Государственное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и человека «Дубна»

(университет «Дубна») Факультет естественных и инженерных наук Кафедра «Ядерная физика»

УTН	ЗЕРЖД	ĮAЮ	
прор	ректор і	по учебной ра	боте
		С.В. Морж	кухина
«		20	Γ.

ПРОГРАММА ДИСЦИПЛИНЫ

«КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В НАУКЕ И ОБ-РАЗОВАНИИ»

по направлению 010700.68 Физика

Магистерская программа «Физика ядра и элементарных частиц»,

«Теоретическая и математическая физика»

Форма обучения: очная	
Уровень подготовки: <u>магистр</u>	
Курс (семестр): 6 курс, 11 семестр	

Автор программы: Деникин А.С.,
кандидат физико-математических наук,
доцент кафедры «Ядерная физика»
Программа составлена в соответствии с Государственным образовательным стандартом
высшего профессионального образования и учебным планом по направлению подготовки
010700.68 Физика
Программа рассмотрена на заседании кафедры «Ядерная физика»
Hararayan agaganya Marana ayan ayan ayan ayan ayan ayan ayan
Протокол заседания № от «»20г.
Заведующий кафедрой / Оганесян Ю.Ц. /
СОГЛАСОВАНО
Декан факультета естественных и инженерных наук
«»20г.
Рецензент:
(Фамилия, имя, отчество)
(ученая степень, звание)
(ученая степень, звание)
(должность, кафедра или иное подразделение, организация)
Руководитель библиотечной системы / Черепанова В.Г. /
(подпись) (ФИО)

Выписка из образовательного стандарта:

ДНМ.05	Компьютерные технологии в науке и образовании
днм.05	Компьютерные технологии в науке и образовании Новые информационные технологии в учебном процессе: структура аудио- и видео- средств и методика их применения. Структура и архитектура ПЭВМ, практические навыки работы с компьютером. Принципы построения автоматизированных обучающих и контролирующих систем. Применение пакетов прикладных программ в учебном процессе по (предмету). Текстовые и графические
	редакторы, электронные таблицы, базы данных. Информационные и телеком-
1	муникационные сети.

1. Аннотация

Тип курса – ДНМ (дисциплины направления, федеральный компонент) Год обучения – 6 Семестр – 11

Место курса в профессиональной подготовке магистров

Курс опирается на знания магистрантов, приобретенные ранее при изучении курсов «Технология программирования», «Вычислительная физика», «Компьютерное моделирование физических процессов», а также всех разделов курса Общей физики и ряда специальных дисциплин. Курс обеспечивает студентов практическими навыками в области современных методов обработки, анализа и представления физических данных.

Формы работы студентов

Форма работы студентов в ходе изучения дисциплины предусмотрена в виде семинарских занятий и выполнение домашних индивидуальных заданий

Самостоятельная работа студентов

Самостоятельная работа студентов, предусмотренная учебным планом в объеме 34 часов, выполняется в ходе семестра в форме расчетно-графической работы по индивидуальному заданию.

Виды текущего контроля

Проверка домашних заданий, защита результатов выполнения расчетно-графической работы.

Форма итогового контроля

Зачет по теоретической части и по практическим работам.

2. Цель и задачи дисциплины

Целью курса «Компьютерные технологии в науке и образовании» является освоение магистрантами по направлению «Физика» принципов работы с компьютерными пакетами символьных математических вычислений, графическими редакторами обработки и визуализации данных, работе с текстовыми процессорами, а также применения веб-технологий в научно-исследовательской работе.

В ходе данного курса решаются задачи: обучить студентов эффективному использованию существующих информационных и компьютерных технологий, направленных на решение научно-исследовательских задач в области физики и математики; изложить основные подходы к выбору наиболее эффективных способов обработки и визуализации физических данных.

Сформировать у студентов систему знаний и навыков, необходимых для эффективного использования информационных и компьютерных технологий в научной деятельности, в частности, при обработке экспериментальных данных, их описании в рамках теоретических моделей, отображении данных, создании схем, графиков и иллюстраций, написании отчетов и публикаций.

