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e I'd like to thank Oleg Teryaev for the invitation to the seminar.

e Our program: We take the Minkowski space and read off the gravitational
properties of matter by gauging the Poincaré group 74 x SO(1, 3).
Subsequently we generalize to the gauging of the affine group 74 x GL(4, R).

e See H., McCrea, Mielke, and Ne’eman, Physics Reports (1995) and Yuri
Obukhoyv, Int.J.Geom.Meth.Mod.Phys. (2006), numerous results | talk about
today were won in collaboration with Yuri Obukhov (Moscow).
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e My Soviet/Russian connections as a student:

» D. |. Blochinzew, Grundlagen der Quantenmechanik, 2nd corr. ed.
(transl. from the Russian). Deutscher Verlag der Wissenschaften, Berlin
(East) (1958)

» D. lwanenko and A. Sokolow, Klassische Feldtheorie (Classical Field
Theory, transl. from the Russian). Akademie-Verlag, Berlin (East)
(1953)

> V. |. Rodichev, Twisted space and nonlinear field equations, Sov.
Phys.—JETP 13, 1029 (1961)

> N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of
Quantized Fields (transl. from the Russian). Interscience, London
(1959)

» D. |. Blokhintsev, Space and Time in the Microworld (transl. from the
Russian). Reidel, Dordrecht (1973)

o First book on gauge theory of gravity: V. N. Ponomariev, A. O. Barvinsky,
and Yu. N. Obukhov, Geometrodynamical Methods and the Gauge
Approach to the Theory of Gravitational Interactions (Energoatomizdat,
Moscow, 1985) (in Russian)
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1. Minkowski space M (E,®,V, g) as 4-dimensional flat affine space
with a constant Lorentz metric

e Electrodynamics of moving bodies — SR and Minkowski spacetime M.
Equivalence of all inertial systems of reference. M is homogeneous in time
(t = 2°) and space (2", 22, 2*) and isotropic in space

e Each event is characterized by its coordinates z*. F is the set of all events.
An operation &, called translation is defined that maps events into events. Let
V be a 4d vector space. Then 4d affine space (E,®, V). V is attached to
events, named p, q, ... € E, vectors named v, w, ... € V; see Kopczyhski &
Trautman 1992, Snapper & Troyer 1971.

e Translating the event p into the event ¢ by means of the translation vector v:

o Free transitive operations &
ExXV = FE P — p @
X ’ ( ) 'U) < v

event  Vector



e Translating the event p first by the vector (v + w) or, alternatively, first by v
and subsequently by w. The result is the same, the event r:

q
w
1)) r o _ /\r
p p
w

pOv+w=pd®v) w

e The vector ¢ © p is uniquely determined:

0 q
qe
p@(q @p) =q
p
e In affine space the translation is a fundamental structure. No point (event)
is distinguished in an affine space (in contrast to a vector space V). This is
an expression of its homogeneity.



o Additionally, we need a Minkowski (aka Lorentz) metric for being able to
measure distances and angles:

frame indices a, 3, ... = 0, 1,2, 3, frame e, = e’ 8;. Minkowski vector space
(V. 9).

e Minkowski space M= (E,®,V, g). Group of motion in M isthe 4 + 6
parameter

e Poincaré group P = T4 xSO(1,3) (also called inhom. Lorentz group)
N N————

transl. [ orentz rot.

e Turn later to affine group A = Ti x GL(4, R), which will be gauged in the
N N———

transl. linear gr.

presence of a metric, yielding metric-affine gravity (MAG)



e Poincaré algebra: P, generators of translations, J.g = —Jga generators of
Lorentz rotations with commutation rules

[PavPB]:Ov [Pﬂfjﬁ"/]:i(gaﬁp“/_gﬂwpﬁ):

[Jag, Jvs] = i (9p~Jas — GarJgs + Gas sy — gpsJary) -

e Note the semi-direct product structure. Quadratic Casimir operators that
commute with all P's and J's:

Cy:=P%P,, Cy:=WW,,

with the Pauli-Lubanski operator (orbital angular momentum drops out)
1
Wa = —EEQB.Y[; Jﬁ’YP5 .

e Properties (mass-spin classification of elementary particles, Wigner 1939):
Pa = 2 _an2 1
Woa=0, Ci—> m~°, Co—-m"_ s (s+1)
mass spin

e Field theoretical correspondents: energy-momentum 3-form X, and
spin angular momentum 3-form 7,5 = —73q.



