1. Systematics that can be eliminated by
the measurement of some variables In
other kinematic region

o 2. Uncertainties related with nonexact
accuracy In determination of particle
momenta, misidentification...

3. Uncertainties related with nonexact
knowledge of theoretical cross sections
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Systematics

« 3 methods to deal with systematics(at least)

1. Suppose we measure some events in
two kinematic regions with distribution
functions N(z|up +ns.obes) ,  Nylus.op).

The random variable Z = X-Y obeys normal
distribution N(z|ps,0p, g + %)
As a conseauence we find

|53'=:rbs — Yobs — ﬂ-"'S‘ < k- \/”.QB—S + ”% +
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Systematics

 For Poisson distributions
P(n, A +As).  and P(m,7)\p)
due to identity
P(n|A1)P(m|A2) = P(n + m|A1 + A2) - Bi(n|n +m,p).

| m! _
Bi(n|m,p) = ! Pt (L —p)m",
_ A T
== 142
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Systematics

* The problem is reduced to the
determination of the p parameter from
experimental data
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Systematics

2.Bayesian treatment or Cousins-Highland

method Is based on integration over nonessential
variables

P, (2]0) [de¢/7(0")P(x|6.6")
av\L — .
[ d6'dxm(6")P(x]6.6")

For normal distributions and flat prior we find

o0
G (2|, (J’Z} = [ dpN (x|, JQ}N{;_:.“_:.U. nj} = N(z|po, o’ + Ji}.
J—00
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Systematics

* |n other words the main effect is the

replacement .
p E‘TE — ;:FQ -+ {Ti

and the significance Is

So for normal distribution this method coincides
with the first method
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Systematics

 Profile likelihood method

Suppose likelihood function L(X,6)
depends on nonessential variables 6
and essential variables A

Profile likelihood
OL(\.0) |
= ET:ET — “
It o
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Profile likelihood

L(\.6o(\))
L(\, (M)

New variable(statistics) ty=—2In

JL OL

e N )
I\ |9:§ﬂ_._)l.:)l.g o0 |9:9D.~}.:}.D

* Per construction  © =0

* For new statistics ¢, defines probabllity density
f(ta\. 6)
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Profile likelihood

« For normal distributions profile likelihood
method coincides with the Cousins-Highland
method

* Very often p-value Is used
« By definition Py = /“‘ F(t. B)dty,.
: f-h._ebs

p-value determines the agreement of data with a

model

« Small p-value(p <5.9*107) - the model is
excluded by experimental data
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P-value

« For Poisson distribution p-value definition is

s
M) = Y Pln|i).

M= apkg

Py ngps|Ap) = Pin 2 ngy,
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Limits on new physics at LHC

For the Higgs boson search CMS and ATLAS
Introduce the extended model ox — pon

with additional y parameter and the replacement
cross section the same. The case y =1
corresponds to SM. The case u=0 corresponds
to the absence of the SM Higgs boson.

The likelihood of the general model can be written
In the form
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Likelihood of the model

L(data|p, 0) = Poisson(datal - s(8) + b(0)) - p(6]0).

k
Poisson(datalp - s +b) = H P(nobsilpe - si +bi) .
i=1

Here  r(99) is the probability density of
nonessential parameters . Usually p(9|0)

|s taken as normal or lognormal distribution
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Bayes approach

* In Bayes approach the use of the formula

1
P(p) = - /gL(u’r'x.m“.r. 0)po(0)m,(pe))do .

« allows to determine the probabillity density for
parameter. Upper limit y,, Is detemined as

[ P(p)dp =1 — a.

Usually a= 0.05
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Freguentist approach

« CMS and ATLAS use statistics
L(data|ps +b)
L(dataljis +b)

qu = —2 In

Often modifications are used with additional
conditions as

(a) 1 =>0:;
(b) 1 < pu:

(¢) 0< i < p.
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Freguentist approach

Very often the hypothesis y=0 is tested
against p>0. For such case It iIs convenient to use

N {2 1 L(datalb(6o)) s
qo =

L(datalb(0) + j1s(0))
0, pn<D0.

