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• Our program: We take the Minkowski space and read off the gravitational
properties of matter by gauging the Poincaré group T4 ⋊ SO(1, 3).
Subsequently we generalize to the gauging of the affine group T4 ⋊GL(4, R).

• See H., McCrea, Mielke, and Ne’eman, Physics Reports (1995) and Yuri
Obukhov, Int.J.Geom.Meth.Mod.Phys. (2006), numerous results I talk about
today were won in collaboration with Yuri Obukhov (Moscow).
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• My Soviet/Russian connections as a student:

◮ D. I. Blochinzew, Grundlagen der Quantenmechanik, 2nd corr. ed.
(transl. from the Russian). Deutscher Verlag der Wissenschaften, Berlin
(East) (1958)

◮ D. Iwanenko and A. Sokolow, Klassische Feldtheorie (Classical Field
Theory, transl. from the Russian). Akademie-Verlag, Berlin (East)
(1953)

◮ V. I. Rodichev, Twisted space and nonlinear field equations, Sov.
Phys.–JETP 13, 1029 (1961)

◮ N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of
Quantized Fields (transl. from the Russian). Interscience, London
(1959)

◮ D. I. Blokhintsev, Space and Time in the Microworld (transl. from the
Russian). Reidel, Dordrecht (1973)

• First book on gauge theory of gravity: V. N. Ponomariev, A. O. Barvinsky,
and Yu. N. Obukhov, Geometrodynamical Methods and the Gauge
Approach to the Theory of Gravitational Interactions (Energoatomizdat,
Moscow, 1985) (in Russian)
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1. Minkowski space M(E,⊕, V, g) as 4-dimensional flat affine space
with a constant Lorentz metric

• Electrodynamics of moving bodies → SR and Minkowski spacetime M.
Equivalence of all inertial systems of reference. M is homogeneous in time
(t = x0) and space (x1, x2, x3) and isotropic in space.

• Each event is characterized by its coordinates xi. E is the set of all events.
An operation ⊕, called translation is defined that maps events into events. Let
V be a 4d vector space. Then 4d affine space (E,⊕, V ). V is attached to
events, named p, q, ... ∈ E, vectors named v, w, ... ∈ V ; see Kopczyński &
Trautman 1992, Snapper & Troyer 1971.

• Translating the event p into the event q by means of the translation vector v:

p v = q

q

v

p

• Free transitive operations ⊕

E × V → E , (p, v) 7−→ p︸︷︷︸
event

⊕ v︸︷︷︸
vector 4



• Translating the event p first by the vector (v +w) or, alternatively, first by v

and subsequently by w. The result is the same, the event r:

=

wv)

w

v v

(v + w) = (pp

q

r r

pp

w

• The vector q ⊖ p is uniquely determined:

q
p

(q p) = qp

q

p

• In affine space the translation is a fundamental structure. No point (event)
is distinguished in an affine space (in contrast to a vector space V ). This is
an expression of its homogeneity.
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• Additionally, we need a Minkowski (aka Lorentz) metric for being able to
measure distances and angles:

g(v, w) := gαβ vαwβ = v0̂w0̂ − vâwâ ,

frame indices α, β, ... = 0̂, 1̂, 2̂, 3̂, frame eα = eiα ∂i. Minkowski vector space
(V, g).

• Minkowski space M= (E,⊕, V, g). Group of motion in M is the 4 + 6
parameter

• Poincaré group P = T4︸︷︷︸
transl.

⋊SO(1, 3)︸ ︷︷ ︸
Lorentz rot.

(also called inhom. Lorentz group)

• Turn later to affine group A = T4︸︷︷︸
transl.

⋊GL(4, R)︸ ︷︷ ︸
linear gr.

, which will be gauged in the

presence of a metric, yielding metric-affine gravity (MAG)
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• Poincaré algebra: Pα generators of translations, Jαβ = −Jβα generators of
Lorentz rotations with commutation rules

[Pα, Pβ ] = 0 , [Pα, Jβγ ] = i (gαβPγ − gαγPβ) ,

[Jαβ , Jγδ ] = i (gβγJαδ − gαγJβδ + gαδJβγ − gβδJαγ) .

