Государственное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и человека «Дубна»

(университет «Дубна») Факультет естественных и инженерных наук Кафедра теоретической физики Кафедра ядерной физики

Y T]	ВЕРЖД	(АЮ
про	ректор і	по учебной работе
		С.В. Моржухина
‹ ‹	>>	2011 г.

ПРОГРАММА ДИСЦИПЛИНЫ «ОБЩАЯ ФИЗИКА»

по направлению 010700.62 «ФИЗИКА»

Специализации «Теоретическая физика» «Ядерная физика»

Форма обучения: очная

Уровень подготовки: <u>бакалавр</u>

Курсы 1-3, семестры 1-6

1. Требования ГОС ВПО

Механика.

Пространство и время. Кинематика материальной точки. Преобразования Галилея. Динамика материальной точки. Законы сохранения. Основы специальной теории относительности. Неинерциальные системы отсчета. Кинематика абсолютно твердого тела. Динамика абсолютно твердого тела. Колебательное движение. Деформации и напряжения в твердых телах. Механика жидкостей и газов. Волны в сплошной среде и элементы акустики.

Молекулярная физика.

Идеальный газ. Понятие температуры. Распределение молекул газа по скоростям. Идеальный газ во внешнем потенциальном поле. Броуновское движение. Термодинамический подход к описанию молекулярных явлений. Первое начало термодинамики. Циклические процессы. Второе начало термодинамики. Понятие энтропии термодинамической системы. Реальные газы и жидкости. Поверхностные явления в жидкостях. Твердые тела. Фазовые переходы первого и второго рода. Явления переноса.

Электричество и магнетизм.

Электростатика. Проводники в электростатическом поле. Диэлектрики в электростатическом поле. Постоянный электрический ток. Механизмы электропроводности. Контактные явления. Магнетики. Объяснение диамагнетизма. Объяснение парамагнетизма по Ланжевену. Ферромагнетики и их основные свойства. Электромагнитная индукция. Энергия магнитного поля. Электромагнитные колебания. Переменный ток. Технические применения переменного тока. Уравнения Максвелла в интегральной и дифференциальной форме. Излучение электромагнитных волн.

Оптика.

Основы электромагнитной теории света. Модулированные волны. Явление интерференции. Когерентность волн. Многолучевая интерференция. Явление дифракции. Понятие о теории дифракции Кирхгофа. Дифракция и спектральный анализ. Дифракция волновых пучков. Дифракция на многомерных структурах. Поляризация света. Отражение и преломление света на границе раздела изотропных диэлектриков. Световые волны в анизотропных средах. Интерференция поляризованных волн. Индуцированная анизотропия оптических свойств. Дисперсия света. Основы оптики металлов. Рассеяние света в мелкодисперсных и мутных средах. Нелинейные оптические явления. Классические модели излучения разреженных сред. Тепловое излучение конденсированных сред. Основные представления о квантовой теории излучения света атомами и молекулами. Усиление и генерация света.

Физика атомов и атомных явлений.

Микромир. Волны и кванты. Частицы и волны. Основные экспериментальные данные о строении атома. Основы квантово-механических представлений о строении атома. Одноэлектронный атом. Многоэлектронные атомы. Электромагнитные переходы в атомах. Рентгеновские спектры. Атом в поле внешних сил. Молекула. Макроскопические квантовые явления. Статистические распределения Ферми -Дирака и Бозе - Эйнштейна. Энергия Ферми. Сверхпроводимость и сверхтекучесть и их квантовая природа.

Физика атомного ядра и частиц.

Свойства атомных ядер. Радиоактивность. Нуклон-нуклонное взаимодействие и свойства ядерных сил. Модели атомных ядер. Ядерные реакции. Взаимодействие ядерного излучения с веществом. Частицы и взаимодействия. Эксперименты в физике высоких энергий. Электромагнитные взаимодействия. Сильные взаимодействия. Слабые взаимодействия. Дискретные симметрии. Объединение взаимодействий. Современные астрофизические представления.

2. Аннотация

Программа дисциплин «Общая физика» (**ЕН.Ф.01**) составлена в соответствии с федеральным компонентом блока естественнонаучных дисциплин ГОС ВПО для подготовки бакалавров по направлению: 010700.62 «Физика».

Место курса в профессиональной подготовке бакалавров

Изучение дисциплины «Общая физика» опирается на курсы математического анализа, аналитической геометрии, линейной алгебры, «Введение в специальность». Дисциплина «Общая физика» является основой для изучения всех разделов курса «Теоретической физики» и всех специальных курсов, предусмотренных программой подготовки бакалавров по специальности «физика».

Полученные знания необходимы студентам при подготовке, выполнении и защите выпускной квалификационной работы и при решении научно-исследовательских задач в будущей профессиональной деятельности.

Формы работы студентов в ходе изучения дисциплины предусмотрены лекции, семинарские занятия, выполнение домашних работ. Отдельные темы теоретического курса прорабатываются студентами самостоятельно в соответствии с планом самостоятельной работы и конкретными заданиями преподавателя с учетом индивидуальных особенностей студентов.

Самостоятельная работа студентов, предусмотренная учебным планом, выполняется в ходе семестра в форме подготовки к семинарским, занятиям выполнению домашних работ.

Виды текущего контроля – проверка домашних заданий, контрольных работ, коллоквиумы, опросы, тесты. Текущий контроль проводится, чтобы установить степень усвоения студентами лекционного материала, проверить умение решать задачи.

Форма промежуточного контроля

Зачеты по практическим занятиям, экзамены по теоретической части.

3. Цели и задачи дисциплины

Целями курса «Общей физики» являются:

- 1. изучение основных физических законов механики, молекулярной физики, термодинамики, электромагнетизма, оптики, атомной и ядерной физики и создание надежного фундамента для изучения специальных курсов, входящих в план подготовки бакалавра физики
- 2. знакомств с основными физическими методами исследования и использование этих методов в прикладных целях;
- 3. освещение связей между основными разделами физики

Задачей курса является развитие у студентов физического мышления и умения самостоятельно строить модели простейших физических процессов, делать размерные оценки, самостоятельно решать конкретные физические задачи, анализировать экспериментальные результаты.

4. Требования к уровню освоения содержания дисциплины (знания, умения, навыки)

В результате изучения курса общей физики студенты должны **знать** основные уравнения механики, молекулярной физики и термодинамики, электричества и магнетизма, волновой оптики, атомной и ядерной физики и **уметь** анализировать их решение; **уметь** самостоятельно строить модели простейших физических процессов, делать размерные оценки, самостоятельно решать конкретные физические задачи и **анализировать** результаты.

