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- Part I: Neutrinos in Core collapse

- Intermezzo to bridge 40ms after bounce
   where neutrinos are less important:
   Boltzmann neutrino transport

- Part II: Neutrinos in the Postbounce phase
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(a) The observation of 24 neutrinos from SN1987A in Kamiokande,
IMB, and Baksan confirmed the general idea of stellar core collapse.
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(a) The observation of 24 neutrinos from SN1987A in Kamiokande,
IMB, and Baksan confirmed the general idea of stellar core collapse.
The neutrinos transport information about buried layers to the outside.

(b) Neutrino physics determines the condition of matter in the
supernova: Most regions are in nuclear statistical equilibrium. Free
parameters to specify the fluid state are only the
1 density     2 temperature or entropy    3 electron fraction Ye=np/(np+nn)
For example

(c) They are responsible for the explosion in the v-driven mechanism
(distorted view! - actually they are responsible for the failure:
      - without neutrinos, Chandrasekhar mass ~ Ye^2 ~ 1.2 solar Masses
      - homologous collapse, bounce, dissociation & explosion!)

(e-) + p <==> n + ve

reduces entropy

reduces entropy

increases Ye

reduces Ye

(e+) + n <==> p + vebar

2 degrees of freedom: weak equilibrium & thermal balance
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   ~ 4pi/3 (170 km)^3

compact
 & instable!

1/sqrt( G*10^11 g/cm^3)
  ~ 12 ms

fast!

time scale:

size:

--> relativistic effects



The Equation of State

Lattimer & Swesty equation of state (1991)
for hot dense matter, with

representative nucleus in NSE
free alpha particles
free neutrons and protons
electrons, positrons and photons
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Compressible liquid drop model,
parametrized by

- bulk incompressibility
- bulk and surface symmetry
  energies
- symmetric matter surface
  tension
- nucleon effective mass

with phase transition to uniform
nuclear matter

(from Shen, PRC65, 2002)
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FIG. 6 Energy history of a 22 M � star as a function of time till core collapse. The y-axis defines the included mass from the
center. Hydrogen and helium core and shell burning are ma jor energy sources. In the later burning stages, following oxygen
core burning, neutrino losses related to weak processes in the stellar interior become increasingly importan t and can dominate
over the nuclear energy production. Con vection plays an importan t role in the envelope outside the helium burning shell, but
also in shells during oxygen and silicon burning (from Heger and Wo osley, 2001).
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FIG. 6 Energy history of a 22 M � star as a function of time till core collapse. The y-axis defines the included mass from the
center. Hydrogen and helium core and shell burning are ma jor energy sources. In the later burning stages, following oxygen
core burning, neutrino losses related to weak processes in the stellar interior become increasingly importan t and can dominate
over the nuclear energy production. Con vection plays an importan t role in the envelope outside the helium burning shell, but
also in shells during oxygen and silicon burning (from Heger and Wo osley, 2001).
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Bounce
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- Conversion to accretion shock



Neutrino escape from core collapse

109 1010 1011 1012 1013

101

102

Density [g/cm3]

En
er

gy
 [M

eV
] t = 1

t = 10

t = 100
me
me� mn+mp
E

n
Eequil.

Martinez-Pinedo et al., astro-ph/0412091



Neutrino escape from core collapse

109 1010 1011 1012 1013

101

102

Density [g/cm3]

En
er

gy
 [M

eV
] t = 1

t = 10

t = 100
me
me� mn+mp
E

n
Eequil.

neutrinos are:

free streaming
productions rate is relevant

Martinez-Pinedo et al., astro-ph/0412091



Neutrino escape from core collapse

109 1010 1011 1012 1013

101

102

Density [g/cm3]

En
er

gy
 [M

eV
] t = 1

t = 10

t = 100
me
me� mn+mp
E

n
Eequil.

neutrinos are:

free streaming
productions rate is relevant

diffusing
opacities and neutrino energies
are relevant

Martinez-Pinedo et al., astro-ph/0412091



Neutrino escape from core collapse

109 1010 1011 1012 1013

101

102

Density [g/cm3]

En
er

gy
 [M

eV
] t = 1

t = 10

t = 100
me
me� mn+mp
E

n
Eequil.

neutrinos are:

free streaming
productions rate is relevant

diffusing
opacities and neutrino energies
are relevant

thermalizing
thermalization time scale
is relevant

Martinez-Pinedo et al., astro-ph/0412091



Neutrino escape from core collapse

109 1010 1011 1012 1013

101

102

Density [g/cm3]