For single Poisson

o — —2mnb—nlnn+n—-=5], n>0b,
=0, n<o
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Single Poisson

» By construction q,20 and

o0 o
Po = / fqol0)dgo = > P(n|b)
Y q0,0bs

N=N ke

In the limit n»1 the
probabllity density is

1

2T

e—90/2

o | —

1
f(q0]0) = 50(q0) +

=
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Upper limits

« To derive upper limits the statistics

g’u.:<

( L(data|is + b)

—2 In - :
L(datalfis +b)
L0, > .

i< [,

IS used. For sing

= { —2 [-nIn(pus +b) +nlnn — (us + b) + nl,
=

0. n

%0
Pu = /
Y Qu.ob

e Poisson

> 115 + b.

Nohs

f(quln)day = ) P(n|us +b).

8 n=I()
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Higgs boson search at CMS

As an illustration consider the Higgs boson
search at CMS detector
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P-value for Higgs boson search

¥s=T7TeV.L=51"{s=8TeV, L=5,3 "

@
= S
o]
T 1o
Tyl
- 10
8 o =
S BT 26
10_2 § ..................
2| 30
107 &
= Observed
R O ey Exp. for SM Higgs Boson
107%E
= 7 TeV Observed
- Ag
8 TeV QObserved
10.5... - L | [ [ [ L1 \
110 115 120 125 130 135 140 145 150
my,; (GeV)
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Best fit 6/o,,

CMS \s=7TeV,L=511f" \s=8TeV,L=53fb"
2_5_I I I I I I I I I I I I | I I I I | I I I I | I I I I | I I I I_

- " 68% CL band .
1.5— —

110 115 120

125 130 135 140 145
m,, (GeV)
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Summary of Higgs boson
measurements

CMS \s=7TeV,L=51f" ys=8TeV,L=531b"

m, = 1235.5 GeV
H%'\{'\/ +
H— ZZ .
H—- WW e
H— 1t S
H— bb e =
| | | | | ‘ | | | | | | | | | ‘ | | | | | | |
-1 0 1 2 3
Best fit G/O'SM
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% CMS js=7TeV,L=51f" {s=8TeV,L=53fb"
_I [ [ [ [ [ [ [ [ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ I_
%) 1 —=— Observed —
_GCJ - === Expected (68%) | 3
B 10 W [ Expected (95%) |— aro
§ 10 = }z xpected (95%) i95 "
ok 199%
% 10 =
D 43 199.9%
T 10 s
= .nd ]
n 197
q5 5 |
10° = =
L F -
O 4o = E
10_7 ;_I | | | | | | | | | | | | | | | | | | | | I_;
110 115 120 125 130 135 140 145
m.. (GeV)
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Conclusions

Experiments CMS and ATLAS
use both frequentist and Bayesian

methods to extract the parameters

of Higgs boson and limits on new
physics. As a rule they give
numerically similar results

October 2013



BACKUP

Hypotheses testing

Simple vs. Compound
Hypotheses
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A quick review of frequentist statistical tests

Consider a hypothesis /1, and alternative /.

A test of H,, 1s defined by specifying a critical region w of the
data space such that there 1s no more than some (small) probability
o, assuming f1, 1s correct, to observe the data there, 1.e.,

Pxew|Hy) <«
Need inequality if data are data space ()

discrete.

a 1s called the size or

significance level of the test.
If x 15 observed 1n the

critical region, reject H,,. \

critical region w
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Definition of a test

But 1n general there are an infinite number of possible critical
regions that give the same significance level o

So the choice of the critical region for a test of /4, needs to take
into account the alternative hypothesis /.

Roughly speaking, place the critical region where there 1s a low
probability to be found if H, 1s true, but high 1f /7, 1s true:
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Type-1, Type-I1I errors
Rejecting the hypothesis /7, when 1t 1s true 1s a Type-I error.
The maximum probability for this 1s the size of the test:
PxeW|H,)<«a

But we might also accept H, when 1t 1s false, and an alternative
H, 18 true.

This 1s called a Type-II error, and occurs with probability
PxeS-W|H, )=p

One minus this 1s called the power of the test with respect to
the alternative /1

Power = 1 =
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Test statistic based on likelihood ratio

How can we choose a test’s critical region 1n an ‘optimal way’?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of
H,, (background) versus H,, (signal) the critical region should have

p(X‘H-l_)
P(X‘Hﬁ)

> C

inside the region, and < ¢ outside, where ¢ 1s a constant which
determines the power.

P(X‘Hﬂ
P(X‘H{))

Equivalently, optimal scalar test statisticis | {(x) =

N.B. any monotonic function of this 1s leads to the same test.
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p-values
Suppose hypothesis H predicts pdf f(Z|H) forasetof

observations ¥ = (x1,...,zn) .
We observe a single point in this space: Zgps

What can we say about the validity of H in light of the data?