2. Heuristics: Read off gravitational properties from the b ehavior of
matter in Minkowski space

e Study a classical Dirac field ¥(z) in Minkowski space M in non-inertial
frames.

o Find the integrability conditions for the 4 coframe 1-forms ¥ = e;“dx* and
the 6 Lorentz connection 1-forms I'*? = I';*#dz? = —T' in M.

e Relax these integrability conditions and arrive at the Einstein-Cartan theory
(Sciama, Kibble 1961) or, more generally, at the Poincaré gauge theory, both
formulated in a Riemann-Cartan space with gauge potentials (¢, T°").

e Already in vacuum electrodynamics, because of its conformal invariance,
the dil(at)ation current emerges. Such a current couples to the trace part of
the connection I',”.

e Subsequently abandon the antisymmetry of the Lorentz connection,
SO(1,3) = GR(4, R), study a general linear connection T',”, its shear
piece T — 14°°T 7 is related to the SL(3, R), a dynamical group
describing Regge trajectories (beyond the mass-spin classification!).



Einstein’s laboratory |

Kibble's laboratory

elementary
objectin SR

mass point m

Dirac spinor ¥(z)

inertial frame

Cart. coo. system z*
ds® = Oijdxidl"j

holonomic orthon. frame

ea =050i, en €3 =0ap

force-free

motion in IF u=0 (790 =m)¥ =0
non-inertial arbitrary curvilinear anholon. 0”*30%- frame
i €a =€ a0
frame coord. system x coframe 9° = e;*dz"
force-free N [iv¥e'a(0i + 1) —m]¥ =0
(3 J k 7 _ Y 7 7
motionin NIF | % ¥ ¢ {/’»} =0 ;.= 2T"7ps, Lorentz
non-inertial (i) 9o, o8 = _rbe
. J'k i
object 40 16 + 24

constraints
in SR

RO}, {}) =0
20

T(de,e,T)=0,R(AT,T) =0
24 4+ 36

global IF

9ij = 0ij, {1} =0 |

(e, Ti*%) = (87,0)




Continued:

Einstein’s laboratory |

Kibble’s laboratory

non-inertial
object

’

{w}

40

_TBe

9 Imd —
’

16 + 24

constraints

R@{}.{}) =0
20

T(de,e,I')=0,R(OT,T")=0

in SR 24 + 36
global IF Gij = Oij , {jik} =0 | (eia, Fiaﬁ) = (6?,0)
switch on R+#0 T+#0, R#0
gravity Riemann Riemann-Cartan
|Oca| IF * i * @ a * @
Einstein elev. gij|P = 0Oij , {jk}|P =0 (6i ) Fzﬁ)lpz((sz 70)
Ric— %tr(Ric) ~ mass Ric — tr(Ric) ~ mass
field egs. Tor + 2 tr(Tor) ~ spin

GR

EC

Thereby we arrived at the Einstein-Cartan theory of gravity (EC). We will now

immediately generalize to the gauge of the affine group:
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3. Weak and hypoth. strong gravity, metric-affine gauge th. o f gravity
3.1 Geometry and coupling to matter

e The ‘gravitational’ potentials are
Jas metric (weak, Newton-Einstein type gravity)
9 coframe (weak, Newton-Einstein type gravity)
r.” connection (strong, Yang-Mills type gravity)

o By differentiation, we find the field strengths

Qo = —Dgag nonmetricity
T, = Dvy* torsion
R.” = dr.’ —T., AT,” curvature
 The material currents, coupled to the potentials (g.s, 9, T'.”), are

energy-momentum and hypermomentum (c.z, X0, A%3).