• Note the semi-direct product structure. Quadratic Casimir operators that
commute with all P ’s and J ’s:

C1 := PαPα , C2 := WαWα ,

with the Pauli-Lubański operator (orbital angular momentum drops out)

Wα := −
1

2
ǫαβγδ J

βγP δ .

• Properties (mass-spin classification of elementary particles, Wigner 1939):

PαWα = 0 , C1 → m︸︷︷︸
mass

2 , C2 → −m2 s︸︷︷︸
spin

(s+ 1)

• Field theoretical correspondents: energy-momentum 3-form Σα and

spin angular momentum 3-form ταβ = −τβα.

7



2. Heuristics: Read off gravitational properties from the b ehavior of
matter in Minkowski space

• Study a classical Dirac field Ψ(x) in Minkowski space M in non-inertial
frames.

• Find the integrability conditions for the 4 coframe 1-forms ϑα = ei
αdxi and

the 6 Lorentz connection 1-forms Γαβ = Γi
αβdxi = −Γβα in M.

• Relax these integrability conditions and arrive at the Einstein-Cartan theory
(Sciama, Kibble 1961) or, more generally, at the Poincaré gauge theory, both
formulated in a Riemann-Cartan space with gauge potentials (ϑα,Γαβ).

• Already in vacuum electrodynamics, because of its conformal invariance,
the dil(at)ation current emerges. Such a current couples to the trace part of
the connection Γγ

γ .

• Subsequently abandon the antisymmetry of the Lorentz connection,
SO(1, 3) =⇒ GR(4, R), study a general linear connection Γα

β , its shear
piece Γ(αβ) − 1

4
gαβΓγ

γ is related to the SL(3, R), a dynamical group
describing Regge trajectories (beyond the mass-spin classification!).
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Einstein’s laboratory Kibble’s laboratory

elementary
object in SR

mass point m Dirac spinor Ψ(x)

inertial frame
Cart. coo. system xi

ds2
∗
= oijdx

idxj

holonomic orthon. frame
eα = δiα ∂i, eα · eβ = oαβ

force-free
motion in IF

u̇i ∗
= 0 (iγi∂i −m)Ψ

∗
= 0

non-inertial
frame

arbitrary curvilinear
coord. system xi′

anholon. orthon. frame
eα = eiα ∂i

coframe ϑα = ei
αdxi

force-free
motion in NIF

u̇i′ + uj′uk′{ i′

j′k′

}
= 0

[
iγαeiα(∂i + Γi)−m

]
Ψ = 0

Γi :=
1
2
Γi

βγρβγ Lorentz

non-inertial
object

{
i′

j′k′

}

40

ϑα, Γαβ = −Γβα

16 + 24

constraints
in SR

R̃(∂{}, {}) = 0
20

T (∂e, e,Γ)=0,R(∂Γ,Γ)=0
24 + 36

global IF gij
∗
= oij ,

{
i
jk

} ∗
= 0

(
ei

α, Γi
αβ
) ∗
= (δαi , 0)
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Continued:

Einstein’s laboratory Kibble’s laboratory

non-inertial
object

{
i′

j′k′

}

40

ϑα, Γαβ = −Γβα

16 + 24

constraints
in SR

R̃(∂{}, {}) = 0
20

T (∂e, e,Γ)=0,R(∂Γ,Γ)=0
24 + 36

global IF gij
∗
= oij ,

{
i
jk

} ∗
= 0

(
ei

α, Γi
αβ
) ∗
= (δαi , 0)

switch on
gravity

R̃ 6= 0
Riemann

T 6= 0, R 6= 0
Riemann-Cartan

local IF
Einstein elev.

gij |P
∗
= oij ,

{
i
jk

}
|P

∗
= 0 (ei

α, Γαβ
i )|P

∗
= (δαi , 0)

field eqs.
R̃ic− 1

2
tr(R̃ic) ∼ mass

GR

Ric− 1
2
tr(Ric) ∼ mass

Tor + 2 tr(Tor) ∼ spin
EC

Thereby we arrived at the Einstein-Cartan theory of gravity (EC). We will now

immediately generalize to the gauge of the affine group:
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3. Weak and hypoth. strong gravity, metric-affine gauge th. o f gravity