В ходе данного курса студент должен получить опыт работы со следующими компьютерными пакетами: Maple, Origin, Corel Draw, LaTEX. Получить навыки веб-программирования с использованием языков HTML, JavaScript, PHP.

3. Требования к уровню освоения содержания дисциплины.

В ходе изучения дисциплины студенты получают:

- знания об основах работы с компьтерными пакетами символьных математических вычислений (на примере пакета Maple); базовые знания о способах отображения и анализа экспериментальных данных (пакет Origin Pro), о способах построения схем, графиков и иллюстраций (пакет Corel Draw), о процессе подготовки научных отчетов и публикаций (пакет LaTeX); базовые знания о способах поиска научно-технической информации в сети Интернет (учебные и справочные сайты, базы экспериментальных данных, экспертные системы); основы веб-программирования.
- умение применять полученные знания для решения физических задач с помощью компьютерных пакетов символьных вычислений; умение подгтовить научный отчет или публикацию с использованием графиков, таблиц, схем и иллюстраций; умение эффективно работать в сети Интернет.
- навыки использования изученных компьютерных пакетов для решения практических задач; навыки эффективного использования их документации; навыки поиска необходимой информации и размещение данных в сети Интернет.

Обеспечиваемые компетенции:

В результате освоения материала курса магистр должен компетентно ориентироваться в методах решения математических задач (в частности, задач моделирования физических процессов) с помощью пакетов символьных вычислений, способах визуализации и обработки как расчетных, так и экспериментальных данных. Магистрант должен быть компетентен в вопросе написания полноценного научного отчета (в частности, дипломной работы) или научной статьи, содержащей графики, схемы, таблицы и иллюстрации. Магистрант должен быть компетентен в вопросах поиска справочной научно-технической информации в сети Интернет.

4. Объём дисциплины и виды учебной работы:

Вид	Всего ча-	Семестр	
занятий	сов	11	
Общая трудоемкость	172	172	
Аудиторные занятия:			
Лекции	11	11	
Практические занятия (ПЗ)	11	11	
Семинары (С)			
Лабораторные работы (ЛР)			
Самостоятельная работа:	150	150	
Курсовой проект (работа)			
Расчетно-графические работы	150	150	
Реферат			
Итого	172	172	
Вид итогового контроля (за-	зачет	зачет	
чет, экзамен)			

5. Разделы (темы) дисциплины, содержание и виды занятий

№ п/п	Раздел дисциплины	Лек- ции	ПЗ	ЛР	Сам. работа
1	Новые информационные технологии в учеб-				
	ном процессе: структура аудио- и видео-	2	2		25
	средств и методика их применения				
2	Структура и архитектура ПЭВМ, практические навыки работы с компьютером.	2	2		25
3	Принципы построения автоматизированных обучающих и контролирующих систем.	2	2		25
4	Применение пакетов прикладных программ в учебном процессе по (предмету).	1	1		25
5	Текстовые и графические редакторы, электронные таблицы, базы данных.	1	1		25
6	Информационные и телекоммуникационные сети.	3	3		25
	Итого	11	11		150

Содержание разделов дисциплины:

1 Новые информационные технологии в учебном процессе: структура аудио- и видео- средств и методика их применения

- 1.1 Символьные преобразования
- 1.2 Дифференцирование и интегрирование. Пределы функций.
- 1.3 Решение уравнений и систем уравнений.
- 1.4 Векторы и матрицы.
- 1.5 Символьное и численное решение дифференциальных уравнений
- 1.6 Графические утилиты Maple
- 1.7 Использование встроенной справочной системы Maple

2. Структура и архитектура ПЭВМ, практические навыки работы с компьютером.

- 2.1 Построение графиков функций одной переменной.
- 2.2 Построение графиков функции двух переменных.
- 2.3 Анализ табличных данных (численное интерполирование, дифференцирование, интегрирование, Фурье преобразование и пр.)
- 2.4 Язык программирования Origin C и среда разработки Code Builder.