e The hypermomentum splits into spin current ¢ dilation current & shear
current (add. sources of gravity): .
Auﬁ = Tap + %gaﬁ AA””,' + sz,’% ) Tap = —Tha

e The 3 potentials span the geometry of spacetime: It is the metric-affine
space (L4, g). The corr. first order Lagrangian gauge field theory is called
MAG. It is a framework for gravitational gauge field theories. We developed
mainly the bosonic, Yuval Ne’'man, together with Sijagki, its fermionic version.
11



3.2 Field equations of metric-affine gravity (MAG)
e Lagrangian:

Liotat = V(gas 9%, Qap . T, Ra”)+ Linsster (9as .0, ¥, D D).
e Define the excitations (field momenta):

av v . v
aQaﬁ ’ B o aRaﬁ ’

e Then the field equations of MAG read (Einstein sector),

M = -2

DM*P—m™? = (6/8gap: Oth field eq.),
DH,—E., = Xa (6/69: 1stfield eq.) ,
DH";—E% = A% (6/6T,": 2nd field eq.),

oL )
50— 0 (6/6T: mattereq.),
with the energy-momentum and the hypermomentum of the gauge fields as
m = VANEg+ Qs NMY =T NHs — R, NH 5+ Rg” ANH",
. 1 8
Ea = ealV+(ealT”) N Hs + (al R) A H”, 4 (ea) Qar) M7,

Eag = —9YAHg— 98~ M.
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¢ We have the potentials (.3, 9%, I'»”). The field strength of I',” is the
curvature with R, := ggyRa". It can be decomposed into 3 pieces:
Zag = R(ag), Waﬁ = R[aﬁ], 7z = Zaa:

Raﬁ - Zaﬁ + Waﬁ - ZaB + Zgaﬁ/4 + I’I’/yu,’% .
L ~—~— N—— ——
strain rotation shear dilation~gen.Weyl  rotation

e Quadratic gravitational YM-type master Lagrangian [Yang (1974) — W2]:

Viac ~ (R+X+T*+Q*+QT) + p W?+2°+WZz),
~—

grav.const. dim.less

{=1-

see M.Blagojevit & FWH (eds.), Gauge Theories of Gravitation,
a reader with commentaries, Imperial College Press, London (2013).
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3.3 An exact solution of metric-affine gravity (MAG)

OVETH-solution (Obukhov, Vlachynsky, Esser, Tresguerres, H., 1996)

e Spherically symmetric field configuration

Spherical polar coordinates (t,r, 0, ¢), coframe of Schwarzschild type
1

o= fdr, 00 = gdr, 9 =rdo, 9 =rsin0do,

with unknown function f(r). Coframe assumed to be orthonormal, local
Minkowski metric o, := diag(—1,1,1,1) = 0**:
2
ds® = 00 9° @ 0% = —f2dt* + ‘% + 7% (d6” + sin® 0 d¢”) .
For torsion and nonmetricity the triplet ansatz with 3 covector pieces.
Nonmetricity = only shear & dilation (A := 9“¢” @ ,):

4 1
@ Qap = 9 (ﬁweﬁ)ﬂ\ - Zgaﬁ/\) ) DQap = Q gas -

Torsion with only the vector piece:
1 .
7% = @7 = FVTAT, with  T=ed]T
Thus we are left with the three non-trivial 1-forms Q, A, and T'. Thus,

Q:u(r)ﬂo, A:v(r)ﬂo, T:T(r)ﬂo.
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e Use computer algebra packages Reduce-Excalc and GRG. Simplify
Lagrangian and come up with

1
VvV = —
2K

4 4
2 <Z cr (I)Qaﬁ> AYA TP + Qaﬁ AT (Z br (I)Qaﬁ>:|
I=2 I=1

%4 R¥A*®Wz,5 = strong gravity.