3.1 Geometry and coupling to matter

• The ‘gravitational’ potentials are
gαβ metric (weak, Newton-Einstein type gravity)

ϑα coframe (weak, Newton-Einstein type gravity)

Γα
β connection (strong, Yang-Mills type gravity)

• By differentiation, we find the field strengths

Qαβ = −Dgαβ nonmetricity

Tα = Dϑα torsion

Rα
β = dΓα

β − Γα
γ ∧ Γγ

β curvature

• The material currents, coupled to the potentials (gαβ, ϑ
α,Γα

β), are
energy-momentum and hypermomentum (σαβ ,Σα,∆

α
β).

• The hypermomentum splits into spin current ⊕ dilation current ⊕ shear
current (add. sources of gravity):

∆αβ = ταβ + 1

4
gαβ ∆γ

γ +
⌢

∆րαβ , ταβ = −τβα

• The 3 potentials span the geometry of spacetime: It is the metric-affine
space (L4, g). The corr. first order Lagrangian gauge field theory is called
MAG. It is a framework for gravitational gauge field theories. We developed
mainly the bosonic, Yuval Ne’man, together with Šijački, its fermionic version.
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3.2 Field equations of metric-affine gravity (MAG)

• Lagrangian:

Ltotal = V (gαβ , ϑα , Qαβ , Tα , Rα
β)+Lmatter(gαβ , ϑα ,Ψ ,

Γ

D Ψ) .

• Define the excitations (field momenta):

Mαβ = −2
∂V

∂Qαβ
, Hα = −

∂V

∂Tα
, Hα

β = −
∂V

∂Rα
β
.

• Then the field equations of MAG read (Einstein sector),

DMαβ−mαβ = σαβ (δ/δgαβ : 0th field eq.) ,

DHα − Eα = Σα (δ/δϑα: 1st field eq.) ,

DHα
β − Eα

β = ∆α
β (δ/δΓα

β : 2nd field eq.) ,
δL

δΨ
= 0 (δ/δΨ: matter eq.) ,

with the energy-momentum and the hypermomentum of the gauge fields as

mα
β := ϑα ∧Eβ +Qβγ ∧Mαγ − Tα ∧Hβ −Rγ

α ∧Hγ
β +Rβ

γ ∧Hα
γ ,

Eα := eα⌋V + (eα⌋T
β) ∧Hβ + (eα⌋Rβ

γ) ∧Hβ
γ +

1

2
(eα⌋Qβγ)M

βγ ,

Eα
β := −ϑα ∧Hβ − gβγ M

αγ .
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• We have the potentials (gαβ, ϑ
α,Γα

β). The field strength of Γα
β is the

curvature with Rαβ := gβγRα
γ . It can be decomposed into 3 pieces:

Zαβ := R(αβ), Wαβ := R[αβ], Z := Zα
α:

Rαβ = Zαβ︸︷︷︸
strain

+Wαβ︸ ︷︷ ︸
rotation

= 6Zαβ︸︷︷︸
shear

+ Zgαβ/4︸ ︷︷ ︸
dilation∼gen.Weyl

+Wαβ︸ ︷︷ ︸
rotation

.

• Quadratic gravitational YM-type master Lagrangian [Yang (1974) → W 2]:

VMAG ∼
1

κ︸︷︷︸
grav.const.