5. Объем дисциплины и виды учебной работы

Вид занятий	Всего часов	r					
7		1	2	3	4	5	6
Общая физика	Общая физика						
Общая трудоемкость:	980	149	130	150	150	180	221
Аудиторные занятия:	540	90	90	90	90	90	90
Лекции (Л)	324	54	54	54	54	54	54
Семинары (С)	216	36	36	36	36	36	36
Самостоятельная работа (СР)	440	59	40	60	60	90	131
Вид итогового контроля		зачет,	зачет,	зачет,	зачет,	зачет	зачет
(зачет, экзамен)		экза-	экза-	экза-	экза-	экза	экза-
		мен	мен	мен	мен	мен	мен

6. Разделы дисциплины

І. МЕХАНИКА (1 семестр, 1 курс)

Подразделы дисциплины и виды заняти

No	Подраздел (тема) дисциплины содержание	Л	С	CP
п.п.				
I.	МЕХАНИКА	54	36	59
1.	Измерения физических величин	2	2	6
2.	Пространство и время. Кинематика материальной точки. Преобразования Галилея	4	3	6
3.	Динамика материальной точки. Законы сохранения. Законы Ньютона	6	4	6
4.	Работа и энергия	6	4	6
5.	Кинематика абсолютно твердого тела. Динамика абсолютно твердого тела. Деформации и напряжения в твердых телах	6	4	6
6.	Тяготение	6	4	6
7.	Неинерциальные системы отсчета	6	4	6
8.	Основы специальной теории относительности	6	4	6
9.	Колебательное движение	6	4	6
10.	Механика жидкостей и газов.	4	3	5

Содержание раздела «МЕХАНИКА»

- 1. Измерения физических величин.
 - Единицы измерения. Размерности физических величин и их анализ. Погрешности измерений; прямые и косвенные измерения, случайные и систематические ошибки.
- 2. *Пространство и время. Кинематика материальной точки. Преобразования Галилея.*Система отсчета, материальная точка. Алгебра векторов. Вращение твердого тела.
- 3. *Динамика материальной точки. Законы сохранения.* Законы Ньютона. Закон сохранения импульса. Импульс силы, импульс тела. Движение центра масс. Закон сохранения импульса. Движение тел с переменной массой. Упругие силы. Силы трения.
- 4. Работа и энергия.
 - Работа и кинетическая энергия. Мощность. Консервативные и неконсервативные силы. Потенциальная энергия. Закон сохранения энергии в механике. Упругие и неупругие столкновения.
- 5. *Кинематика абсолютно твердого тела. Динамика абсолютно твердого тела.* Механика твердого тела. Момент силы и момент импульса. Момент инерции. Теорема Гюйгенса-Штейнера. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Гироскопы. *Деформации и напряжения в твердых телах*.
- 6. Тяготение.
 - Закон всемирного тяготения. Потенциальная энергия гравитационного взаимодействия. Гравитационное поле сферически симметричных тел. Первая и вторая космические скорости. Приливы в океане.
- 7. **Неинерциальные системы от счета.** Силы инерции: силы инерции при ускоренном поступательном движении системы от счета, центробежная сила, сила Кориолиса. Отклонение падающих тел от направления подвеса. Принцип эквивалентности гравитационных сил и сил инерции.
- 8. Основы специальной теории относительности.
 - Преобразования Галилея. Опыт Майкельсона-Морли. Постулаты Эйнштейна и некоторые эффекты специальной теории относительности. Преобразования Лоренца.

- Релятивистское выражение для импульса и энергии. Релятивистские инварианты.
- 9. *Колебательное овижение*. Гармонические колебания. Малые колебания. Груз на пружинке. Физический маятник. Затухающие колебания. Вынужденные колебания. Резонанс.
- 10. *Механика жидкостей и газов*. Закон Паскаля. Уравнение непрерывности. Уравнение Бернулли. Движение тел в среде с сопротивлением. Применение теории размерности.

Практические занятия (семинары) по «Механике»

№ п/п	№ подраздела дисциплины	Наименование практических занятий (семинаров)
1	1,2	Основные методы и приёмы решения задач по механике
2	2	Решение задач по кинематике
3	3	Решение задач на законы Ньютона
4	3	Решение задач на законы Ньютона
5	3	Решение задач на законы сохранения
6	4	Решение задач по теме работа и энергия
7	1,2,3,4	Контрольная работа №1
8	5	Решение задач по динамике твердого тела:
9	5	Решение задач по динамике твердого тела:
10	6	Решение задач на закон всемирного тяготения
11	7	Решение задач на неинерциальные системы отсчета
12	8	Решение задач по релятивистской кинематике.
13	8	Решение задач по релятивистской механике.
14	5,6,7,8	Решение задач по релятивистской механике. Контрольная работа № 2
15	9	Механические колебания.
16	10	Механика жидкостей и газов.
17	9,1	Контрольная работа №3
18		Зачетная неделя

II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА (2 семестр, 1 курс)

Подразделы дисциплины и виды занятий

№	Подраздел (тема) дисциплины, содержание	Л	С	CP
П.П.				
II.	МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА	54	36	40
1.	Молекулярно-кинетическая теория. <i>Идеальный газ. Понятие температуры</i> .	6	4	4
2.	Распределение молекул газа по скоростям	8	6	4
3.	Термодинамический подход к описанию молекулярных явлений. Первое начало термодинамики.	8	6	4
4.	Второе начало термодинамики. Циклические процессы. Понятие энтропии термодинамической системы.	8	6	5
5.	Реальные газы и жидкости. Фазовые переходы первого и второго рода.	4	2	4
6.	Явления переноса	6	4	4
7.	Свойства жидкостей. <i>Поверхностные явления в жидкостях</i> .	2	1	4
8.	Твердые тела.	2	1	4
IIa.	Волны в сплошной среде и элементы акустики.	10	6	5

Содержание раздела «Молекулярная физика и термодинамика»

1. Молекулярно-кинетическая теория. Идеальный газ. Понятие температуры.

Уравнение состояния идеального газа. Связь средней кинетической энергии молекул идеального газа с температурой. Уравнение Клапейрона-Менделеева, изопроцессы. Закон Дальтона.

2. Распределение молекул газа по скоростям.

Распределение Максвелла. *Идеальный газ во внешнем потенциальном поле*. Барометрическая формула. Распределение Максвелла-Больцмана. *Броуновское движение*.

3. Термодинамический подход к описанию молекулярных явлений. Первое начало термодинамики.

Теплота. Внутренняя энергия. Первый закон термодинамики. Теплоемкость. Распределение энергии по степеням свободы. Теплоемкость одноатомного и многоатомного идеальных газов. Уравнение Пуассона. Работа в изопроцессах. Адиабатические процессы.

4. Второе начало термодинамики. Циклические процессы. Понятие энтропии термодинамической системы.

Второй закон термодинамики. *Циклические процессы*. Цикл Карно. Холодильная машина. Неравенство Клаузиуса. *Понятие энтропии термодинамической системы*. Статистический смысл энтропии.

5. **Реальные газы. Фазовые переходы первого и второго рода.** Уравнение Ван-дер-Ваальса.

6. Явления переноса.

Явление переноса в газах. Длина свободного пробега молекул. Уравнение диффузия. Уравнение теплопроводности. Вязкость газов.

7. Свойства жидкостей.

Капиллярные явления. *Поверхностные явления в жидкостях*. Давление насыщенных паров. Вязкость жидкостей.

8. Твердые тела.

Кристаллическая структура твердых тел. Механические напряжения. Деформации. Теплоемкость твердых тел.

Па Волны в сплошной среде и элементы акустики.

- 1. Волны в упругих средах. Продольные и поперечные волны. Волновое уравнение. Дисперсия. Фазовая и групповая скорость. Распространение волн в неоднородных средах. Отражение и преломление волн на границе двух сред.
- 2. Звук. Скорость звука в различных средах. Эффект Доплера. Ударные волны.