3
—ag R*® A Nap — 220 +T* A ” <Z ar (I)Ta>
=1

_|_

e The new solution with four types of charge:
By substitution into the field equations we find an exact solution with

f—¢1—ZMI A2 k(koN)2

Z4 :
r 3ao 2a0 12

and
koN kiN ka N
= , v = s T = .
fr Ir fr
Here M and N are arbitrary integration constants, and the coefficients

ko, k1, k2 are constructed in terms of the dimensionless coupling constants.
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Collect our results, orthonormal coframe, nonmetricity, and torsion are

9 = fdt, 01:%(17«, 92 =rdo, 9> =rsin0dg,

Q= % koN 0®” 4 g k1N (ﬂ‘“e’”j - ioaﬁ)] 9°,
kaN
3 fr
Besides mass, this solution carries dilation, shear, and spin charges, each of
them of the (co)vectorial type. We have the following assignments:

T = 9 A0

M  — mass of Schwarzschild type,
koN — dilation (‘Weyl') charge of type CONOM or (¥ Q< |
kiN — shear charge of type VECNOM or () Q# |
kaN —> spin charge of type TRATOR or DT
For N = 0 and ao = 1, recover Schwarzschild-deSitter solution of GR.

Two typical curvature pieces (of rotational and shear type) as examples
(¢* = z4(koN)*/(2a0)):

JR Mr —a? & 5 N
(1)W01: 9% T . q 90 /\1917 (4)Za[3 aﬁ ko 190 /\191
r

e Review of exact solutions, H. & Macias, IJIMPD (1999).
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4. Models within the framework of MAG ~ (nonm. Q.z, tors. T, curv. R,”)

Rectangle OO — class of theories; circle o — definite viable theories

PG = Poincaré gauge theory, EC = Einstein—Cartan theory, GR = general
relativity, TG = translation gauge theory aka teleparallel theory, GR| = a
specific TG known as teleparallel equivalent of GR (spoken “GR
teleparallel”), MAG = metric-affine gauge theory, CG = conformal gauge

theory, dSG = (anti-)de Sitter gauge theory, SuGra = supergravity
18



4.1 Viable models

All in Riemann-Cartan spacetime: Einstein-Cartan theory (EC), general
relativity (GR), teleparallel equivalent of GR (GR)|). The corresponding
geometries:

W,
Weitzenbick Riemann GR
(teleparallelism) Ro®

T ¢

& &
%, %

Mg
Minkowski

GR,

SR

Nonmetricity=0 (Lorentz invariance): A space with a metric and a metric
compatible connection is called a Riemann-Cartan space Us,. It can either
become a Weitzenbdck space Wy, if its curvature vanishes, or a Riemann
space V4, if the torsion happens to vanish.
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e Einstein-Cartan(-Sciama-Kibble) theory (EC):

Curv. scalar of Riemann—Cartan spacetime as simplest PG Lagrangian,
Vic ~ L Rse ~ 2%(0* A97) A Rap(I7°) (k = Einstein’s grav. const.):

RiCij — %giniCkk +4 Agij = mE,,-‘,- s
T = 6f Ty + 65T = wrij"
Formulated in terms of exterior calculus:
B _ _ 6Lmat
gy AR —Ama = kY. =R
5Lmat
gy NT7 = KTap = Kopos

a, B3, ... are (anholonomic) frame indices,
Na = *7911, Nap = *(ﬁa A 19[3), Napy = *(ﬁa A 19[3 A 79»\,), * = Hodge star

GR plus an additional spin contact interaction. If spin = — 0, then EC — GR,
and RC-spacetime — Riem. spacetime; thus, GR is included.