(
R + λ+ T 2 +Q2 +QT

)
+

1

ρ︸︷︷︸
dim.less

(
W 2 + Z2 +WZ

)
,

see M.Blagojević & FWH (eds.), Gauge Theories of Gravitation,
a reader with commentaries, Imperial College Press, London (2013).
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3.3 An exact solution of metric-affine gravity (MAG)

OVETH-solution (Obukhov, Vlachynsky, Esser, Tresguerres, H., 1996)

• Spherically symmetric field configuration

Spherical polar coordinates (t, r, θ, φ), coframe of Schwarzschild type

ϑ0̂ = f d t , ϑ1̂ =
1

f
d r , ϑ2̂ = r d θ , ϑ3̂ = r sin θ dφ ,

with unknown function f(r). Coframe assumed to be orthonormal, local
Minkowski metric oαβ := diag(−1, 1, 1, 1) = oαβ :

ds2 = oαβ ϑα ⊗ ϑβ = −f2 dt2 +
dr2

f2
+ r2

(
dθ2 + sin2 θ dφ2

)
.

For torsion and nonmetricity the triplet ansatz with 3 covector pieces.
Nonmetricity = only shear ⊕ dilation (Λ := ϑαeβ⌋րQαβ):

(3)Qαβ =
4

9

(
ϑ(αeβ)⌋Λ−

1

4
gαβΛ

)
, (4)Qαβ = Qgαβ .

Torsion with only the vector piece:

Tα = (2)Tα =
1

3
ϑα ∧ T , with T := eα⌋T

α .

Thus we are left with the three non-trivial 1-forms Q, Λ, and T . Thus,

Q = u(r)ϑ0̂ , Λ = v(r)ϑ0̂ , T = τ (r)ϑ0̂ .
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• Use computer algebra packages Reduce-Excalc and GRG. Simplify
Lagrangian and come up with

V =
1

2κ

[
−a0 R

αβ ∧ ηαβ − 2λ η + Tα ∧ ∗

(
3∑

I=1

aI
(I)Tα

)

+ 2

(
4∑

I=2

cI
(I)Qαβ

)
∧ ϑα ∧ ∗T β +Qαβ ∧ ∗

(
4∑

I=1

bI
(I)Qαβ

)]

−
z4
2

Rαβ ∧ ∗(4)Zαβ ⇐= strong gravity .

• The new solution with four types of charge:
By substitution into the field equations we find an exact solution with

f =

√
1−

2κM

r
−

λ r2

3a0
+z4

κ(k0N)2

2a0 r2

and

u =
k0N

fr
, v =

k1N

fr
, τ =

k2N

fr
.

Here M and N are arbitrary integration constants, and the coefficients
k0, k1, k2 are constructed in terms of the dimensionless coupling constants.
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Collect our results, orthonormal coframe, nonmetricity, and torsion are

ϑ0̂ = f d t , ϑ1̂ =
1

f
d r , ϑ2̂ = r d θ , ϑ3̂ = r sin θ dφ ,

Qαβ =
1

fr

[
k0N oαβ +

4

9
k1N

(
ϑ(αeβ)⌋ −

1

4
oαβ

)]
ϑ0̂ ,

Tα =
k2N

3 fr
ϑα ∧ ϑ0̂ .

Besides mass, this solution carries dilation, shear, and spin charges, each of
them of the (co)vectorial type. We have the following assignments:

M −→ mass of Schwarzschild type ,

k0N −→ dilation (‘Weyl’) charge of type CONOM or (4)Qαβ ,

k1N −→ shear charge of type VECNOM or (3)Qαβ ,

k2N −→ spin charge of type TRATOR or (2)Tα .

For N = 0 and a0 = 1, recover Schwarzschild-deSitter solution of GR.
Two typical curvature pieces (of rotational and shear type) as examples
(q2 := z4(k0N)2/(2a0)):

(1)W 0̂1̂=−2κ
Mr − q2

r4
ϑ0̂ ∧ ϑ1̂, (4)Zαβ = oαβ k0N

2r2
ϑ0̂ ∧ ϑ1̂ .