Практические занятия (семинары) по «Молекулярной физике и термодинамике»

№ п/п	№ раздела	Наименование практических занятий (семинаров)
	дисциплины	
1	1	Решение задач по теме «Молекулярно-кинетические
		представления, уравнение состояния идеального газа».
2	2	Решение задач по теме «Уравнение Клапейрона-Менделеева, изопроцессы, закон Дальтона»
3	2	Решение задач по теме «Барометрическая формула». Решение задач по теме «Элементы теории вероятности».
4	2	Решение задач по теме «Элементы теории вероятности». Решение задач по теме «Функция распределения вероятностей, распределение Максвелла».
5	2	Решение задач по теме «Наиболее вероятная, средняя и среднеквадратичная скорости молекул идеального газа.
6	2	Решение задач по теме «Распределение Больцмана». Контрольная работа №1
7	3	Работа над ошибками. Решение задач по теме «Первое начало термодинамики».
8	3	Решение задач по теме «Адиабатический процесс».
9	3	Решение задач по теме «Теплоемкости одноатомного и многоатомного идеальных газов»
10	4	«Изменение энтропии идеального газа, изопроцессы».
11	4	Решение задач по теме «Статистический смысл энтропии, второе начало термодинамики».
12	4	Решение задач по теме «Цикл Карно, КПД тепловой машины».
13	5	Решение задач по теме «Реальные газы, изотермы Ван-дер- Ваальса». Контрольная работа №2
14	6	Решение задач по теме «Молекулярно-кинетическая интерпретация явлений переноса»
15	7	Решение задач по теме «Поверхностное натяжение, капиллярные явления».

16	8	Решение задач по теме «Твердые тела».
17	9	Решение задач по теме «Волны в сплошной среде и элементы акустики».
18		Зачетная неделя

III. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ (3 семестр, 2 курс)

Подразделы дисциплины и виды занятий

№	Подраздел (тема) дисциплины, содержание	Л	C	CP
П.П.				
III.	ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ	54	36	60
1.	Электростатика.	6	2	8
2.	Проводники в электростатическом поле. Диэлектрики в электростатическом поле.	3	2	7
3.	Постоянный электрический ток. Механизмы электропроводности. Контактные явления.	3	1	7
4.	Магнитное поле в вакууме	6	4	8
5.	Магнитное поле в веществе	6	2	8
6.	Электромагнитная индукция	3	2	7
7.	Уравнения Максвелла	4	2	8
8.	Излучение электромагнитных волн.	1	1	7

Содержание раздела «Электричество и магнетизм»

1. Электростатика.

Электростатическое поле в вакууме. Электрические поля. Закон Кулона. Напряженность электрического поля. Поток вектора через поверхность. Теорема Гаусса. Применение теоремы Гаусса для расчета электрических полей. Электрический диполь. Потенциал электрического поля.

2. Проводники и диэлектрики в электрическом поле.

Проводники в электрическом поле. Электрическая емкость проводника, конденсаторы. Электрическое поле в веществе. Полярные и неполярные молекулы. Поляризуемость и диэлектрическая проницаемость. Электронная теория поляризации неполярных диэлектриков и полярных газообразных диэлектриков. Энергия электрического поля.

3. Постоянный электрический ток.

Плотность тока. Закон сохранения электрического заряда. Закон Ома в интегральной и дифференциальной формах. Закон Джоуля-Ленца. Законы Кирхгофа. *Механизмы электропроводности*. *Контактные явления*.

4. Магнитное поле в вакууме.

Действие магнитного поля на заряд. Магнитное поле, создаваемое движущимися зарядами и

токами. Закон Био-Савара. Теорема о циркуляции магнитного поля в вакууме. Магнитное поле длинного прямого проводника с током. Магнитное поле кругового витка с током.

5. Магнитное поле в веществе.

Теорема о циркуляции магнитного поля в веществе. *Магнетики*. Магнитная восприимчивость и магнитная проницаемость. *Объяснение диамагнетизма*. *Объяснение парамагнетизма по Ланжевену*. Ферромагнетики и их основные свойства.

6. Электромагнитная индукция.

Закон Фарадея. Правило Ленца. Явление самоиндукции. Энергия магнитного поля. Электромагнитные колебания. Переменный ток. Технические применения переменного тока.

7. Уравнения Максвелла.

Электромагнитное поле. Ток смещения. Уравнения Максвелла в интегральной и дифференциальной форме.

8. Излучение электромагнитных волн.

Скорость распространения электромагнитных возмущений. Энергия и поток энергии электромагнитного поля. Шкала электромагнитных волн.

Практические занятия (семинары) по разделу «Электричество и магнетизм»

№ п/п	№ подраздела	Наименование практических занятий (семинаров)
	дисциплины	
1	1	Решение задач по теме «Постоянное электрическое поле в
		вакууме»
2	1	Решение задач по теме «Применение теоремы Гаусса для расчета
		электрических полей»
3	2	Решение задач по теме «Проводники и диэлектрики в
		электрическом поле»
4	2	Решение задач по теме «Поляризуемость и диэлектрическая
		проницаемость»
5	2	Решение задач по теме «Проводники и диэлектрики в
		электрическом поле»
6	2	Решение задач по теме «Энергия электрического поля»
7	3	Решение задач по теме «Электрическая емкость проводника,
		конденсаторы»
8	3	Решение задач по теме «Электрический ток»:
9	4	Решение задач на Закон Био-Савара.
10	4	Решение задач на теорему о циркуляции магнитного поля в
		вакууме.
11	5	Решение задач по теме «Магнитное поле в веществе»:
12	6	Решение задач на закон Фарадея и правило Ленца.
13	6	Решение задач по теме «Электромагнитная индукция»:
14	6	Решение задач по теме «Энергия магнитного поля»
15	7	Решение задач по теме «Уравнения Максвелла. Движение заряж.
		Частиц в электрическом и магнитном полях»:
16	8	Решение задач по теме «Уравнения Максвелла. Движение
		заряженных частиц в электрическом и магнитном полях»:
17	9	Решение задач по теме «Излучение электромагнитных волн»
18		Зачетная неделя

IV. ОПТИКА (4 семестр, 2 курс)

Разделы дисциплины и виды занятий

№	Раздел (тема) дисциплины, содержание	Л	С	СР
п.п.				
IV	ОПТИКА	54	36	60
1.	Основы электромагнитной теории света	5	5	7
2.	Распространение света в изотропных средах.	7	4	7
3.	Отражение и преломление света на границе раздела изотропных диэлектриков и металлов	7	5	7
4.	Световые волны в анизотропных средах.	7	4	7
5.	Явление интерференции.	9	5	9
6.	Явление дифракции.	9	5	9
7	Термодинамика излучения.	5	4	7
8	Нелинейные оптические явления.	5	4	7

Содержание подразделов дисциплины

1. Основы электромагнитной теории света.

Геометрическая оптика. Уравнение Максвелла, волновое уравнение. Плоские монохроматические электромагнитные волны в ваккуме. Поляризация и энергия электромагнитных волн. Излучение электромагнитных волн (простейшая модель, сферические волны). Спектральное разложение излучения. Квазимонохроматический свет.

2. Распространение света в изотропных средах.

Уравнения Максвелла в веществе и материальные уравнения. Дисперсия света. Основы оптики металлов. Рассеяние света в мелкодисперсных и мутных средах. Поляризация света. Естественное вращение направления поляризации. Индуцированная анизотропия оптических свойств. Поворот плоскости поляризации в магнитном поле (эффект Фарадея). Скорость света, фазовая и групповая скорости.

3. Отражение и преломление света на границе раздела изотропных диэлектриков и металлов.

Законы отражения и преломления света. Формулы Френеля. Полное отражение. Отражение от поверхности металлов. Световое давление.

4. Световые волны в анизотропных средах.

Двойное лучепреломление. Плоские монохроматические волны в анизотропной среде. Преломление на границе анизотропной среды. Поляризационные призмы и поляроиды. *Модулированные волны*.

5. Явление интерференции.