3. Принципы построения автоматизированных обучающих и контролирующих систем.

- 3.1 Инструментарий Corel Draw.
- 3.2 Инструменты создания графических примитивов. Управления свойствами примитивов.
- 3.3 Работа с цветовой палитрой.
- 3.4 Работа с утилитами Corel Draw.
- 3.5 Применение встроенных эффектов.
- 3.6 Экспорт и импорт объектов. Связь Corel Draw с другими приложениями.

4. Применение пакетов прикладных программ в учебном процессе по (предмету).

- 4.1 Основные понятия и структура документа LaTeX. Редактор WinEdit.
- 4.2 Исходный файл. Спецсимволы. Команды и их задание в тексте. Структура исходного текста.
- 4.3 Набор формул и специальных символов, основные принципы.
- 4.4. Набор таблиц и матриц. Рубрикация документа. Создание оглавления. Оформление списка литературы.
- 4.5 Работа с плавающими объектами (иллюстрации, таблицы)
- 4.6 Классы и пакеты LaTeX. Шрифты.

5. Текстовые и графические редакторы, электронные таблицы, базы данных.

- 5.1 Общие сведения. Интеграция в HTML коде.
- 5.2 Типы переменных и их свойства.
- 5.3 Выражения, базовые операторы. Функции языка.
- 5.4 Внутренние и внешние объекты JavaScript. Обработчик событий.
- 5.5 Окна, создание окон. Свойства объекта Window.

6. Информационные и телекоммуникационные сети.

- 6.1 Поисковые ресурсы сети Интернет.
- 6.2 Открытые базы данных, архивы научных публикаций.
- 6.3 Банки компьютерных программ.
- 6.4 Поиск справочной научно-технической информации.
- 6.5 База знаний по низко-энергетической ядерной физике NRV.

Практические занятия (семинары)

	<i>практические занятия (семинары)</i>			
№ п/п	Раздел дисциплины	Наименование практических занятий (семинаров)		
1	Раздел 1: Maple – пакет символьных математический вычислений	Практическое использование пакета Maple.		
2	Раздел 2: Origin Pro – па- кет обработки и визуали- зации эксперименталь- ных данных	Практическое использование пакета Origin Pro. Отображение данных.		
3	Раздел 2: Origin Pro – па- кет обработки и визуали- зации эксперименталь- ных данных	Практическое использование пакета Origin Pro. Отображение многомерных данных. Нелинейное интер- полирование.		
4	Раздел 3: Corel Draw – пакет работы с векторной графикой	Практическое использование пакета Corel Draw. Разработка и создание иллюстраций.		
5	Раздел 4: LaTEX – тек- стовый процессор для подготовки научных публикаций	Практическая работа с текстовым редактором LaTeX. Основные элементы научной статьи.		
6	Раздел 1 и 2	Решение задачи о движении частицы в поле центральных сил с по- мощью пакета Maple. Представление результатов в графической форме с помощью пакета OriginPro.		
7	Раздел 3 и 4	Создание иллюстраций для задачи о движении в поле центральных сил с помощью пакета Corel Draw. Написание отчета в среде LaTeX.		
8	Раздел 1 и 2	Решение уравнения теплопроводности с помощью пакета Maple. Представление результатов в графической форме с помощью пакета OriginPro.		
9	Раздел 3 и 4	Создание иллюстраций для задачи о распространении тепла с помощью пакета Corel Draw. Написание отчета в среде LaTeX.		
10	Раздел 1,2,3 и 4	Решение задачи о движении физического маятника с помощью пакета Maple. Представление результатов в графической форме с помощью пакета OriginPro. Создание иллюстраций с помощью пакета Corel Draw. Написание отчета в среде LaTeX.		
11	Раздел 5: Язык веб-про- граммирования JavaS- cript	Изучение языка JavaScript на примере создания веб-калькулятора. Поиск справочной научно-технической информации в сети Интернет. Открытые базы данных, банки компьютерных программ, архивы научных публикаций. Лицензионные базы данных и програмного обеспечения.		

