Государственное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и человека «Дубна»

(университет «Дубна») Факультет естественных и инженерных наук Кафедра теоретической физики

YT]	ВЕРЖД	ĮAЮ
про	ректор	по учебной работе
		С.В. Моржухина
«	>>	2011 г.

ПРОГРАММА ДИСЦИПЛИНЫ

«Специальный физический практикум»

Магистерская программа 010700.68

«Теоретическая и математическая физика»

Форма обучения: очная

Уровень подготовки: *магистр*

Курс 5, семестр 10 курс 6, семестр 11

1. Аннотация

Программа дисциплины «Специальный физический практикум» составлена в соответствии с ГОС ВПО магистерской программы 510417 «Теоретическая и математическая физика». Дисциплина «Специальный физический практикум» входит в цикл специальных дисциплин магистерской подготовки (СДМ).

Требования ГОС ВПО

СДМ.01 Специальный физический практикум

160

Лабораторные работы, связанные с изучением экспериментальными методами фундаментальных эффектов и явлений по областям физики в соответствии с перечнем магистерских программ.

Место курса в профессиональной подготовке магистров

Дисциплина «Специальный физический практикум» опирается на курсы: «Физика атомного ядра и элементарных частиц», «Квантовая теория поля», «Физика фундаментальных взаимодействий», «Теория калибровочных полей». Эта дисциплина использует некоторые элементы теории групп. Знания, полученные при освоении дисциплины «Специальный физический практикум», необходимы при подготовке, выполнении и защите выпускной квалификационной работы и при решении научно-исследовательских задач в будущей профессиональной деятельности.

Формы работы студентов в ходе изучения дисциплины предусмотрены семинарские занятия, подготовка выступлений по темам, предложенным преподавателем, разбор научных статей, выполнение заданий по численному моделированию процессов физики адронов. Отдельные вопросы прорабатываются студентами самостоятельно в соответствии с планом самостоятельной работы

Самостоятельная работа предусматривает изучение рекомендованной литературы, а также подготовку к семинарским занятиям, подготовку к выступлению по теме, предложенной преподавателем или с разбором научной статьи, самостоятельное решение задач по численному моделированию.

Виды текущего контроля – проверка домашних заданий и опросы во время семинарских занятий

Форма промежуточного контроля

Зачеты в 10 и 11 семестрах.

2. Цели и задачи дисциплины

Цель курса - дать введение в теоретические методы и модели, имеющие отношение к ряду проблем квантовой теории поля и физики элементарных частиц: критерии и механизмы конфайнмента, реализация киральной симметрии и адронизация в сильных взаимодействиях, свойства адронной материи при высокой барионной плотности и плотности энергии.

Задача практикума - объяснить, почему указанные проблемы, конфайнмент в особенности, являются мощным источником новых физических идей и методов в квантовой теории поля, почему решение проблемы конфайнмента, судя по всему, требует существенного обобщения

существующих представлений о структуре и методах квантовой теории поля, релятивистской ядерной физики и физики элементарных частиц.

3. Требования к уровню освоения содержания дисциплины (знания, умения, навыки)

В результате изучения курса «Специальный физический практикум» студенты должны знать существующие критерии и модели конфайнмента, феноменологические модели адронизации, иметь представление о подходах к описанию адронной материи при конечной температуре и плотности, понимать основные идеи КХД на решетке, уметь работать с научной литературой, уметь выделить основную идею или главный результат научной статьи и доступно изложить его.

4. Объем дисциплины и виды учебной работы

Dun vinofinoù noform	Всего	Семестр	Семестр
Вид учебной работы	часов	10	11
Общая трудоемкость дисциплины	154	98	56
Аудиторные занятия	48	26	22
Лекции (Л)			
Семинары (С)	48	26	22
Самостоятельная работа (СР)	106	72	34
Промежуточная аттестация		зачет	зачет

5. Разделы дисциплины

№ п/п	Раздел (тема) дисциплины, содержание		С	CP
	Семестр 10			
1	Введение в физику адронов и квантовую		8	22
	хромодинамику			
2.	2. Конфайнмент и свойства адронов: критерии		8	22
	конфайнмента, наблюдаемые, модели и			
	сценарии конфайнмента.			
3.	КХД на решетке: конфайнмент, киральная		10	28
	симметрия, топологические глюонные			
	конфигурации на решетке			
	Семестр 11		26	98
4.	Адронная материя при конечной		8	20
	температуре и плотности: модель			
	бутстрапа.			
5.	Феноменологические модели адронизации,		8	18
	конфайнмента и киральной симметрии			
6.	Кинетические и гидродинамические модели в		6	18
	релятивистских столкновениях тяжелых			
	ионов.			
			22	56