• Review of exact solutions, H. & Macias, IJMPD (1999).
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4. Models within the framework of MAG (nonm. Qαβ , tors. Tα, curv. Rα
β)

R
α

β =
0

R α
β=0

Tα=0

GRGR =
ECTP

PG

SuGra
MAG

,

CG,dSG

Qα =0

Q
=

0
α

β β

Rectangle � → class of theories; circle ◦ → definite viable theories

PG = Poincaré gauge theory, EC = Einstein–Cartan theory, GR = general

relativity, TG = translation gauge theory aka teleparallel theory, GR|| = a

specific TG known as teleparallel equivalent of GR (spoken “GR

teleparallel”), MAG = metric-affine gauge theory, CG = conformal gauge

theory, dSG = (anti-)de Sitter gauge theory, SuGra = supergravity
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4.1 Viable models

All in Riemann-Cartan spacetime: Einstein-Cartan theory (EC), general
relativity (GR), teleparallel equivalent of GR (GR||). The corresponding
geometries:

M4

V4

Qα β=0

Tα Rαβ,

W4

Riemann

Minkowski

(teleparallelism)
Tα Rαβ

.

PG

|| GR

SR

.

Cartan
4U

Riemann-

GR

cu
rv

atu
re=

0

torsion=0

torsion=0

cu
rv

atu
re=

0

Weitzenbock

Nonmetricity=0 (Lorentz invariance): A space with a metric and a metric

compatible connection is called a Riemann-Cartan space U4. It can either

become a Weitzenböck space W4, if its curvature vanishes, or a Riemann

space V4, if the torsion happens to vanish.
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• Einstein-Cartan(-Sciama-Kibble) theory (EC):

Curv. scalar of Riemann–Cartan spacetime as simplest PG Lagrangian,
VEC ∼ 1

κ
Rsc ∼

1
κ
⋆(ϑα ∧ ϑβ) ∧Rαβ(Γ

γδ) (κ = Einstein’s grav. const.):

Ricij − 1

2
gijRick

k + Λgij = κΣij ,

Tij
k − δki Tjℓ

ℓ + δkj Tiℓ
ℓ = κ τij

k .

Formulated in terms of exterior calculus:

1

2
ηαβγ ∧ Rβγ − Ληα = κΣα = κ

δLmat

δϑα
,

1

2
ηαβγ ∧ T γ = κ ταβ = κ

δLmat

δΓαβ
.

α, β, ... are (anholonomic) frame indices,
ηα = ⋆ϑa, ηαβ = ⋆(ϑa ∧ ϑβ), ηαβγ = ⋆(ϑa ∧ ϑβ ∧ ϑγ), ⋆ = Hodge star

GR plus an additional spin contact interaction. If spin τ → 0, then EC → GR,
and RC-spacetime → Riem. spacetime; thus, GR is included.
With τ 6= 0, modified source of Einstein’s equation: ρ → ρ+ κτ 2 ⇒ at suff.
high densities κτ 2 ∼ ρ ⇒ ρEC ∼ m/

(
λCoℓ

2
Pl

)
and rEC ∼ (λCoℓ

2
Pℓ)

1/3 , more
than 1052g/cm3 or 1024 K for electrons, see H., v.d.Heyde, Kerlick, Nester,
RMP 1976. This is valid up to 10−34 s after the big bang (10−43 s corr. to
Planck era). For Dirac spins, the contact interaction is repulsive (O’Connell).
EC is a viable gravitational theory.— See Magueijo, Zlosnik, Kibble,
“Cosmology with a spin” (2012); Khriplovich, Rudenko, “Gravitational
four-fermion interaction and dynamics of the early Universe” (2013).
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• Teleparallel equivalent GR|| of general relativity GR:

V‖ =
1

κ
VT2 +Rα

β ∧ λα
β ,

VT2 := −
1

2
Tα ∧ ⋆

(
− (1)Tα︸ ︷︷ ︸

tensor

+2 (2)Tα︸ ︷︷ ︸
vector

+
1

2
(3)Tα︸ ︷︷ ︸

axial vector

)
.

Viable set! Yields local Lorentz invariance ⇒ Einstein’s GR.
GR|| in gauge Γ

∗
= 0, W4 spacetime, field eq. is Maxwell-like:

Dk T
ki

α + nonlin. terms ∼ κ× Σα
i

� eiα + nonlin. terms ∼ κ× Σα
i (in Hilbert gauge)

Compare Einstein’s equation (gij = gji):

� gij + nonlin. terms ∼ κ× σij (in Hilbert gauge)

For scalar and for Maxwell matter, that is, for Σij = σij , it can be shown that
GR|| and GR are equivalent.