6. Учебно-методическое обеспечение дисциплины

Основная литература:

- 1 Тарасевич Ю.Ю. Использование пакетов Maple, Mathcad и LateX2e при решении математическ их задач и полготовке математических и естественнонаучных текстов. Информационные технологии в математике. ЛИБРОКОМ 2012 ISBN 978-5397-02376-4
- 2. Говорухин В.Н. Введение в Maple. Математический пакет для всех. М.: Мир, 1997. 208с. ISBN 5-03-003255-X.
- 3. Гурский Ю.А. Компьютерная графика: Photoshop CS3, CoreDRAW X3, Illustrator CS3. Трюки и эффекты. СПб.: Питер, 2008. 992c. ISBN 978-5-91180-528-9.
- 4. Васильков Ю.В. Компьютерные технологии вычислений в математическом моделировании: Учебное пособие. М.: Финансы и статистика, 2002. 256 с. ISBN 5-279-02098-2.
- 5. Васильев А.Н. Mathematica: Практический курс с примерами решения прикладных задач Киев; СПб.: Век+: КОРОНА-Век, 2008. 448с. ISBN 978-5-903383-44-3.

Дополнительная литература:

- 6. Матросов А.В. Марle 6. Решение задач высшей математики и механики: Практическое руководство СПб.: БХВ-Петербург, 2001. 528c. ISBN 5-94157-021-X.
- 7. Эдвардс Ч.Г. Дифференциальные уравнения и краевые задачи: моделирование и вычисление с помощью Mathematica, Maple и MATLAB. Пер.с англ.и ред. Я.К.Шмидского. 3-е изд. М.: Вильямс, 2008. 1104с. ISBN 978-5-8459-1166-7.
- 8. Тарасевич Ю. Ю. Информационные технологии в математике: Учебное пособие для студентов вузов. 2-е изд. М.: Издательство ЛКИ, 2008. 136с. ISBN 978-5-382-00536-2.
- 9. Миронов Д.Ф. CorelDRAW 11. Питер, 2003. 448c. ISBN 5-94723-485-8.
- 10. Гурский Ю.А. Компьютерная графика: Photoshop CS2, CorelDRAW X3, Illustrator CS2. Трюки и эффекты. СПб.: Питер, 2006. 992c. ISBN 5-469-01468-1.
- 11. Мельниченко В.В. Компьютерная графика и не только: Руководство пользователя. Киев: Век+; НТИ; СПб.: КОРОНА принт, 2005. 560c. ISBN 966-7140-44-X.
- 12. Офисные информационные технологии: Учебное пособие. Под ред. Г.Л.Мазного, А.В.Мурадяна; Международный университет природы, общества и человека "Дубна". Кафедра системного анализа и управления. Дубна: Международный университет природы, общества и человека "Дубна", 1999. 64с. ISBN 5-89847-001-6.
- 13. Заботин Ю.Д. Самоучитель работы на персональном компьютере: Настольная книга пользователя. 3-е изд.,перераб.и доп. М.: РИПОЛ КЛАССИК, 2003. 640с. ISBN 5-7905-2229-7.
- 14. Залогова Л.А. Компьютерная графика: Практикум. 2-е изд. М.: БИНОМ. Лаборатория знаний, 2005. 320c. ISBN 5-93208-169-4.
- 15. Рашевская М.А. CorelDraw: Практическое руководство. М.: ДИАЛОГ-МИФИ, 2003. 352c. ISBN 5-86404-180-7.

Библиотечсно-информационные ресурсы:

1. Компьютерная графика: Photoshop CS3, CoreDRAW X3, Illustrator CS3. Трюки и эффекты :[Электронный ресурс]: 60 видеоуроков, описывающих наиболее интересные трюки и эффекты. - СПб.: Питер, 2008. - 1 DVD. - (Трюки и эффекты).