Интерференция поляризованных волн. Интерференция монохроматического света, разность хода. Деление волнового фронта, деление амплитуды. Временная и пространственная *когерентность волн.* Квазимонохроматический свет, функция видности. Двухлучевые интерферометры, интерферометр Майкельсона, фурьеспектрометры. *Многолучевая интерференция*.

6. Явление дифракции.

Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция Френеля на круглом отверстии, зонная пластинка. Дифракция Френеля на прямолинейном крае экрана. Дифракция Фраунгофера. Дифракция волновых пучков. Оптическая расходимость пучка, оптические резонаторы. Понятие о теории дифракции Кирхгофа. Дифракция на многомерных структурах. Дифракция и спектральный анализ. Дифракционные решетки, спектральные приборы. Понятие о голографии.

7. Термодинамика излучения. Световые кванты.

Классические модели излучения разреженных сред. Тепловое излучение конденсированных сред. Излучение абсолютно черного тела. Спектральная плотность равновесного излучения: формула Рэлея-Джинса, формула Планка. Основные представления о квантовой теории излучения света атомами и молекулами. Световые кванты, спонтанное и вынужденное излучения. Фотоэлектрический эффект. Энергия и импульс фотона, дуализм света. Усиление и генерация света.

8. Нелинейные оптические явления.

Понятие о некогерентных нелинейных эффектах. Материальные уравнения для нелинейных сред. Генерация второй гармоники.

Практические занятия (семинары) по разделу «Оптика»

№ п/п	№ подраздела	Наименование практических занятий (семинаров)
	дисциплины	
1	3	Геометрическая оптика. Законы отражения и преломления света.
		Сферическое зеркало и сферическая преломляющая поверхность
2	4	Геометрическая оптика. Центрированная оптическая система.
		Тонкая и толстая линза. Оптические инструменты.
3	2	Плоские электромагнитные волны в вакууме. Плотность потока
		излучения. Мощность излучения.
4	2	Решение задач по теме «Мощность излучения. Дипольное
		излучение. Сферические волны»
5	2	Решение задач по теме Мощность излучения. Дипольное
		излучение. Сферические волны.
6	2	Решение задач на эффект Доплера.
7	2	Решение задач по теме « Дисперсия света. Электронная теория
		дисперсии. Фазовая и групповая скорости».
8	2	Решение задач по теме «Поглощение света»
9	5	Решение задач «Интерференция света. Условия возникновения
		интерференции»
10	5	Интерференция света. Способы деления волнового фронта.
		Метод деления волнового фронта.
11	5	Получение когерентных источников методом деления фазы.
		Интерференция света в тонких пленках и на плоско-
		параллельной пластине.
12	5	Получение когерентных источников методом деления фазы.
		Интерференция в отраженном свете. Интерференция на клине.
		Кольца Ньютона.
13	6	Дифракция Френеля на круглом отверстии, зоны Френеля.
14	6	Дифракция Френеля на щели, спираль Корню. Дифракция
		Фраунгофера на щели.

15	6	Дифракция Фраунгофера на периодических структурах.	
16	6	Дифракционная решетка как спектральный прибор.	
17	7	Спектральная плотность равновесного излучения: форму Рэлея-Джинса, формула Планка.	ла
18		Зачетная неделя	

V. ФИЗИКА АТОМОВ И АТОМНЫХ ЯВЛЕНИЙ (5 семестр, 3 курс)

Разделы дисциплины и виды занятий

№	Раздел (тема) дисциплины, содержание	Л	П3	CP
П.П.				
V.	ФИЗИКА АТОМОВ И АТОМНЫХ ЯВЛЕНИЙ	54	36	90
1	Микромир. Волны и кванты.	4	4	12
2	Частицы и волны. Волновые свойства частиц	4	4	12
	вещества, уравнение Шредингера и квантование			
3	Строение, энергетические уровни и спектры атома	2	4	12
4	Основы квантово-механических представлений о	4	4	12
	строении атома.			
5	Многоэлектронные атомы и атом в поле внешних	16	6	12
	сил.			
6	Молекула	8	6	12
7	Некоторые макроскопические квантовые явления	16	8	18

Содержание подразделов дисциплины

Раздел 1. Микромир. Волны и кванты.

Тепловое излучение. Опытные законы теплового излучения. Результаты классической теории теплового излучения. Формулы Рэлея-Джинса и Вина. Формула Планка. Квантование энергии излучения.

Фотоэффект. Опытные законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Виды фотоэффекта. Применения фотоэффекта. фотоэлектронный умножитель, вторичная электронная эмиссия.

Тормозное рентгеновское излучение и опыт Боте. Устройство рентгеновской трубки. Дифракция рентгеновского излучения в кристаллах. Сплошной спектр тормозного рентгеновского излучения и его коротковолновая граница. Метод изохромат определения постоянной Планка. Экспериментальное доказательство существования квантов рентгеновского излучения в опыте Боте.

Эффект Комптона. Опыты Комптона. Импульс светового кванта. Фотоны. Расчет эффекта Комптона. Опыты Боте и Гейгера.

Раздел 2. *Частицы и волны*. Волновые свойства частиц вещества, уравнение Шредингера и квантование

Волны де **Бройля.** Гипотеза де Бройля. Экспериментальные подтверждения гипотезы де Бройля. Статистическая интерпретация волн де Бройля. Соотношение неопределенностей.

Состояние частицы в квантовой теории и постулаты квантовой механики. Операторы. Гамильтониан. Волновая функция. Принцип суперпозиции. Нестационарное (общее) уравнение Шредингера. Уравнение Шредингера для стационарных состояний.

Уравнение Шредингера для свободного движения и финитного одномерного движения частиц. Решение уравнения Шредингера для свободного движения частицы. Плотность тока. Частица в одномерной потенциальной яме с бесконечно высокими стенками и в яме конечной глубины. Физический пример — электронные состояния в линейных и кольцевых молекулах. Квантовый линейный (гармонический) осциллятор.

Уравнение Шредингера для финитного двух- и трехмерного движения частиц. Двух- и трехмерная прямоугольные ямы. Двух- и трехмерный линейные осцилляторы. Квантование в случае сферически симметричного силового поля.

Раздел 3. Строение, энергетические уровни и спектры атома.

Основные экспериментальные данные о строении атома. Опыты Резерфорда. Опыты Резерфорда. Дифференциальное сечение рассеяния. Формула Резерфорда. Ядерная модель атома. Заряд ядра. Несовместимость планетарной модели атома с представлениями классической физики.

Спектры атомов. Линейчатые спектры излучения и поглощения атомов. Спектральные серии атома водорода.

Модель Бора. Постулаты Бора. Правило квантования. Боровская модель водородоподобного атома. Обобщение правил квантования на эллиптические орбиты. Учет движения ядра. Изотопический сдвиг спектральных линий. Недостатки теории Бора.

Раздел 4. Основы квантово-механических представлений о строении атома.

Одноэлектронный атом и водородоподобные атомы. Стационарные состояния атома водорода. Энергии и квантовые числа. Угловые и радиальные волновые функции. Распределение плотности в электронном облаке. Схема уровней энергии водородоподобного атома и спектр излучения. Электромагнитные переходы в водородоподобных атомах и правила отбора. Учет конечности массы ядра. Позитроний и мюоний. Мюонные атомы. Ридберговские атомы.

Атомы щелочных металлов. Серии в спектре натрия и других щелочных металлов. Собственные значения энергии щелочных металлов. Квантовые дефекты (ридберговские поправки). Электромагнитные переходы в атомах щелочных элементов и правила отбора. Схема уровней энергии атома натрия (атома щелочного элемента) и спектр излучения.