With 7 # 0, modified source of Einstein’s equation: p — p + k72 = at sulff.
high densities k72 ~ p = pec ~ m/ (Acolpy) and rec ~ (Acolp,)'/? , more
than 1052g/cm?® or 10%* K for electrons, see H., v.d.Heyde, Kerlick, Nester,
RMP 1976. This is valid up to 1034 s after the big bang (10~*3 s corr. to
Planck era). For Dirac spins, the contact interaction is repulsive (O’Connell).
EC is a viable gravitational theory.— See Magueijo, Zlosnik, Kibble,
“Cosmology with a spin” (2012); Khriplovich, Rudenko, “Gravitational
four-fermion interaction and dynamics of the early Universe” (2013).



o Teleparallel equivalent GR)| of general relativity GR:

1 a
Vi = =V + Roa”? AN 8
K
1 1
Vs = —=T%A *(— DTy +2 BT, +- O, )
2 ~—~— ~—— 2 =
tensor vector axial vector

Viable set! Yields local Lorentz invariance = Einstein’s GR.
GR| ingaugeI' = 0, W, spacetime, field eq. is Maxwell-like:

DT, +nonlin.terms  ~  x x 54
Oe's +nonlin.terms ~ xx X," (in Hilbert gauge)

Compare Einstein’s equation (g:; = g;i):
O gi; + nonlin. terms ~ x X o;;  (in Hilbert gauge)

For scalar and for Maxwell matter, that is, for 3;; = o5, it can be shown that
GR|| and GR are equivalent.

Distinguish teleparallelism as a unified field theory (Einstein 1929) from
dualistic teleparallel gravity (Moeller 1958... Cho 1976... H.Meyer 1982...
Gronwald 1997... Itin 2004..., see books of Blagojevi¢ 2002, Ortin 2004, and
Aldrovandi & Pereira 2012 and review of Maluf 2013).
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4.2 Poincar é gauge theory (PG)

T
e Field egs. of PG: Liot = V(gap, 9%, T, R*?)+ Linat (gas , 9%, ¥, D ).

DH, — E, = Xa,
DHag — Eag = Tag s
oL
57 0.

Energy-momentum E,, := dV/89* and spin E,p := 0V/dT*? of
gravitational gauge fields:

Eo = eaV + (ea T?) A Hg + (€asR”) A Hgy, Eap = —04 A Hg.

E, and E,z are gauge covariant 3-forms, they are gravitationally ‘charged'...

e Irreducible decomposition of the torsion:
Ta _ (I)Ta + (Q)Ta + (S)Ta — (I)Ta _ %V/\'l?a"‘%*(A/\ 190() .
N—— N—— N——
tentor 16 trator 4 axitor 4
with 1-forms for vector and axial vector: V := es T and A := * (9o A T%).
e Irreducible decomposition of the curvature:

Rog = (I)Ra6+(2)RaB+(3)Raﬁ+(4)Ra6+(5)Ra6+(G)RaB )
Y—— Y Y N N N——
weyl 10 paircom 9 pscalar 1 ricsymf 9 ricanti 6 scalar 1

R (curv. scalar) and X = 41as-5R1*#*°! (curv. pseudoscalar)

29



Gauge field theories of Abelian and non-Abelian groups compa red

e Maxwell-Dirac theory as a U(1) gauge field theory is Abelian. Recall:
Excitation H = (D, H), field strength F' = (E, B).

e The group SU(2) is noncommutative, that is non-Abelian, the Yang—Mills
A
theory is a nonlinear theory and its gauge current, ] = —A A H, even though
A
it is not gauge covariant, carries its own isospin, note D H = dH — AN H.

e The Poincaré group is also non-Abelian. Hence PG shares numerous
properties with the Yang—Mills theory. The gauge currents carry their own
charge and the theories become nonlinear.

Maxw: dH = J, dF =0, H=Y,"F.
A A
YM: DH=I, DF =0, H = ay*F.
I I
PG1: D Ho—FEo=%a, DT*=Rz*A9’, H,=H,(T",R);
I I
PG2: D Hap Vo A Hp =Tag, DR =0, Hup = Huop(T", R%).