Express level of compatibility by giving the p-value for H:

p = probability, under assumption of H, to observe data with
equal or lesser compatibility with A relative to the data we got.
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Using a p-value to define test of H,

One can show the distribution of the p-value of H, under
assumption of A, 1s uniform i [0,1].

So the probability to find the p-value of H, p,, less than o 1s
P(p[} < (‘t'|H()) —

We can define the critical region of a test of /, with size « as the
set of data space where p, < a.

Formally the p-value relates only to /1, but the resulting test will
have a given power with respect to a given alternative /.
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Confidence intervals by inverting a test

Confidence 1ntervals for a parameter 6 can be found by
defining a test of the hypothesized value 6 (do this for all 6):

Specity values of the data that are ‘distavoured’ by 6
(critical region) such that P(data in critical region) < o
for a prespecified o, e.g., 0.05 or 0.1.

If data observed 1n the critical region, reject the value 6.
Now nvert the test to define a confidence interval as:

set of 6 values that would not be rejected 1 a test of
size o (confidence level1s 1 — ).

The nterval will cover the true value of 6 with probability > 1 - .
Equivalently, the parameter values 1n the confidence interval have

p-values of at least o.
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Ingredients for a frequentist test

In general to carry out a test we need to know the distribution of
the test statistic #(x), and this means we need the full model P(x|H).

Often one can construct a test statistic whose distribution
approaches a well-defined form (almost) mndependent of the
distribution of the data, e.g., likelihood ratio to test a value of &

g = —21In L(GA)
L(9)

In the large sample lumit 7, follows a chi-square distribution with

number of degrees of freedom = number of components 1 &
(Wilks’ theorem).

So here one doesn’t need the full model P(x|6), only the observed
value of 7,.
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Nuisance
parameters(systematics)

Frequentist treatment of nuisance parameters

Suppose model 1s L(x|6,v), but we are only interested in 6.
We can form the profile likelihood:  L(8) = L(6,(6))
where () = argmax L(6, v)

v
For parameter estimation, use L,(#) as with L(6) betore;

equivalent to “tangent plane” method for errors

(Example later)
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Frequentist treatment of nuisance
parameters 1n a test

Suppose we test a value of 4 L(6, 5(3))
with the profile likelihood ratio: tg = —21In A~
L(8,7)
We want a p-value of 6 Pe = f(tel0,v) dtg
tﬁ‘,obs

Wilks’ theorem says 1n the large sample limit (and under some
additional conditions) f(7,/0,v) 1s a chi-square distribution with
number of degrees of freedom equal to number of parameters of
interest (number of components 1n &).

Simple recipe for p-value; holds regardless of the values of
the nuisance parameters!
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Frequentist treatment of nuisance
parameters 1n a test (2)

But for a finite data sample, f(7,/0,v) still depends on v.
So what 1s the rule for saying whether we reject 67
Exact approach 1s to reject 6 only 1f p, < a (5%) for all possible v.

This can make 1t very hard to reject some values of 6; they might
not be excluded for value of v known to be highly distavoured.

Resulting confidence level too large (“over-coverage”).
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Profile construction (“hybrid resampling )

K. Cranmer, PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics, 2008.
oai:cds.cern.ch:1021125. cdsweb. cern.ch/record/1099969.

Compromise procedure 1s to reject 6 1f p, < o where
the p-value 1s computed assuming the value of the nuisance

parameter that best fits the data for the specified & (the profiled
values):

p(0) = argmax L(6, v)

v

The resulting confidence interval will have the correct coverage
for the points (6,v(6))

Elsewhere 1t may under- or over-cover, but this 1s usually as good
as we can do (check with MC 1f crucial or small sample problem).
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Bayesian treatment of nuisance parameters
Conceptually straightforward: all parameters have a prior: w(6,v)

Often 7(0,v) = me(0)m, (V)
Often m(#) “non-informative” (broad compared to likelihood)

Usually m,(r) “informative”, reflects best available mnfo. on v.

Use with likelihood 1n Bayes’ theorem:
p(0,v|z) < L(z|0,v)m(0,v)

To find p(flx), marginalize (integrate) over nuisance param.:

p(0]z) = / p(6, v|z) dv
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The marginal (integrated) likelithood

If the prior factorizes:  7w(6,v) = mp(0)m, (V)

then one can compute the marginal likelihood as:

L (z|0) = /L($|9,v) (V) dv

This represents an average of models with respect to 7 (v)
(also called “prior predictive” distribution).