Спин электрона и тонкая структура спектральных линий водорода и щелочных металлов. Орбитальный момент атома по классической теории и по квантовой теории. Опыт Штерна-Герлаха. Спин электрона. Сложение орбитального момента и спина. Собственный магнитный момент электрона. Спин-орбитальное взаимодействие и тонкая структура уровней энергии. Электромагнитные переходы в атомах водорода и щелочных элементов и тонкая структура их спектров.

Раздел 5. Многоэлектронные атомы и атом в поле внешних сил..

Многоэлектронные атомы. Принцип Паули. Электронные конфигурации и оболочки. Объяснение периодической системы элементов Менделеева. Атом гелия. Векторная модель атома. Правила сложения моментов. Возможные типы связи. Правила Хунда. Электромагнитные переходы в многоэлектронных атомах и правила отбора. Примеры атомов неона и ртути.

Атом в магнитном поле. Простой эффект Зеемана. Полный магнитный момент атома. Множитель Ланде. Сложный эффект Зеемана. Эффект Пашена-Бака. Электромагнитные переходы в атомах в магнитном поле и магнитный резонанс.

Атом в электрическом поле.

Эффект Штарка. Лэмбовский сдвиг уровней атомных электронов. Сверхтонкая структура уровней изотопов водорода.

Рентигеновские лучи и спектры. Характеристическое рентгеновское излучение. Закон Мозли. Дублетный характер рентгеновских спектров.

Испускание и поглощение света атомами. Спонтанные и вынужденные переходы. Лазеры. Коэффициенты Эйнштейна. Условия равновесия. Формула Планка.

Раздел 6. Молекула.

Химическая связь. Типы химической связи. Ковалентная связь. Ионная связь.

Молекула водорода и электронные состояния в двухатомных молекулах. Приближение Борна-Оппейгеймера. Метод орбиталей для иона молекулы водорода. Волновые функции для молекулы водорода. Энергия взаимодействия и равновесное расстояние. Молекулярные орбитали. Метод ЛКАО. Примеры молекул гидроксила и йода.

Колебания молекул. Колебания двухатомных молекул. Осциллятор. Гармоническое и ангармоническое приближения. Электронно-колебательные спектры. Принцип Франка-Кондона. Диссоциация молекул. Колебания многоатомных молекул, пример молекулы CO_2 .

Вращение молекул. Вращение двухатомных молекул. Ротатор. Парабола Фортра и образование кантов. Электронно-колебательно-вращательные спектры. Параводород и ортоводород и их спектры.

Комбинационное рассеяние света. Релеевское рассеяние света. Комбинационное рассеяние света, возникающее за счет колебательных и вращательных уровней. Стоксовы и антистоксовы линии

Люминесценция молекул. Классификация люминесценции, квантовый характер и механизм люминесценции. Правило Стокса для фотолюминесценции. Люминесцентные детекторы радиоактивных излучений.

Раздел 7. Некоторые макроскопические квантовые явления_

Типы связей атомов в твердых телах. Кристаллические структуры, примеры кристаллических структур: ПК, ОЦК, ГЦК, структура алмаза. Энергия взаимодействия атомов. Ионная связь. Ковалентная связь. Водородная связь. Молекулярная связь.

Электроны в кристаллах и зонные схемы. Энергетические зоны в кристаллах. Проводники и диэлектрики. Энергия Ферми Естественные (чистые) и примесные полупроводники. Электронные и оптические свойства полупроводников. Зонные структуры и волны Блоха. Одномерная модель кристалла. Статистическое распределение Ферми-Дирака.

Колебания атомов в кристаллах Продольные колебания атомов кристалла в одномерной модели. Акустическая и оптическая ветви. Фононы и квазичастицы. *Статистическое распределение Бозе- Эйнштейна*. Теория Дебая теплоемкости твердых тел.

Сверхтекучесть и ее квантовая природа. Опытные факты. Понятие о теории сверхтекучести. Энергетический спектр элементарных возбуждений в жидком Не II.

Сверхпроводимость и ее квантовая природа. Опытные факты. Понятие о теории сверхпроводимости. Спаривание электронов. Энергетическая щель. Высокотемпературная сверхпроводимость.

Практические занятия (семинары) по разделу «Физика атомов и атомных явлений»

№ п/п	№ подраздела дисциплин ы	Наименование практических занятий (семинаров)	
1	1	Тепловое излучение и корпускулярные свойства	
		электромагнитного излучения.	

2	1	Фотоэффект.
3	2	Волны де Бройля. Соотношение неопределенностей. Состояние
		частицы в квантовой теории и постулаты квантовой механики
4	2	Уравнение Шредингера для свободного движения и финитного
		одномерного движения частиц. Уравнение Шредингера для
		финитного двух- и трехмерного движения частиц.
5	3	Модель атома Резерфорда-Бора
6	3	Линейчатые спектры излучения и поглощения атомов.
7	4	Основы квантового описания атома водорода
8	4	Основы квантового описания атомов щелочных элементов
9	5	Многоэлектронные атомы и характеристические рентгеновские
		спектры
10	5	Атом в магнитном поле. Опыт Штерна-Герлаха. Эффект
	Зеема	на.
11	5	Атом в магнитном поле. Магнитный резонанс.
12	6	Колебательные и электронные состояния двухатомных молекул
13	6	Вращение молекул.
14	6	Молекулярные спектры, комбинационное рассеяние света
15	7	Электроны в металлах.
16	7	Электроны в полупроводниках
17	7	Квантовая теория теплоемкости кристаллов
18		Зачетная неделя

VI. ФИЗИКА АТОМНОГО ЯДРА И ЧАСТИЦ (6 семестр, 3 курс) Разделы дисциплины и виды занятий

<u>№</u>	Раздел (тема) дисциплины, содержание	Л	ПЗ	CP
П.П.				
VI	ФИЗИКА АТОМНОГО ЯДРА И ЧАСТИЦ	54	36	131
1.	Введеие. Свойства атомных ядер.	4	2	14
2.	Радиоактивность.	6	4	14
3.	Ядерные взаимодействия. Нуклон - нуклонное взаимодействие и свойства ядерных сил	4	3	14
4.	Модели атомных ядер	4	3	14
5.	Ядерные реакции, деление и синтез ядер	9	6	15
6.	Эксперименты в ядерной физике и физике частиц	6	4	15
7.	Взаимодействие излучения с веществом. Ядерные технологии	6	4	15
8.	Частицы и взаимодействия.	9	6	15
9.	Современные астрофизические представления	6	4	15

Содержание подразделов дисциплины

1. Введеие. Свойства атомных ядер.

Введение.

Основные этапы развития физики атомного ядра и частиц. Масштабы явлений микромира.

Основные свойства атомных ядер

Опыт Резерфорда. Размеры ядер. Ядро как совокупность протонов и нейтронов. Распределение заряда в ядре. Масса и энергия связи ядра. Стабильные и радиоактивные ядра. Квантовые характеристики ядерных состояний. Спин ядра.

2. Радиоактивность

Закон радиоактивного распада. Статистический характер распада. Искусственная радиоактивность. Виды распада. Альфа-распад. Туннельный эффект. Зависимость периода альфа-распада от энергии альфа-частиц. Бета-распад. Экспериментальное доказательство существования нейтрино. Разрешенные и запрещенные бета-переходы. Несохранение четности в бета-распаде. Гамма-излучение ядер. Электрические и магнитные переходы. Ядерная изомерия. Внутренняя конверсия. Эффект Месбауэра.