Справочные ресурсы и материалы в Интернет:

- 1. http://ems.calumet.purdue.edu/mcss/kraftrl/mfmm/
- 2. http://selyodkin.ru/archive/10.html
- 2. http://corel.demiart.ru/book12/
- 3. http://www.citforum.ru/
- 4. http://ru.php.net/manual/phpfi2.php
- 5. http://htmlbook.ru/html/
- 6. http://nrv.jinr.ru/denikin/links.html

- 7. <u>Патентная база USPTO http://patft.uspto.gov/</u>
- 8. Pocnateht http://www1.fips.ru/wps/wcm/connect/content_ru/ru/inform_resources/

7. Технические и электронные средства обучения

В ходе изучения курса предусмотрено использование компьютера для выполнения расчетов, обработки, визуализации и представления данных с применением программных пакетов, например, Maple, Origin Pro, Corel Draw, LaTeX, а также работа в сети Интернет.

8. Материально-техническое обеспечение дисциплины

(указываются специализированные лаборатории и классы, основные приборы, установки)

Практические задания выполняются в аудиториях оборудованных персональными компьютерами с доступом в Интернет, а также отдельным компьютером для преподавателя снабженным проектором.

9. Формы контроля

Перечень примерных контрольных вопросов и заданий для самостоятельной работы:

Пакет символных вычислений Maple

- 1. Найти предел $\lim_{x\to 1} \frac{\sqrt{x}-1}{x^2-1}$. Используя правило Лопиталя проверить правильность решения. Использовать функции: limit, diff.
- 2. Найти производную функции $y(x) = e^{5x}(5x 1)$, и упростить полученное выражение. Использовать функции: diff, simplify.
- 3. Исследовать функцию $y = x/(x^2 + 2)$ методами дифференциального исчисления и построить ее график. Найти интервалы возрастания и убывания функции и точки ее экстремума (проверить достаточное условие экстремума). Найти интервалы выпуклости и вогнутости графика функции и точки перегиба. Использовать функции: diff, solve, subs, plot.
- 4. Найти интеграл $\mathbf{T}x\sin 2x dx$. Результаты интегрирования проверить дифференцированием. Использовать функции: int, diff.
- 5. Вычислить площадь фигуры, ограниченной линиями $y = x^3$ и $y = \sqrt{x}$. Сделать чертеж. Использовать функции: int, plot.
- 6. Найти общее решение дифференциального уравнения $y\ddot{y} + xy = x$. Проверить правильность решения. Найти частное решение этого дифференциального уравнения, удовлетворяющее начальному условию y(0) = 2. Проверить правильность решения. Построить график решения на промежутке [0, 1]. Использовать функции: diff, dsolve, simplify, plot
- 7. Дана система линейных уравнений. Вычислить определитель матрицы системы линейных уравнений. Найти обратную матрицу. Проверить правильность решения. Решить систему линейных уравнений с помощью обратной матрицы. Проверить правильность решения. Решить систему линейных уравнений с помощью команды LinearSolve пакета LinearAlgebra.
- 8. Локализовать (графически) и с помощью численных методов найти все корни уравнения $4\cos x = x$. Использовать функции: fsolve, plot

Графический пакет Origin Pro:

- 1. Загрузка в Origin Pro табличные данные. Построение графика табулированной функции с использованием различных форм кривой (кривая, гистограмма, точки, график в полярных координатах, схемы и пр.). Отображение нескольких кривых на одном графике.
- 2. Изменения масштаба осей графика. Изменение типа осей (работа с элементами осей). Прорисовка вспомогательных линий (Guide lines). Подписи к осям. Подпись к графику (Legend).
- 3. Изменение характеристик графика (размеры листа, размеры графика, цветовые палитры и т.п.). Рисование графических примитивов на графике. Использование инструментария. Сохранение построенного шаблона и его повторное применение.
- 4. Построение графиков функции двух переменных. Преобразование исходного файла с данными в матрицу. Отображение топографической поверхности и 3D графика функции. Построение проекций на оси и профилей сечений двумерной функции.

- 5. Обработка и анализ данных с помощью встроенных библиотек. Нелинейная интерполяция функций одной переменной. Сглаживание. Интерполирование. Быстрое преобразование Фурье. Численное дифференцирование и интегрирование.
- 6. Встроенный компилятор языка С++. Программирование в среде разработки Code Builder.