Содержание разделов дисциплины

І. Введение в физику адронов и квантовую хромодинамику

- 1. Квантовая хромодинамика. Симметрии классического действия КХД: цветовая калибровочная симметрия, киральная симметрия, $U_A(1)$, СРТ.
- 2. Квантование КХД методом функционального интегрирования. Теория возмущений и асимптотическая свобода. BRST симметрия. Большие калибровочные преобразования. Грибовские копии
- 3. Квантовополевые системы при конечной температуре и плотности: мацубаровский формализм, термополевая динамика и т.д.
- 4. Эффективное действие в квантовой теории поля. Определения и общие свойства эффективного действия КХД. Эффективное действие для составных полей.
- 5. Фоновое калибровочное поле. Фоновое калибровочное условие.

II. Конфайнмент и свойства адронов: критерии конфайнмента, наблюдаемые, модели и сценарии конфайнмента.

- 1. Наблюдаемые свойства адронов и КХД на больших расстояниях. Конфайнмент, динамическое (спонтанноое) нарушение киральной симметрии, проблема \$U A(1)\$.
- 2. Критерии конфайнмента для статических цветных источников. Петля Вильсона и закон площадей. Петля Полякова и центральная симметрия. Обзор результатов КХД на решетке.
- 3. Критерий конфайнмента Kubo-Ojima. Функциональная ренормализационная группа. Уравнения Швингера-Дайсона. Обзор инфракрасного поведения пропагаторов в калибровке Ландау.
- 4. Дуальный механизм конфайнмента Мейснера, инфракрасная абелева доминантность в теориях Янга-Миллса, монополи. Центральная симметрия и центральные вихри.
- 5. Декомпозиция калибровочного потенциала Чо-Фаддеева-Ниеми. Абелева доминантность и самодуальные калибровочные конфигурации.
- 6. Нулевые моды оператора Дирака в присутствии внешнего калибровочного поля. Киральные кварковые моды. Самодуальные калибровочные поля: инстантоны и абелевы однородные поля.
- 7. Эффективный потенциал для петлевой переменной Полякова.
- 8. Эффективный потенциал для ковариантно-постоянного абелева калибровочного поля. Обзор результатов для эффективного потенциала: однопетлевое приближение, теория Янга-Миллса на решетке.
- 9. Кварковые, глюонные и духовые пропагаторы в присутствии ковариантно постоянного абелева калибровочного поля. Конфайнмент динамических кварков.
- 10. Эффективное действие, глюонная конденсация, вейлевские отражения, СР и кинковое решение эффективных уравнений движения. Локализация заряженной частицы на

III. КХД на решетке: конфайнмент, киральная симметрия, топологические глюонные конфигурации на решетке

Введение в решеточные теории. Размер решеток и объем вычислений.

Калибровочные теории на решетке. Параметры вычислений. Наблюдаемые.

Термодинамика КХД на решетке. Критическая температура.

IV. Адронная материя при конечной температуре и плотности: модель бутстрапа.

Обзор фазовой диаграммы КХД. Параметры порядка.

Обзор экспериментальных программ RHIC, LHC, GSI и ОИЯИ.

V. Феноменологические модели адронизации, конфайнмента и киральной симметрии

- 1. Уравнение Бете-Солпитера.
- 2. Модель 'т Хоофта (2-мерная КХД): линейный запирающий потенциал.
- 3. Нелокальная модель Куткоски: конфайнмент динамических кварков и спектр Редже.
- 4. Адронизация: динамическое нарушение киральной симметрии модель Намбу-Йона-Лазинио (NJL) и определитель 'т Хоофта.
- 5. Адронизация: киральная симметрия и статический кварковый конфайнмент -- Polyakov loop модель NJL.
- 6. Адронизация: киральная симметрия, конфайнмент динамических кварков, $U_{\scriptscriptstyle A}(1)$, сильная СР доменная модель вакуума КХД.