3. Ядерные взаимодействия.

Нуклон - нуклонное взаимодействие и свойства ядерных сил.

Система двух нуклонов. Дейтрон - связанное состояние в n-p системе. Тензорный характер ядерных сил. Зарядовая независимость ядерных сил. Изоспин. Обменный характер ядерных сил. Мезонная теория нуклон-нуклонного взаимодействия.

4. Модели атомных ядер

Микроскопические и коллективные модели. Модель Ферми-газа. Физическое обоснование оболочечной модели. Потенциал среднего ядерного поля. Спин-орбитальное взаимодействие. Одночастичые состояния в ядерном потенциале. Коллективные свойства ядер. Модель жидкой капли. Полуэмпирическая формула энергии связи ядра. Деформация ядер. Колебательные и вращательные состояния ядер.

5. Ядерные реакции, деление и синтез ядер

Ядерные реакции

Методы изучения ядерных реакций. Детекторы частиц. Принципы работы ускорителей. Сечения реакций. Каналы реакций. Законы сохранения в ядерных реакциях. Кинематика ядерных реакций. Механизмы ядерных реакций. Модель составного ядра. Резонансные ядерные реакции. Формула Брейта - Вигнера. Прямые ядерные реакции. Оптическая модель ядра. Взаимодействие фотонов и электронов с ядрами.

Деление ядер

Деление ядер. Деление изотопов урана нейтронами. Цепная реакция деления. Ядерные взрывы. Ядерные реакторы. Трансурановые элементы и сверхтяжелые ядра.

Синтез атомных ядер

Термоядерные реакции. Проблема управляемого термоядерного синтеза. Критерий Лоусона. Токамаки. Импульсные термоядерные реакторы. Оценка природных запасов дейтерия и лития-6 на Земле. Современные астрофизические представления. Ядерные реакции в звездах. Протонно-протонный цикл. Углеродно-азотный цикл.

6. Эксперименты в ядерной физике и физике частиц

Эксперименты в физике низких энергий

Экспериментальные методы в физике низких энергий. Ускорители. Пучки тяжелых ионов. Детекторы. Экспериментальные установки. Трансурановые элементы. Сверхтяжелые ядра.

7. Взаимодействие ядерного излучения с веществом. Ядерные технологии.

Взаимодействие заряженных частиц со средой. Потери энергии на ионизацию и возбуждение атомов. Пробеги заряженных частиц. Взаимодействие нейтронов с веществом. Прохождение гамма-излучения через вещество. Биологическое действие излучения и защита от него. Ядерные технологии. Ядерная спектроскопия. Масс спектроскопия, масс анализаторы. Активационный анализ, гамма активационный анализ, РФА. Ядерный магнитный резонанс, меченые атомы. Радиоуглеродный хронометр.

8. Частицы и взаимодействия

Четыре типа фундаментальных взаимодействий. Электромагнитные, сильные и слабые взаимодействия. Константы и радиусы взаимодействия. Принципы описания взаимодействия частиц в квантовой теории поля. Переносчики взаимодействия. Понятие о диаграммах Фейнмана. Основные характеристики частиц. Классификация частиц. Калибровочные бозоны, лептоны и адроны. Фундаментальные частицы. Дискретные симметрии. Пространственная инверсия. Р-четность. Зарядовое сопряжение. Зарядовая (С) четность. СР-инверсия. Обращение времени. СРТ-теорема. Квантовые числа частиц и законы сохранения. Античастицы.

Эксперименты в физике высоких энергий

Экспериментальные методы в физике высоких энергий. Ускорители. Встречные пучки. Пучки вторичных частиц. Детекторы. Реакции с частицами.

Фундаментальные частицы Стандартной модели.

Лептоны. Основные характеристики электрона, позитрона, нейтрино. Спральность. Основные характеристики мюонов и лептонов. Кварки, кварковая структура адронов. Бозоны. Взаимодействия частиц.

Объединение взаимодействий

Экранировка заряда в квантовой электродинамике. Зависимость констант взаимодействия от переданного импульса. Объединение электромагнитных и слабых взаимодействий. Великое объединение. Поиск нестабильности протона.

9. Современные астрофизические представления

Космические лучи.

Первичное космическое излучение. Солнечные и галактические космические лучи. Состав, происхождение и распространение космического излучения. Взаимодействие космических лучей с атмосферой Земли. Вторичные космические лучи. Состав и энергетический спектр вторичных космических лучей. Непрерывная регистрация космического излучения. Вариации космических лучей. Радиационные пояса Земли. Форбуш-эффект. Широкие атмосферные ливни

Современные астрофизические представления.

Эволюция и состав Вселенной. Космологический нуклеосинтез в горячей Вселенной. Нуклеосинтез в звездах. Распространенность химических элементов. Нейтринная астрономия. Сверхновые. Нейтронные звезды. Черные дыры.

Практические занятия (семинары) по разделу «Физика атомного ядра и частиц»

№ п/п	№ подраздела дисциплины	Наименование практических занятий (семинаров)
1	1	Свойства атомных ядер.
2	1	Масса и энергия связи ядра. Решение задач.
3	2	Закон радиоактивного распада. Решение задач.
4	3	Нуклон - нуклонное взаимодействие и свойства ядерных сил. Решение задач.
5	4	Модели атомных ядер. Решение задач.
6	5	Ядерные реакции. Решение задач.
7	5	Деление ядер. Решение задач.
8	5	Синтез атомных ядер. Термоядерные реакции. Решение задач.
9	6	Эксперименты в физике низких энергий. Решение задач.
10	7	Взаимодействие ядерного излучения с веществом. Решение задач.
11	8	Частицы и взаимодействия. Решение задач.
12	8	Эксперименты в физике высоких энергий. Решение задач.
13	7	Ядерные технологии. Решение задач.
14	8	Фундаментальные частицы Стандартной модели. Решение задач.
15	8	Объединение взаимодействий. Решение задач.
16	9	Космические лучи. Решение задач.
17	9	Современные астрофизические представления. Решение задач.
18		Зачетная неделя

7. Учебно-методическое обеспечение дисциплины

Раздел «Механика»

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Н.П. Калашников, М.А. Смондырев. Основы физики. Том 1, Москва DPOФA, 2003.
- 2. Д.В. Сивухин. Общий курс физики: Учебное пособие для вузов: В 5 т. Том I: Механика; Москва Физматлит МФТИ, 2002;

- 3. И.Е. Иродов. Задачи по общей физике: Учебное пособие для студентов вузов- М.: Физматлит; : Лаборатория Базовых Знаний, 2002.
- 4. Н.Г. Анищенко, С.А. Хорозов и др.; под ред. И.М. Граменицкого. Сборник задач по физике. Часть І: Учебное пособие. Дубна: Международный Ун-т природы, общества и человека "Дубна", 2002.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 5. **Савельев И.В.** Курс общей физики: Учебное пособие для вузов: В 3 т. Т.1 : Механика. Молекулярная физика / СПб.: Лань, 2008.
- 6. **Савельев И.В.** Сборник вопросов и задач по общей физике: Учебное пособие / Савельев Игорь Владимирович. М.: АСТ: Астрель, 2001.
- 7. **Р. Фейнман, Р. Лейтон, М. Сэндс.** Фейнмановские лекции по физике.- М.: Едиториал УРСС, 2004 (М.: Мир, 1975-1977)
- 8. **Орир Дж.** Физика: Полный курс. Примеры, задачи, решения: Учебник М.: КДУ, 2011.