Does not represent a realistic model for the data;
v would not vary upon repetition of the experiment.

Leads to same posterior for & as before:

p(f|z) = /p(f?.ukl:) dv /L(a:|9,u)7ru(u)7rg(9) dv = L (z|0)me(0)
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The (pure) frequentist equivalent

In a purely frequentist analysis, one would regard both
x and y as part of the data, and write down the full likelihood:

L(z,y|0,v) = L(z|0,v)L(y[v)

“Repetition of the experiment” here means generating both
x and y according to the distribution above.

So we could either say that z (v) encapsulates all of our prior
knowledge about v and forget that it came from a measurement,

p(0,v|z) oc L(z|0,v)me(0)m, (v)
or regard both x and y as measurements,

p(0,v|z,y) < L(z|0,v)L(y|v)me(0)mo(v)
In the Bayesian approach both give the same result.
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Frequentist use of Bayesian ingredients

For subjective Bayesian, end result 1s the posterior p(6lx).

Use this, e.g., to compute an upper limit at 95% “credibility level”:

Oup
P(0 < Oyp|z) = / p(0|z) db = 95%

— 00

— Degree of belief that 6 < 6, 15 95%.

But 6, 1s 6, (x), a function of the data. So we can also ask

PO < Oup(x)|0) =7 (a frequentist question)

Here we are using a Bayesian result in a frequentist construct
by studying the coverage probability, which may be greater or
less than the nominal credibility level of 95%.
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More Bayesian ingredients in frequentist tests

Another way to use Bayesian mgredients to obtain a frequentist
result 1s to construct a test based on a ratio of marginal likelihoods:

tm(z) = Ly(z|s) [ L(z|v,s)m,(v)dv
m m($|b) fL :L‘|I/’ b)ﬂ'y('l_/) dv

Except 1n sumple cases this will be difficult to compute; often use
mnstead ratio of profile likelihoods,
¢ () = Dolals) _ Liali(s),)
Lp(z|b)  L(z|p(b),b)

or 1n some cases one may just use the ratio of likelithoods for
some chosen values of the nuisance parameters.

Here the choice of statistic influences the optimality of the
test, not 1ts “‘correctness”.
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Prior predictive distribution for statistical test

The more important use of a Bayesian ingredient 1s 1n computing
the distribution of the statistic. One can take this to be the Bayesian
averaged model (prior predictive distribution), 1.e.,

Generate x ~ L_(x|s) to determine f{#(x)|s),

Generate x ~ L (x|b) to determine f{#(x)|b).

Use of the marginal likelithood results 1 a broadening of the
distributions of #(x) and effectively builds i the systematic
uncertainty on the nuisance parameter into the test.
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Prior predictive distribution for statistical test
Note the important difference between two approaches:

1) Pure frequentist: find “correct” model (enough nuisance
parameters) and construct a test statistic whose distribution 1s
almost independent of the nuisance parameters (and/or use profile
construction).

2) Hybrid frequentist/Bayesian: construct an averaged model
by mtegrating over a prior for the nuisance parameters; use this to
find sampling distribution of test statistic (which 1tself may be
based on a ratio of marginal or profile likelithoods).
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Search for a signal process

Suppose a signal process 1s not known to exist and we want
to search for 1t.

We observe n events and for each measure a set of numbers x.
The relevant hypotheses are:

H,: all events are of the background type
H,: the events are a mixture of signal and background

Rejecting H, constitutes “discovering” new physics.

Suppose that for a given integrated luminosity, the expected number
of signal events 1s s, and for background b.

The observed number of events n» will follow a Poisson distribution:

Hn , b7 |
P(nlb) = —e" P(n|s + b) = (s +b) o—(5+b)

| €
. n '

October 2013



Likelihoods for full experiment

We observe n events, and thus measure » instances of x.