PG1 refers to the field equation related to translations and PG2 to the Lorentz
rotations, but there are mixing terms between both potentials. Universality!

22



e Quadratic master Lagrangian of PG including parity violating pieces:

1
Vare :%[(U/OR_QAO"‘Z)OX)"]
+%V/\ V- a—;AAM— 2§2V/\54+a1(1)Ta A*(l)Ta]

1 1,we 0 ws 2 13 () paf  *(4)
—— (2R - 2x*+ ERx N
29[(121% 5 X2+ DRX) n+wi R A DR

+(2)R"5/\(wg*@)Rag+;42(4)Rag)+(5>R"5/\(w5*(5)Rag+m(5)Rag)]

[Obukhov, Ponomarev, Zhytnikov: Gen.Rel.Grav. 21, 1107 (1989), Baekler,
H., Nester: PRD 83, 024001 (2011), Diakonov, Tumanov, Vladimirov: PRD
84, 124042 (2011), Baekler, H.: CQG 28, 215017 (2011)]

e Cosmol. models with acc. expan. by Shie, Nester, Yo (without parity viol.):

1 N 1 . 1 2
Vany = o (ao R+ 3agV/\ V) 24gw6R n

weak Newt.-Einst. grav. strong YM-type grav.
e Cosmol. models with acc. expan. by Baekler, H., Nester (with parity viol.):

1 * * 1 * *
Vean = ﬁ(aoR-‘y—b()X—Q)\o??)-‘ra(an/\*V—a:;A/\A—Q(TzV/\A)

1 * *- *-
—%(ng R —w3X X—‘r/l,:gR X) .

24



Cosmological model of Shie-Nester-Yo as example, see last slide [PRD 78,
023522 (2008)], more gen.models by Minkevich et al. CQG 2007 and
references therein. In the SNY parametrization, we have

1
Vsny ~ - (aoRsc + a1Vy2) + b RZ,
a1 > 0, b > 0. In an Hamiltonian analysis, they found, for ag # a1,

a massive torsion mode of spin 0" with effective mass p := a1 — ao, together
with 2 conventional graviton helicities.

1st field eq. (vector torsion T} := T;,*) and 2nd vacuum field eq. (matter spin
negligible):
£ (eiBDaTﬁ - eiaf)-Tj) €y ——R+ b L Ui

3 ’ 3

1 b 1
+Ra ER_GO = KXa ,
6 a_ 2 «
D.R = <R+ b > Ta, Ti]‘ = gT[iej]

Both are YM-type egs. for T;;“ and R, respectively. 1st field eq. can be
rewritten in a quasi-Einsteinian form.
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e The authors investigate a Friedmann model and eventually conclude: “...
we show that for suitable ranges of the parameters the dynamic scalar torsion
model can display features similar to those of the presently observed
accelerating universe.”

e Confirmed by X. -C. Ao and X. -Z. Li, “Torsion Cosmology of Poincaré
gauge theory and the constraints of its parameters via SNela data,” JCAP
1202, 003 (2012)

e See, however, C. -Q. Geng, C. -C. Lee, and H. -H. Tseng, “Asymptotic
cosmological behavior of scalar-torsion mode in Poincaré gauge theory,”
PRD 87, 027301 (2013)

4.3 Additional shear transformations, Ne’eman’s world spi nors

e Independent connection yields a new type of , corresponds to
the quotient SL(4, R)/SO(1, 3). Recall splitting of hypermomentum current:

Aap = Tap + 190 A +
~ spin current & dilation current & shear current,

Tap = Aapp A := A7, and &‘QB = A(ap) — 3 gap A. New Noether law:

"D 1 Qua AE" 5y + (0 AX) — Fap =0.