Раздел «Молекулярная физика»

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Н.П. Калашников, М.А. Смондырев. Основы физики. Том 1, Москва DPOФА, 2003
- 2. Д.В. Сивухин. Общий курс физики: Учебное пособие для вузов: В 5 т. Том II: Термодинамика и молекулярная физика, Москва Физматлит МФТИ, 2002;
- 3. А.К. Кикоин, И.К. Кикоин. Молекулярная физика: Учебное пособие СПб.: Лань, 2007. 480с.
- 4. И.Е. Иродов. Задачи по общей физике: Учебное пособие для студентов вузов- М.: Физматлит; : Лаборатория Базовых Знаний, 2002.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 5. **Савельев И.В.** Курс общей физики: Учебное пособие для вузов: В 3 т. Т.1 : Механика. Молекулярная физика / СПб.: Лань, 2008.
- 6. **Савельев И.В.** Сборник вопросов и задач по общей физике: Учебное пособие / Савельев Игорь Владимирович. М.: АСТ: Астрель, 2001.
- 7. **Р. Фейнман, Р. Лейтон, М. Сэндс.** Фейнмановские лекции по физике.- М.: Едиториал УРСС, 2004 (М.: Мир, 1975-1977)
- 8. **Орир** Дж. Физика: Полный курс. Примеры, задачи, решения: Учебник М.: КДУ, 2011.
- 9. Н.Г. Анищенко, С.А. Хорозов и др.; под ред. И.М. Граменицкого. Сборник задач по физике. Часть І: Учебное пособие. Дубна: Международный Ун-т природы, общества и человека "Дубна", 2002.

Раздел «Электричество и магнетизм»

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Д.В. Сивухин. Общий курс физики: Учебное пособие для вузов: В 5 т. Том III: Электричество, Москва Физматлит МФТИ, 2002
- 2. Н.П. Калашников, М.А. Смондырев. Основы физики. Том 1, Москва DPOФA, 2003.
- 3. И.Е. Иродов. Задачи по общей физике: Учебное пособие для студентов вузов- М.: Физматлит; : Лаборатория Базовых Знаний, 2002.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. **Савельев И.В.** Курс общей физики: Учебное пособие для вузов: В 3 т. Т.2 : Электричество. Колебания и волны. Волновая оптика / СПб.: Лань, 2008.
- 2. **Савельев И.В.** Сборник вопросов и задач по общей физике: Учебное пособие / Савельев Игорь Владимирович. М.: АСТ: Астрель, 2001.
- 3. **Р. Фейнман, Р. Лейтон, М. Сэндс.** Фейнмановские лекции по физике.- М.: Едиториал УРСС, 2004 (М.: Мир, 1975-1977)
- 4. И.Е.Тамм. Основы теории электричества. М.: Физматлит, 2003
- 5. С. Г. Калашников. Электричество .- М.: Физматлит, 2004
- 6. Э. Парселл. Электричество и магнетизм. Москва, Наука, 1975.
- 7. **И.Е. Иродов** Физика макросистем: Основные законы М.: Физматлит; : Лаборатория Базовых Знаний; СПб.: Невский Диалект, 2001.
- 8. **И.Е. Иродов.** Электромагнетизм. Основные законы. М.: Физматлит; : Лаборатория Базовых Знаний, 2002.

Раздел «Оптика»

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Е.И. Бутиков. Оптика. Санкт-Петербург, Издательство "Невский диалект", 2003.
- 2. Д.В. Сивухин. Общий курс физики: Учебное пособие для вузов: В 5 т. Том IV: Оптика, Москва Физматлит МФТИ, 2002.
- 3. И.Е. Иродов. Задачи по общей физике: Учебное пособие для студентов вузов- М.: Физматлит; : Лаборатория Базовых Знаний, 2002.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. **Савельев И.В.** Курс общей физики: Учебное пособие для вузов: В 3 т. Т.2 Электричество. Колебания и волны. Волновая оптика / СПб.: Лань, 2008.
- 2. **Савельев И.В.** Сборник вопросов и задач по общей физике: Учебное пособие / Савельев Игорь Владимирович. М.: АСТ: Астрель, 2001.
- 3. **Р. Фейнман, Р. Лейтон, М. Сэндс.** Фейнмановские лекции по физике.- М.: Едиториал УРСС, 2004 (М.: Мир, 1975-1977)
- 4. М. Борн, В. Вольф. Основы оптики. Москва, "Наука", 1970.
- 5. **Орир** Дж. Физика: Полный курс. Примеры, задачи, решения: Учебник М.: КДУ, 2011.
- 6. **Сборник задач по физике**: Учебное пособие для студентов ун-та "Дубна". Ч.3 / Анищенко Н. Г. и др.; Под ред. И.М.Граменицкого- Дубна: Международный университет природы, общества и человека "Дубна", 2006.
- 7. Н.П. Калашников, М.А. Смондырев. Основы физики. Том 2, Москва DPOФA, 2003.

Раздел «Физика атомов и атомных явлений»

ОСНОВНАЯ ЛИТЕРАТУРА

- **1.** Сивухин Д. В. Общий курс физики. В 5 Т. Т 5: Атомная и ядерная физика : учеб. пособие М.: Физматлит, 20011.- 784 с.
- **2.** Савельев И. В. Курс общей физики. В 4 Т. Т 3 : Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц : учеб. пособие / под общ. ред. В. И. Савельева. М. : КНОРУС, 2009. 368 с.