The likelihood function for the entire experiment assuming
the background-only hypothesis (/7,) 1s

b” TL

= _bH]‘ x;|b)

and for the “signal plus background” hypothesis (/) 1t 1s

b
Lgip= (% T —(s+b) H X£|% + 7 f X-i“)))

where . and s, are the (prior) probabﬂlties for an event to
be signal or background, respectively.
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Likelihood ratio for full experiment

We can define a test statistic  monotonic 1n the likelihood ratio as

| 51y Lt - s f(xils)
Q= —2ln =—s+ Y In (1 + )
Ly Z_:l b f(x;|b)

To compute p-values for the b and s+b hypotheses given an
observed value of O we need the distributions f(Q|b) and A Q|s+b).

Note that the term —s 1 front 1s a constant and can be dropped.

The rest 1s a sum of contributions for each event, and each term
1n the sum has the same distribution.

Can exploit this to relate distribution of QO to that of single
event terms using (Fast) Fourier Transforms (Hu and Nielsen,
physics/9906010).
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Distribution of O

Suppose 1n real experiment

Take e.g. b =100, s = 20. / 0 1s observed here.

0.06 —

/O
£ (Ols+b)

0.02 -

0 i 1 1 1 1
-80 -60 -40 -20 0

/ '\ “
p-value of b only p-value of s+b
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Systematic uncertainties
Up to now we assumed all parameters were known exactly.
In practice they have some (systematic) uncertainty.

Suppose e.g. uncertainty 1n expected number of background events
b 1s characterized by a (Bayesian) pdf a(D).
Maybe take a Gaussian, 1.e.,

7(h) = 1 (___—(b—bg)ﬁ/zag

B '\/E(Tb

where b, 1s the nominal (measured) value and o, 1s the estimated
uncertainty.

In fact for many systematics a Gaussian pdf 1s hard to
defend — more on this later.
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Distribution of () with systematics

To get the desired p-values we need the pdt /(Q), but
this depends on b, which we don’t know exactly.

But we can obtain the prior predictive (marginal) model:

flQ) = /f(Qb (b) db

With Monte Carlo, sample b from m(b), then use this to generate
O from f (Q|b), 1.e., a new value of b 1s used to generate the data
for every simulation of the experiment.

This broadens the distributions of O and thus increases the

p-value (decreases significance Z) for a given Q...
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Distribution of ) with systematics (2)
For s =20, b, =100, o, = 20 this gives

@U.OB i
0.06 - ?obs P £(Olb)

f(Qsth) T N

04 —
I

0.02 _—

0—3_0 — Id:‘JI:l"l'J -40 -20 0

/ \ “

p-value of b only p-value of s+b
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Maximum likelihood fit with Gaussian data

In this example, the y. are assumed 1independent, so the
likelithood function 1s a product of Gaussians:

o1 1 (y; — (=i 00, 01))2
L(0p,01) = || exp | —=~= oY ,
i—1 V270, 2 0'1;2

Maximizing the likelithood 1s here equivalent to minimizing

" (y; — p(xy; 0g,01))?
x*(0g,601) = —2In L(fg,01)+const = (y: ”(:B*'Q 0:01))"

i=1 ag;

1.e., for Gaussian data, ML same as Method of Least Squares (LS)
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6, known a priori

T
1
L(QO) p— |I exp | —

x?(00) = —21In L(p)+const = %

For Gaussian y,, ML same as

Minimize y*> — estimator f
e 2
Come up one unit from xmin

to find oj_.
0

1 (y; — p(z4; 09,01))?

2
i
" (yi — p(i;00,01))?
Yi — P\Tg, U0, U1
5 .
=1 g;
— 105
m 1 1 1
%
I.S 99|
93 | |
87r ______
81 —l; G{, -
?'?,26 1.28 T 13 1.32
B, 8
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ML (or LS) fit of 6, and 6,

" (y; — p(xy; 00,01))7

2 _ _
x“(0p,01) = —21In L(0p,01)+const = > .
i=1 1
o ‘ " 011
Standard deviations from
tangent lines to contour 0.092
X° = Xmmin+1- 0.074
Correlation between 0.056
0o, 01 causes errors 0.038 - — o,
to 1mcrease.
0.

October 2013



If we have a measurement 7, ~ Gauss (6,, o,

n : 2 2
2 _ (y; — n(x4; 00,01)) (01 —11)
x“(00,01) = > 5 + 5 :
. a: a
1=1 ? 2]
o 011
The information on 6,
0.092 |
improves accuracy of 6 . _
0.074 frmrmerrei
0.056 | |
0.038 [ | —H ;._ Gﬁa
0'02 1 F H - 1
1.24 1.26 1.28 1.3 1.32 1.34
el:]
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