VI. Кинетические и гидродинамические модели в релятивистских столкновениях тяжелых ионов.

Практические занятия (семинары)

	№ раздела				
№ п/п	дисциплин	Наименование практических занятий (семинаров)			
	Ы				
Семест	Семестр 9				
1	1	Введение в физику адронов и квантовую хромодинамику			
2					
3	1	Квантовополевые системы при конечной температуре и			
4		плотности: мацубаровский формализм, термополевая			
		динамика и т.д.			
5	2	Наблюдаемые свойства адронов и КХД на больших			
6		расстояниях. Конфайнмент, динамическое (спонтанноое)			
		нарушение киральной симметрии, проблема $U_{\scriptscriptstyle A}(1)$.			
7	2	Критерии конфайнмента, наблюдаемые, модели и сценарии			
8		конфайнмента.			
9	3	Введение в решеточные теории. Размер решеток и объем			
10		вычислений. Калибровочные теории на решетке. Параметры			
		вычислений. Наблюдаемые.			
11	3	КХД на решетке: конфайнмент, киральная симметрия,			
12		топологические глюонные конфигурации на решетке			
13		Зачетная неделя			

Семест	p 10	
1	4	Адронная материя при конечной температуре и плотности:
2		модель бутстрапа.
3	4	Обзор экспериментальных программ RHIC, LHC, GSI и ОИЯИ.
4		
5	5	Феноменологические модели адронизации, конфайнмента и
6		киральной симметрии
7	5	Доменная модель вакуума КХД.
8		
9	6	Кинетические и гидродинамические модели в релятивистских
10		столкновениях тяжелых ионов.
11		Зачетная неделя

6. Учебно-методическое обеспечение дисциплины

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Пескин М., Шредер Д. Введение в квантовую теорию поля. Ижевск: РХД, 2002.
- 2. Вайнберг С. Квантовая теория поля: Пер.с англ. Т.2: Современные приложения. М.: Физматлит, 2003.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 3. Славнов А.А. Введение в квантовую теорию калибровочных полей. М.: Наука, 1978.
- 4. **Окунь Л.Б.** Физика элементарных частиц / Окунь Лев Борисович. 3-е изд.,стер. М.: Едиториал УРСС, 2005.
- 5. **Окунь Л.Б.** Лептоны и кварки / Окунь Лев Борисович. 2-е изд.,перераб.и доп. М.: Наука, 1990.

Интернет-ресурсы

- 6. "Searching for a QCD mixed phase at the Nuclotron-based Ion Collider fAcility (NICA white paper)" http://theor.jinr.ru/twiki/pub/NICA/WebHome/WhitePaper 6.02.pdf
- 7. Электронные конспекты лекций, прочитанных на летней школе ЛТФ ОИЯИ «КХД на решетке, структура адронов и адронная материя» http://theor.jinr.ru/~diastp/sum-mer11/program.html

Статьи в периодических изданиях

- 1. **В.Г. Борняков, М.И. Поликарпов, Т. Судзуки, М. Н. Чернодуб, Г. Шиергольц**. «Невылетание цвета и структура адронов в решеточной хромодинамике», УФН 174, N 1, стр.19-38, 2004.
- 2. Кузьменко Д С, Симонов Ю А, Шевченко В И "Вакуум, конфайнмент и структуры КХД в методе вакуумных корреляторов" *УФН* **174** 3–18 (2004)
- 3. P. Minkowski, Nucl. Phys. B 177 (1981) 203.
- 4. L. D. Faddeev, "Mass in Quantum Yang-Mills Theory: Comment on a Clay Millenium problem," arXiv:0911.1013 [math-ph].
- 5. H. Leutwyler, Phys. Lett. B96 (1980) 154; Nucl. Phys. B 179 (1981) 129.
- 6. H. Pagels, and E. Tomboulis, Nucl. Phys. B **143** (1978) 485.
- 7. A. Eichhorn, H. Gies and J. M. Pawlowski, "Gluon condensation and scaling exponents for the propagators in Yang-Mills theory," Phys. Rev. D **83**, 045014 (2011)
- 8. S. V. Shabanov, Phys. Rept. 326 (2000) 1