Графический редактор Corel Draw:

- 1. Инструментарий Corel Draw. Панель инструментов. Меню. Единицы измерения.
- 2. Создание и редактирование графических примитивов.
- 3. Цветовая палитра Corel Draw. Окраска конуров, заливка объектов.
- 4. Работа с текстовыми объектами. Таблицы. Текстовые эффекты.
- 5. Импортирование в различные графические форматы.

Текстовый процессор LaTeX:

- 1. Организация и структура тестового файла в LaTeX.
- 2. Основные комманды языка и их параметры, описывающие структуру документа (\documentclass, \begin, \section и др.)
- 3. Компиляция файлов LaTeX.
- 4. Существующие шаблонные пакеты.
- 5. Создание статьи: заголовок, список авторов, аннотация.
- 6. Создание статьи: разделы и подразделы статьи.
- 7. Создание таблиц.
- 8. Создание списка литературы. Ссылки на литературу в тексте.
- 9. Основыне команды языка, реализующие математические символы. Набор формул в тексте и ссылки на них. Тектовый редактор WinEdit.
- 10. Включение иллюстраций в текст статьи.

Языки веб-программирования Java-Script и PHP

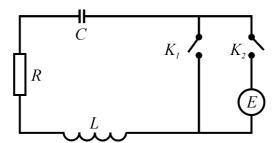
- 1. Структура HTML файла. Тэги.
- 2. Тэг <script>. Синтаксис и основные команды языка Java-Script. Функции и переменные.
- 3. Активные элеметы html-форм (элементы типа Buttons, Text, Checkbox, Radio, Select и др.). Программирование их свойств и отклика.
- 4. Использование Java Script для создания веб-приложений.
- 5. Язык РНР. Создание динамических html документов.
- 6. Синтаксис и основные команды языка РНР. Функции и переменные.
- 7. Использование РНР для создания динамических веб-приложений.

Поиск справочной и научно-технической информации в сети Интернет:

- 1. Сайты с базами данных по ядерной физике, физике элементарных частиц (http://www.nndc.bnl.gov/index.jsp, http://cdfe.sinp.msu.ru/index.en.html, <a href="http://cdfe.sinp.msu.ru/index.
- 2. Сайты с компьютерными кодами моделирования динамики ядерных реакций, свойств ядер ($\frac{http://nrv.jinr.ru}{http://www.nea.fir/html/dbdata/}$, $\frac{http://www.fresco.org.uk/}{http://www.jinr.ru/programs/}$).
- 3. Сайты с описанием алгоритмов математического моделирования и численного решения математических задач (http://rkb.home.cern.ch/rkb/titleA.html, http://www.srcc.msu.su/num_anal/, http://www.srcc.msu.su/num_anal/, http://www.srcc.msu.su/num_ana
- 4. Сайты с электронными учебными пособиями по физике и математике (http://nuclphys.sinp.msu.ru/, http://nuclphys.sinp.msu.ru/, http://phet.colorado.edu/en/simulations/category/new).
- 5. Сайты со справочной и учебной литературой, архивы научных препринтов (http://www.phys-encyclopedia.net/, http://www.phys-encyclopedia.net/, http://www.phys-encyclopedia.net/, http://www.phys-encyclopedia.net/, http://edworld.ipmnet.ru/index.htm, <a href="http://edworl
- 6. Сайты со справочной информацией по программированию (http://www.oracle.com/technetwork/java/index.html, http://www.oracle.com/technetwork/java/index.html)
- 7. Гранты, конкурсы и руководства по ведению научно-исследовательской работы (http://www.rfbr.ru/, http://www.rfbr.ru/, http://www.rfbr.ru/, http://www.rfbr.ru/).

Темы расчетно-графических работ для получения зачета:

Темы расчетных заданий с краткой формулировкой исходных условий. Каждое задание выполняется одним студентом.