“Hypermom. in hadron dynamics and in grav.,” PRD 1978, Lord, Ne’eman, H.
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e SL(3, R) current originally proposed by Dothan, Gell-Mann, Ne’eman
(1965) as dynamical group for classification of sequences of hadrons (Regge
trajectories). Lie algebra of SO(3) extended by five operators of the time
derivatives of the quadrupole moments of the ‘hadronic’ energy-momentum
current. Spin 2 excitations. Later generalized to SL(4, R) and to GL(4, R).
[Test: For Dirac field, we can directly relate the time derivatives of the
quadrupole exitations to the (orbital) shear current, 4 [ d*z 2*z” £
=2[d’x x(®2#)" | Are shear currents conceivable in a quark-gluon-plasma?

e Ne’eman 1977 generalized Dirac spinors to world spinors, he showed
existence of double-valued linear infinite spinorial representations of
diffeomorphism group, see Kirsch and Sijacki 2002.

e “Fermionic” hyperfluid of Obukhov and Tresguerres 1993.

e Incorporation into MAG of Jacobsson'’s et al. Einstein-aether model
(Heinicke, Baekler, H. 2005); incorporation into MAG of Fronsdal-Vasiliev
massless spin 3 (Baekler, Boulanger, H. 2006).

o Numerous exact solutions in the context of MAG have been found. But
MAG, from a physical point of view, is still wide open...
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5. Operational significance of torsion and nonmetricity
Egs. of motion of test matter in PG and MAG has been investig. since 1970's.

PG: see H., Obukhov, Puetzfeld 2013: On Poincaré gauge theory of gravity,
its equations of motion, and Gravity Probe B. GPB cannot sense torsion!

MAG: see the recent review of Puetzfeld & Obukhov 2013: Unraveling gravity
beyond Einstein with extended test bodies. If minimally coupled,
microscopic matter is required for measuring torsion and nonmetricity!

5.1 Torsion

e Precession of elementary particle spin (of electron or neutron, e.g.) in
torsion field. Rumpf (1979) (polarisation vector w of the spin) found

W=3txw, t*:=—e"Ts,;/3!

Independent of particular model. On the Earth, using GR)|, find only
IT| ~ 107" 1, see Lammerzahl (1997). He determined experimental limits of
admissible torsion by using Hughes & Drever tpye experiments.

e Gravity Probe B, instead of the quartz balls, spin polarized balls: Spin
gyroscope (see Ni gr - gc/ 0407113, Vasilakis et al. PRL 2009).

e Papini et al. (2004): measuring a spin flip of a neutrino induced by torsion,
Lambiase calculated cross section for corr. process.
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5.2 Nonmetricity

e Eq. of motion of a matter field in MAG: Apply the Bianchi identities for MAD
(tilde denotes the Riemannian part) (Obukhov '96, Ne’eman & H '96),

D [za + A% (eq Jor‘gn,)] L APIAN(£e, 0T 5,) = 797 A (ea JEW) ,

where {$I's, :=T'g, — fg,y is post-Riemannian part of connection. On the

r.h.s., Mathisson-Papapetrou force density of GR for matter with spin
87 .= AP,

e For A?Y = 0, we have DX, = 0. Without dilation, shear, and spin “charges”
the particle follows a Riem. geodesic, irresp. of the form of Vac.

e Thus, test matter for nonmetricity has to carry dilation or shear charges.
Ne’eman’s world spinors do carry shear (they kind of represent Regge
trajectories). They are the appropriate test matter for nonmetricity.

e Detailed discussions show that nonmetricity induces pulsations (mass
quadrupole excitations) on suitable test matter. For the first time, one has a
good idea about the interpretation of the nonmetricity.
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6. Discussion

e The gauging of the Poincaré group led to PG with the master Lagrangian
quadratic in torsion and curvature, including parity violating pieces.

¢ GR||, EC, and GR are viable theories within the framework of PG.
e Within MAG, the dilation and shear currents as well as the nonmetricity can

be understood consistently. However, MAG, at the present time, should be
considered as speculative.
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