Distinguish teleparallelism as a unified field theory (Einstein 1929) from

dualistic teleparallel gravity (Moeller 1958... Cho 1976... H.Meyer 1982...

Gronwald 1997... Itin 2004..., see books of Blagojević 2002, Ortı́n 2004, and

Aldrovandi & Pereira 2012 and review of Maluf 2013).
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4.2 Poincar é gauge theory (PG)

• Field eqs. of PG: Ltot = V (gαβ , ϑα , Tα , Rαβ)+Lmat(gαβ , ϑα ,Ψ ,
Γ

D Ψ) .

DHα −Eα = Σα ,

DHαβ − Eαβ = ταβ ,

δL

δΨ
= 0 .

Energy-momentum Eα := ∂V/∂ϑα and spin Eαβ := ∂V/∂Γαβ of
gravitational gauge fields:

Eα = eαyV + (eαyT
β) ∧Hβ + (eαyR

βγ) ∧Hβγ , Eαβ = −ϑ[α ∧Hβ] .

Eα and Eαβ are gauge covariant 3-forms, they are gravitationally ‘charged’...

• Irreducible decomposition of the torsion:

Tα = (1)Tα

︸ ︷︷ ︸
tentor 16

+ (2)Tα

︸ ︷︷ ︸
trator 4

+ (3)Tα

︸ ︷︷ ︸
axitor 4

= (1)Tα − 1

3
V ∧ ϑα + 1

3

⋆(A∧ ϑα) .

with 1-forms for vector and axial vector: V := eβyT
β and A := ⋆(ϑα ∧ Tα).

• Irreducible decomposition of the curvature:

Rαβ = (1)Rαβ︸ ︷︷ ︸
weyl 10

+ (2)Rαβ︸ ︷︷ ︸
paircom 9

+ (3)Rαβ︸ ︷︷ ︸
pscalar 1

+ (4)Rαβ︸ ︷︷ ︸
ricsymf 9

+ (5)Rαβ︸ ︷︷ ︸
ricanti 6

+ (6)Rαβ︸ ︷︷ ︸
scalar 1

.

R (curv. scalar) and X = 1
4!
ηαβγδR

[αβγδ] (curv. pseudoscalar)
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Gauge field theories of Abelian and non-Abelian groups compa red

• Maxwell–Dirac theory as a U(1) gauge field theory is Abelian. Recall:
Excitation H = (D,H), field strength F = (E,B).

• The group SU(2) is noncommutative, that is non-Abelian, the Yang–Mills

theory is a nonlinear theory and its gauge current,
A

I = −A ∧H , even though

it is not gauge covariant, carries its own isospin, note
A

D H = dH − A ∧H .

• The Poincaré group is also non-Abelian. Hence PG shares numerous
properties with the Yang–Mills theory. The gauge currents carry their own
charge and the theories become nonlinear.

Maxw: dH = J, dF = 0, H = Y0
⋆F.

YM:
A

D H = I,
A

D F = 0, H = α0
⋆F.

PG1:
Γ

D Hα−Eα = Σα,
Γ

D Tα = Rβ
α ∧ ϑβ , Hα = Hα(T

γ , Rδε);

PG2:
Γ

D Hαβ+ϑ[α ∧Hβ] = ταβ ,
Γ

D Rαβ = 0, Hαβ = Hαβ(T
γ , Rδε).