Задание 1. Электрический колебательный контур

Используя законы Кирхгофа определить изменение во времени напряжения на конденсаторе $U_C(t)$ и тока через индуктивность $I_L(t)$ в колебательном контуре, изображенном на рисунке при следующих начальных условиях:

1. $U_C(tB\!\!\!/\;\!\!\!/\,\!\!\!\!/\, 0)$ = 1 , в момент времени t = 0 замыкается ключ K_1 .

2. $U_C(t=0)=0$, $E(t)=E_0\sin(wt)$, $E_0=1B$ и w E_0 50 , в момент времени t=0 замыкается ключ K_2 .

Параметры схемы: $R = 10\Omega$, LFн 1μ , $C = 1\mu\Phi$.

Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 2. Уравнение Мещерского.

Описать движение тела переменной массы под действием реактивной силы и силы тяжести, решив систему дифференциальных уравнений:

$$\prod_{H}^{M} m(t) \frac{d\mathbf{v}(t)}{dt} = \mathbf{F}_{T} + \mu(t)\mathbf{u},$$

$$\prod_{D}^{H} \frac{dm(t)}{dt} = \mu(t),$$

где \mathbf{F}_T - сила тяжести, $\mu(t)$ - скорость изменения массы тела (считать известной, определить самостоятельно), \mathbf{u} - скорость истечения газов. Построить графики зависимости m(t) и изобразить траекторию движения при некоторых начальных условиях.

Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 3. Уравнение теплопроводности.

Рассмотреть задачу о распространении тепла в однородном стержне длины L . Определить температуру стержня T(t) , решив уравнение в частных производных

$$\frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x} \frac{\mathsf{W}}{\mathsf{W}} \chi (T) \frac{\partial T(x,t)}{\partial x} \frac{\mathsf{U}}{\mathsf{W}},$$

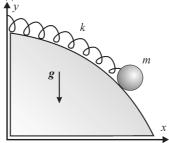
где $\chi(T)$ - коэффициент теплопроводности (функциональную зависимость задать самостоятельно). Считать известными начальные условия

$$T(x,0) = T_0(x)$$

и граничные условия

$$T(0,t) = T_1 \text{ if } T(L,t) = T_2.$$

$$T_1 \qquad T(x,t) \qquad T_2$$


Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 4. Колебания пружинного маятника.

Получить и проинтегрировать уравнения движения шарика на пружине, перемещающейся по идеальной поверхности с непостоянным наклоном под действием силы тяжести и силы натяжения пружины. Уравнение движения пружинного маятника в общем случае можно записать в виде:

$$m\frac{d^2\mathbf{r}}{dt^2} = -k(\mathbf{r},t)\mathbf{r} + \mathbf{F}(\mathbf{r},t,\dot{\mathbf{r}}),$$

где k - коэффициент жесткости пружины, а ${\bf F}$ - внешняя сила, действующая на маятник. Функциональную зависимость двух последних функций задать самостоятельно.

Уравнение поверхности y = f(x) определить самостоятельно.

Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 5. Взаимоотношения в системе «хищник-жертва».

Рассмотреть наиболее простую двухвидовую систему «хищник-жертва», основывающуюся на следующих принципах:

- 1. Численность популяции хищников M и жертв N зависят только от времени.
- 2. В отсутствие взаимодействия численность жертв растет (их никто не атакует), а хищников падает (им нечем питаться).
- 3. Естественная смертность жертв и естественная рождаемость хищника считаются несущественными.
- 4. Эффект насыщения численности обоих популяций не учитывается.
- Скорость роста численности жертвы уменьшается пропорционально численности хищников, а темп роста хищников увеличивается пропорционально числу жертв.

Объединяя предположения 1-5, приходим к системе уравнения Лотки-Вольтера

$$\frac{dN}{dt} = (\alpha - cM) N,$$

$$\frac{dM}{dt} = (-\beta + dN) M,$$

с заданными начальными условиями N(0) = N_0 и M(0) = M_0 . Исследовать решение полученной системы уравнений. Определить параметры устойчивого равновесия в системе.

Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 6. Моделирование опыта Резерфорда.