- 3. Шпольский Э.В. Атомная физика. В 2-х тт. Том 2. Основы квантовой механики и строение электронной оболочки атома. СПб.: Издательство "Лань", 2010. 448 с.
- **4.** Иродов И. Е. Квантовая физика. Основные законы : учеб. пособие для вузов. М. : Лаборатория Базовых Знаний, 2002.- 272 с.
- **5.** Иродов И. Е. Задачи по квантовой физике. М. : Лаборатория Базовых Знаний, 2002.- 216 с.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. Борн М. Атомная физика / Борн Макс; Пер.с англ.О.И.Завьялова и В.П.Павлова; Под ред.Б.В.Медведева; Предисл.Н.Н.Боголюбова. М.: Мир, 1965. 484с.:
- 2. Орир Дж. Физика: Полный курс. Примеры, задачи, решения: Учебник / Орир Джей; Пер.с англ.и науч.ред. Ю.Г.Рудого, А.В.Беркова. М.: КДУ, 2011. 752с.:
- 3. Ашкрофт Н. Физика твердого тела :[Электронный ресурс] : В 2 т. Т.1,2 / Ашкрофт Н., Мермин Н. М.: Мир, 1979. 422с.
- 4. Поль Р.В. Оптика и атомная физика / Поль Роберт Вихард; Пер.с нем. Н.М.Лозинской; Под ред. Н.А.Толстого; Ред. Н.А.Райская. М.: Наука, 1966. 552с.
- 5. Ремизов А.Н. Курс физики: Учебник для вузов / Ремизов Александр Николаевич, Потапенко Александр Яковлевич. М.: Дрофа, 2002. 720с.
- 6. Россель Ж. Общая физика / Россель Жан; Пер.с фр. Т.С.Дубинко, М.Е.Маринчука; Под ред. К.П.Яковлева. М.: Мир. 1964. 507с.
- 7. Физический энциклопедический словарь / Гл.ред. А.М.Прохоров. М.: Советская энциклопедия, 1984. 943с.
- 8. Карапетьянц М.Х. Строение вещества: Учебное пособие для вузов / Карапетьянц Михаил Христофорович, Дракин Сергей Иванович. 3-е изд.,перераб.и доп. М.: Высшая школа, 1978. 304с.
- 9. Дей М.К. Теоретическая неорганическая химия / Дей М.Клайд, Селбин Джоел; Пер.с англ. Р.А.Лидина и др.: Под общ.ред. К.В.Астахова. М.: Химия, 1969. 432с.
- 10. Гершензон Е.М. Оптика и атомная физика: Учебное пособие для педагогических вузов / Гершензон Евгений Михайлович, Малов Николай Николаевич, Мансуров Андрей Николаевич. М.: Академия, 2000. 408с.
- 11. Калашников Н.П. Основы физики: Учебник для вузов: В 2 т. Т.2 / Калашников Николай Павлович, Смондырев Михаил Александрович. 2-е изд.,перераб. М.: Дрофа, 2004. 432c.
- 12. Бейдер Р. Атомы в молекулах: Квантовая теория / Бейдер Ричард; Пер.с англ. Е.С.Апостоловой и др.; Под ред. М.Ю.Антипина, В.Г.Цирельсона. М.: Мир, 2001. 532с.
- 13. Карякин Н.И. Краткий справочник по физике / Карякин Николай Иванович, Быстров Константин Николаевич, Киреев Петр Семенович. 3-е изд.,стер. М.: Высшая школа, 1969. 600с.
- 14. Робертсон Б. Современная физика в прикладных науках / Робертсон Б.; Пер.с англ. под ред. Е.М.Лейкина. М.: Мир, 1985. 272с.
- 15. Нерсесов Э.А. Основные законы атомной и ядерной физики: Учебное пособие / Нерсесов Эдуард Аристакесович. М.: Высшая школа, 1988. 288с.
- 16. Физика за рубежом'85: Сборник статей: Пер.с англ.и фр.: Фазовые переходы, динамический хаос и критические явления. Атомная и ядерная физика. Физика высоких энергий. Оптическая, ядерная и адронная спектроскопия. Физика поверхностных явлений / Под ред. А.С.Боровика-Романова, Р.З. Сагдеева. М.: Мир, 1985. 256с.

Раздел «Физика атомного ядра и частиц»

ОСНОВНАЯ ЛИТЕРАТУРА

1. Б.С. Ишханов, И.М. Капитонов, Н. П. Юдин. "Частицы и атомные ядра", М., Издательство

ЛКИ, 2007

- 2. Субатомная физика: Вопросы.Задачи.Факты: Учебное пособие / Под.ред.Б.С.Ишханова. М.: Издательство Московского университета, 1994. 224с.
- 3. К.Н. Мухин. "Экспериментальная ядерная физика" (в трех томах), СПб., Издательство Лань, 2008.
- 4. Сивухин Д.В. Общий курс физики. Том 5, М.- ФИЗМАТЛИТ, 2011
- 4. Ю.М. Широков и Н.П. Юдин. Ядерная физика. М.: Наука, 1972.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 3 Окунь Л.Б. Лептоны и кварки / Окунь Лев Борисович. 2-е изд.,перераб.и доп. М.: Наука, 1990. 346c
- 4 Готтфрид К. Концепции физики элементарных частиц / Готтфрид Курт, Вайскопф Виктор; Пер.с англ. В.Г.Буданова под ред. А.Д.Суханова. М.: Мир, 1988. 240с.
- 5 Любимов А. Введение в экспериментальную физику частиц / Любимов А., Киш Д. 2-е изд.,перераб.и доп. М.: Физматлит, 2001. 272с.
- 6 Поликанов С.М. Изомерия формы атомных ядер / Поликанов Сергей Михайлович. М.: Атомиздат, 1977. 200с. -1 шт
- 7 Калинкин Б.Н. Некоторые вопросы теории ядра и ядерных реакций / Калинкин Б.Н. Алматы, 2011. 202c. 3 шт
- 8 Шевелев А.К. Структура ядра / Шевелев Александр Киприянович. М.: КомКнига, 2006. 312c. 1 шт
- 9 Бете Г. Элементарная теория ядра / Бете Г., Моррисон Ф.; Пер.с англ. О.А.Владимировой; Под ред. В.Б.Берестецкого. М.: Иностранная литература, 1958. 356с.
- 10 Валантэн Л. Субатомная физика: ядра и частицы: В 2 т. Т.2 : Дальнейшее развитие / Валантэн Люк; Пер.с фр. Н.Н. Колесникова. М.: Мир, 1986. 336с.: 1 шт
- 11 Нерсесов Э.А. Основные законы атомной и ядерной физики: Учебное пособие / Нерсесов Эдуард Аристакесович. М.: Высшая школа, 1988. 288с.: 1 шт.
- 12 Ядерная энциклопедия / Авт.и гл.ред. А.А.Ярошинская. М.: Благотворительный фонд Ярошинской, 1996. 656с.: ил.
- 13 Адлер И. Внутри ядра / Адлер Ирвинг; Пер.с англ. Г.А.Васильева,В.А.Кучеряева,Ю.В.Орлова. - М.: Атомиздат, 1968. - 152с.

ПЕРИОДИЧЕСКИЕ ИЗДАНИЯ:

- 1. Успехи физических наук/ Учредитель: РАН; Гл.ред. Л.В.Келдыш. М.: Успехи физических наук. Журнал, выходит 1 раз в месяц. Основан в 1918 году. См. электронные версии статей: http://ufn.ru/ru/articles/.
- 2. Ядерная физика / Учредитель: РАН; Гл.ред. Ю.Г. Абов. М. : Наука. Журнал, выходит 1 раз в месяц. Основан в 1965 году.

Интернет-ресурсы:

- 1. Информационная система "Единое окно доступа к образовательным ресурсам" Минобразования РФ http://window.edu.ru/window
- 2. Википедия: http://wiki.web.ru
- 3. Полнотекстовая база данных для университета «Дубна». Сайт библиотеки: http://lib.uni-dubna.ru/biblweb
- 4. Описания лабораторных работ общего физического практикума на сайте ФЕИН http://fein.uni-dubna.ru/lab_main.php

Справочные ресурсы и материалы в Интернет:

- 1. http://nrv.jinr.ru/nrv
- 2. http://nuclphys.sinp.msu.ru/
- 3. http://theory.asu.ru/
- 4. http://www.chem.msu.su/rus/teaching/phys.html
- 5. http://www.srcc.msu.su/num_anal/
- 6. http://www.cultinfo.ru/fulltext/

8. Материально-техническое обеспечение дисциплины

- 1. Компьютерный класс и компьютеры в лабораториях (в лаборатории атомной физики 2 компьютера+ ноутбуки)
- 2. Стандартное программное обеспечение: программы научной графики Origin (свободная версия MicroCal Origin 3.0 или др.), Advanced Grapher (свободная русская версия), OpenOffice.org Calc (не требует лицензии) или Microsoft Excel; математические пакеты и системы: Maple V R4 (свободная версия для вузов), SMath Studio (не требует лицензии) или MathCAD; графические редакторы: GIMP (не требует лицензии) или PhotoShop;
- 3. Оригинальное программное обеспечение: калькулятор погрешностей; программа сглаживания данных сплайнами для градуировки призменных спектрометров; программа численного решения уравнения Шредингера для моделирования туннельного эффекта в стабилитроне и туннельном диоде; другие программы моделирования физических явлений, изучаемых в лабораторном практикуме; тестовая страница для Web-браузера.
- 4. Мультимедийный проектор,
- 5. Стенды, макеты, плакаты