PG1 refers to the field equation related to translations and PG2 to the Lorentz
rotations, but there are mixing terms between both potentials. Universality!
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• Quadratic master Lagrangian of PG including parity violating pieces:

VqPG =
1

2κ
[ ( a0R − 2Λ0 + b0X) η

+
a2

3
V ∧ ⋆V −

a3

3
A ∧ ⋆A−

2σ2

3
V ∧ ⋆A+ a1

(1)Tα ∧ ⋆(1)Tα

]

−
1

2̺

[
(
w6

12
R2 −

w3

12
X2 +

µ3

12
RX) η + w4

(4)Rαβ ∧ ⋆(4)Rαβ

+(2)Rαβ ∧ (w2
⋆(2)Rαβ + µ2

(4)Rαβ) +
(5)Rαβ ∧ (w5

⋆(5)Rαβ + µ4
(5)Rαβ)

]

[Obukhov, Ponomarev, Zhytnikov: Gen.Rel.Grav. 21, 1107 (1989), Baekler,
H., Nester: PRD 83, 024001 (2011), Diakonov, Tumanov, Vladimirov: PRD
84, 124042 (2011), Baekler, H.: CQG 28, 215017 (2011)]

• Cosmol. models with acc. expan. by Shie, Nester, Yo (without parity viol.):

VSNY =
1

2κ

(
a0

⋆R +
1

3
a2V ∧ ⋆V

)

︸ ︷︷ ︸
weak Newt.-Einst. grav.

−
1

24̺
w6R

2η

︸ ︷︷ ︸
strong YM-type grav.

.

• Cosmol. models with acc. expan. by Baekler, H., Nester (with parity viol.):

VBHN =
1

2κ
(a0

⋆R+ b0
⋆X − 2λ0η) +

1

6κ
(a2V ∧ ⋆V − a3A ∧ ⋆A− 2σ2V ∧ ⋆A)

−
1

24̺
(w6R

⋆R− w3X
⋆X + µ3R

⋆X) .
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Cosmological model of Shie-Nester-Yo as example, see last slide [PRD 78,
023522 (2008)], more gen.models by Minkevich et al. CQG 2007 and
references therein. In the SNY parametrization, we have

VSNY ∼
1

κ
(a0Rsc + a1VT2) + bR2

sc ,

a1 > 0, b > 0. In an Hamiltonian analysis, they found, for a0 6= a1,
a massive torsion mode of spin 0+ with effective mass µ := a1 − a0, together
with 2 conventional graviton helicities.

1st field eq. (vector torsion Ti := Tik
k) and 2nd vacuum field eq. (matter spin

negligible):

2a1

3

(
eiβDαT

β − eiαD̃jT
j
)
− eiα

(
−
a0

2
R+

b

24
R2 −

a1

3
TjT

j

)

+Rα
i

(
b

6
R− a0

)
= κΣα

i ,

DαR = −
2

3

(
R +

6µ

b

)
Tα , Tij

α =
2

3
T[iej]

α

Both are YM-type eqs. for Tij
α and R, respectively. 1st field eq. can be

rewritten in a quasi-Einsteinian form.
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• The authors investigate a Friedmann model and eventually conclude: “...
we show that for suitable ranges of the parameters the dynamic scalar torsion
model can display features similar to those of the presently observed
accelerating universe.”

• Confirmed by X. -C. Ao and X. -Z. Li, “Torsion Cosmology of Poincaré
gauge theory and the constraints of its parameters via SNeIa data,” JCAP
1202, 003 (2012)

• See, however, C. -Q. Geng, C. -C. Lee, and H. -H. Tseng, “Asymptotic
cosmological behavior of scalar-torsion mode in Poincaré gauge theory,”
PRD 87, 027301 (2013)

4.3 Additional shear transformations, Ne’eman’s world spi nors

• Independent connection yields a new type of shear current, corresponds to
the quotient SL(4, R)/SO(1, 3). Recall splitting of hypermomentum current:

∆αβ = ταβ + 1

4
gαβ ∆ +

⌢

∆րαβ

∼ spin current ⊕ dilation current ⊕ shear current ,

ταβ := ∆[αβ], ∆ := ∆γ
γ , and

⌢

∆րαβ := ∆(αβ) −
1
4
gαβ ∆. New Noether law:

†D
⌢

∆րαβ +†Qµ(α ∧∆րµ
β) + ϑ(α ∧

⌢

Σրβ) − σրαβ = 0 .