Рассмотреть движение атома гелия (α -частица) с зарядом + 2e в поле неподвижного ядра с зарядом + Ze , где e элементарный заряд. Между α -частицей и ядром действует сила отталкивания

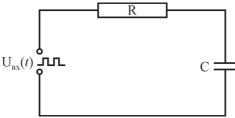
$$\mathbf{F} = \frac{2Ze^2}{r^2}\mathbf{n}_r,$$

здесь расстояние удобно измерять в Φ м(= 10^{-15} м), а элементарный заряд e^2 = 1.4399764 МэВ·Фм.

Решить систему дифференциальных уравнений движения

$$\iint_{H} 2m_N \frac{d^2x}{dt^2} = F_x,$$

$$\iint_{H} 2m_N \frac{d^2y}{dt^2} = F_y,$$

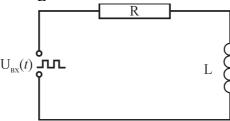

с начальными условиями $x(0) = X_m$, y(0) = b, $v_x = V_0$, $v_y = 0$, где (X_m, b) - начальное положение α - частицы, $V_0 = \sqrt{E/m_N}$ - начальная скорость движения α -частицы, связанная с энергией движения E, измеряемой в МэВ. Масса нуклона (частиц составляющих ядра) $m_N c^2 = 938$ МэВ.

Рассчитать и отобразить траекторию движения \emptyset -частицы. Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 7. Прохождение прямоугольных импульсов через RC-цепь.

Построить модель прохождения прямоугольного импульса через RC-цепь показанную на рисунке. Используя правила Кирхгофа составить уравнения, описывающие зависимость от времени заряда конденсатора, напряжения на конденсаторе и резисторе.

В качестве входных и начальных данных для модели считать начальное значение напряжения на конденсаторе $U_{{\cal C}0}$, значения сопротивления R и емкости ${\cal C}$, а также амплитуда входного сигнала U_0 .



Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 8. Прохождение прямоугольных импульсов через RL-цепь.

Построить модель прохождения прямоугольного импульса через RL-цепь показанную на рисунке. Используя правила Кирхгофа составить уравнения, описывающие зависимость от времени тока в цепи.

В качестве входных и начальных данных для модели считать амплитуду входного сигнала $\,U_{\scriptscriptstyle 0}\,$, значения сопротивления $\,R\,$ и индуктивности $\,L\,$.

Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 9. Движение частицы в электромагнитном поле.

На заряженную частицу, двигающуюся в электромагнитном поле, действует сила Лоренца

$$\mathbf{F} = q\mathbf{E} + q[\mathbf{v} \cap \mathbf{B}],$$

где q - заряд частицы, \mathbf{v} - вектор ее скорости, \mathbf{E} и \mathbf{B} - вектора напряженности электрического и магнитного поля

Получить и решить систему уравнений, описывающих движение заряженной частицы в данных условиях. Рассмотреть случаи с разным направлением начальной скорости частицы. Отобразить траекторию движения частица.

Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Задание 10. Движение тела под углом к горизонту с учетом сопротивления среды.

Пусть тело массой m выпущено с некоторой начальной скоростью v_0 , составляющей угол α с горизонтом. В воздушной среде на него будет действовать сила сопротивления, направление которой в каждой точке траектории противоположно вектору скорости, а величина прямо пропорциональна скорости (или ее квадрату).

Записать уравнения, описывающие движение тела и решить их. Построить траекторию движения тела. Определить максимальную высоту подъема и дальность полета тела как функцию угла α .

Задание выполнить в среде Maple. Отчет подготовить в LaTeX с использованием пакетов Origin Pro и Corel Draw для подготовки графиков и иллюстраций.

Темы расчетных работ могут быть также предложены самими студентами.

Каждая расчетная работа нацелена на исследование конкретной физической задачи. Во всех задачах требуется (1) выполнить расчеты в среде Maple, (2) результаты представить в графическом виде с помощью пакета Origin, (3) оформить отчет о работе с помощью LaTEX и (4) снабдить отчет иллюстрациями, подготовленными в Corel Draw.