- 9. L. D. Faddeev, A. J. Niemi, Nucl. Phys. B **776** (2007); *ibid*, Phys. Lett. B\textbf{ 449} (1999) 214.
- 10. B.V. Galilo and S.N. Nedelko, Phys. Part. Nucl. Lett., **8** (2011) 67 [arXiv:hep-ph/1006.0248v2].
- 11. G.V. Efimov, and S.N. Nedelko, Phys. Rev. D **51** (1995) 176; J. .V. Burdanov, G. V. Efimov, S. N. Nedelko, S. A. Solunin, Phys. Rev. D **54** (1996) 4483.
- 12. A.C. Kalloniatis and S.N. Nedelko, Phys. Rev. D64 (2001) 114025;
- A.C. Kalloniatis and S.N. Nedelko, Phys. Rev. D 66 (2002) 074020; *ibid*, Phys. Rev. D 69 (2004) 074029; *Erratum-ibid*. Phys. Rev. D 70 (2004) 119903; *ibid*, Phys. Rev. D 71 (2005) 054002;
- 14. Kei-Ichi Kondo, Toru Shinohara, Takeharu Murakami, Prog. Theor. Phys. **120** (2008) 1 [arXiv:0803.0176 [hep-th]].
- 15. Ph. de Forcrand, A. Kurkela and A. Vuorinen ``Center-Symmetric Effective Theory for High-Temperature SU(2) Yang-Mills Theory," Phys. Rev. D 77 (2008) 125014.

7. Материально-техническое обеспечение дисциплины

Оверхед, мультимедийный проектор

8. Формы контроля и оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Вопросы к зачету

- 1. Симметрии классического действия КХД: цветовая калибровочная симметрия, киральная симметрия, $U_A(1)$, СРТ.
- 2. Квантование КХД методом функционального интегрирования.
- 3. Теория возмущений и асимптотическая свобода.
- 4. BRST симметрия. Большие калибровочные преобразования. Грибовские копии
- 6. Квантовополевые системы при конечной температуре и плотности: мацубаровский формализм
- 7. Эффективное действие в квантовой теории поля. Определения и общие свойства эффективного действия КХД.
- 8. Фоновое калибровочное поле. Фоновое калибровочное условие.
- 9. Наблюдаемые свойства адронов и КХД на больших расстояниях.
- 10. Конфайнмент, динамическое (спонтанноое) нарушение киральной симметрии,
- 11. Проблема \$U A(1)\$.
- 11. Петля Вильсона и закон площадей.
- 12. Петля Полякова и центральная симметрия.
- 13. Критерии конфайнмента.
- 14. Основные идеи решеточных теорий. Размер решеток и объем вычислений.
- 15. Калибровочные теории на решетке. Параметры вычислений. Наблюдаемые.
- 16. Термодинамика КХД на решетке. Критическая температура.
- 17. Обзор фазовой диаграммы КХД. Параметры порядка.
- 18. Проект NICA

Примерные темы для докладов (курсовых работ)студентов:

1. Критерий конфайнмента Kubo-Ojima.

- 2. Дуальный механизм конфайнмента Мейснера.
- 3. Декомпозиция калибровочного потенциала Чо-Фаддеева-Ниеми.
- 4. Нулевые моды оператора Дирака в присутствии внешнего калибровочного поля. Киральные кварковые моды.
- 5. Самодуальные калибровочные поля: инстантоны и абелевы однородные поля.
- 6. Эффективный потенциал для петлевой переменной Полякова.
- 7. Эффективный потенциал для ковариантно-постоянного абелева калибровочного поля.
- 8. Кварковые, глюонные и духовые пропагаторы в присутствии ковариантно постоянного абелева калибровочного поля. Конфайнмент динамических кварков.
- 9. Эффективное действие, глюонная конденсация, вейлевские отражения, СР и кинковое решение эффективных уравнений движения.
- 10. Локализация заряженной частицы на доменной стенке (кинк).
- 11. Уравнение Бете-Солпитера.
- 12. Модель 'т Хоофта (2-мерная КХД): линейный запирающий потенциал.
- 13. Нелокальная модель Куткоски: конфайнмент динамических кварков и спектр Редже.
- 14. Адронизация: динамическое нарушение киральной симметрии модель Намбу-Йона-Лазинио (NJL) и определитель 'т Хоофта.
- 15. Адронизация: киральная симметрия и статический кварковый конфайнмент -- Polyakov loop модель NJL.
- 16. Адронизация: киральная симметрия, конфайнмент динамических кварков, $U_{\scriptscriptstyle A}(1)$, сильная СР доменная модель вакуума КХД.