“Hypermom. in hadron dynamics and in grav.,” PRD 1978, Lord, Ne’eman, H.
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• SL(3, R) current originally proposed by Dothan, Gell-Mann, Ne’eman
(1965) as dynamical group for classification of sequences of hadrons (Regge
trajectories). Lie algebra of SO(3) extended by five operators of the time
derivatives of the quadrupole moments of the ‘hadronic’ energy-momentum
current. Spin 2 excitations. Later generalized to SL(4, R) and to GL(4, R).
[Test: For Dirac field, we can directly relate the time derivatives of the
quadrupole exitations to the (orbital) shear current, d

dt

∫
d3x xαxβ Σ0κ

= 2
∫
d3xx(αΣβ)κ.] Are shear currents conceivable in a quark-gluon-plasma?

• Ne’eman 1977 generalized Dirac spinors to world spinors, he showed
existence of double-valued linear infinite spinorial representations of
diffeomorphism group, see Kirsch and Šijački 2002.

• “Fermionic” hyperfluid of Obukhov and Tresguerres 1993.

• Incorporation into MAG of Jacobsson’s et al. Einstein-aether model
(Heinicke, Baekler, H. 2005); incorporation into MAG of Fronsdal-Vasiliev
massless spin 3 (Baekler, Boulanger, H. 2006).

• Numerous exact solutions in the context of MAG have been found. But
MAG, from a physical point of view, is still wide open...
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5. Operational significance of torsion and nonmetricity

Eqs. of motion of test matter in PG and MAG has been investig. since 1970’s.

PG: see H., Obukhov, Puetzfeld 2013: On Poincaré gauge theory of gravity,
its equations of motion, and Gravity Probe B. GPB cannot sense torsion!

MAG: see the recent review of Puetzfeld & Obukhov 2013: Unraveling gravity
beyond Einstein with extended test bodies. If minimally coupled,
microscopic matter is required for measuring torsion and nonmetricity!

5.1 Torsion

• Precession of elementary particle spin (of electron or neutron, e.g.) in
torsion field. Rumpf (1979) (polarisation vector w of the spin) found

ẇ = 3t×w , tα := −ǫαβγδ Tβγδ/3!

Independent of particular model. On the Earth, using GR||, find only
|T| ∼ 10−15 1

s
, see Lämmerzahl (1997). He determined experimental limits of

admissible torsion by using Hughes & Drever tpye experiments.

• Gravity Probe B, instead of the quartz balls, spin polarized balls: Spin
gyroscope (see Ni gr-qc/0407113, Vasilakis et al. PRL 2009).

• Papini et al. (2004): measuring a spin flip of a neutrino induced by torsion,

Lambiase calculated cross section for corr. process.
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5.2 Nonmetricity

• Eq. of motion of a matter field in MAG: Apply the Bianchi identities for MAD
(tilde denotes the Riemannian part) (Obukhov ’96, Ne’eman & H ’96),

D̃
[
Σα +∆βγ (eα⌋♦Γβγ)

]
+∆βγ∧(£eα♦Γβγ) = τβγ∧

(
eα⌋R̃γβ

)
,

where ♦Γβγ := Γβγ − Γ̃βγ is post-Riemannian part of connection. On the
r.h.s., Mathisson-Papapetrou force density of GR for matter with spin
τβγ := ∆[βγ].

• For ∆βγ = 0, we have D̃Σα = 0. Without dilation, shear, and spin “charges”
the particle follows a Riem. geodesic, irresp. of the form of VMAG.

• Thus, test matter for nonmetricity has to carry dilation or shear charges.
Ne’eman’s world spinors do carry shear (they kind of represent Regge
trajectories). They are the appropriate test matter for nonmetricity.

• Detailed discussions show that nonmetricity induces pulsations (mass
quadrupole excitations) on suitable test matter. For the first time, one has a
good idea about the interpretation of the nonmetricity.
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6. Discussion

• The gauging of the Poincaré group led to PG with the master Lagrangian
quadratic in torsion and curvature, including parity violating pieces.

• GR||, EC, and GR are viable theories within the framework of PG.

• Within MAG, the dilation and shear currents as well as the nonmetricity can
be understood consistently. However, MAG, at the present time, should be
considered as speculative.

—————–
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