En
er

gy
 [M

eV
] t = 1

t = 10

t = 100
me
me� mn+mp
E

n
Eequil.

neutrinos are:

free streaming
productions rate is relevant

diffusing
opacities and neutrino energies
are relevant

thermalizing
thermalization time scale
is relevant

trapped and degenerate
Fermi surface is relevant

Martinez-Pinedo et al., astro-ph/0412091



Electron Capture in Core Collapse

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 
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Electron Capture in Core Collapse

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 

Ye - dial
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(1) target has low abundance

(2) abundance is sensitive to Ye

(3) the reaction dominates
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Input Physics Improvements

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30
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e-capture on nuclei always
dominates, deleptonization
faster than norm trajectory!

Input Physics Improvements

Langanke et al., Hix et al. 2003

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 
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Part I: Summary

- Chandrasekhar mass

- evolves by e-capture, diffusion, thermalization

- all three processes show(ed) potential for improvement

- e-capture on free protons provides deleptonization if
   alternative channels are closed
 --> convergence to "norm" trajectory

- bounce at twice nuclear density

- dissociation at the shock and neutrino losses lead to
   a stalled shock, no hydrodynamic prompt explosions

- accretion front continues to expand for ~100 ms
   after bounce

- most recent input physics predicts faster deleptonization
   by continued e-capture on nuclei 
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- e-capture on free protons provides deleptonization if
   alternative channels are closed
 --> convergence to "norm" trajectory

- bounce at twice nuclear density

- dissociation at the shock and neutrino losses lead to
   a stalled shock, no hydrodynamic prompt explosions

- accretion front continues to expand for ~100 ms
   after bounce

Progenitor
independence

- most recent input physics predicts faster deleptonization
   by continued e-capture on nuclei 
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Neutrino Transport

Metric in spherical symmetry:

General relativistic Boltzmann equation
 in comoving coordinates:
[Lindquist, Ann. Phys., 1966; etc.]
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Neutrino Transport

Metric in spherical symmetry:

Lagrangian time
derivative

spatial
advection
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advection collision term
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General relativistic Boltzmann equation
 in comoving coordinates:
[Lindquist, Ann. Phys., 1966; etc.]
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Neutrino Transport

Methods

- Multi-Group Flux-Limited Diffusion (Bruenn, DeNisco, Mezzacappa 2001)
   = Diffusion equation + interpolation to free streaming

- Variable Eddington Factor (Rampp & Janka 2000/2, Thompson, Burrows, Pinto 2003)
   = Angular moments equations + closure from formal Boltzmann equation

- Discrete Ordinates (SN) (Liebendörfer et al. 2001/4, Sumiyoshi et al. 2005)
   = Discretization of neutrino phase space and direct solution of transport equation

Challenges

- resolution of space

- resolution of neutrino phase space (energy groups, propagation direction)

- large contrast in densities and energies (10^53 ergs versus 10^51 ergs)

- large contrast in time scales of processes (1km/c~3E-6s versus 1s)
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Microscopic Transport --- Macroscopic Properties

Interest in time evolution of macroscopic quantities,
e.g. the evolution of neutrino energy:

Laboratory
frame:

expectation
value

time
derivative

Many cancellations among partial derivatives
because e is conserved along phase flow!

Discretized
transport equation:

evolution of
macroscopic
property...

Chain rule and integration by parts
in discrete space!

macroscopic operator
inherits finite differencing
from advection term

... as function of expectation value

Cancellations
don't happen
in discretized
world!



Comparison of Methods

Comparison of spherically symmetric simulations
between Oak Ridge/Basel group and Garching group:

Liebendörfer, Rampp, Janka, Mezzacappa, ApJ 620 (2005)

includes datafiles.tar.gz with different conditions
at different time slices during simulations.
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Why do explosions not occur automatically?

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 

(1) electron capture during collapse

(2) dissociation of infalling material
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1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 

48ms after bounce

equilibrium
entropy

entropy
profile

Following the neutrino burst is a phase of ~45ms, in which accreted
matter piles up on the protoneutron star

=> neutrino cooling determines
    compactification and inflow

(1) electron capture during collapse

(2) dissociation of infalling material

Neutrino heating is driving the shock outward to a radius of about
150km, where the shock stalls? --> NO: no neutrino heating (yet)!

neutrino
background

fluid
elementYe, S

waiting for
equilibrium
--> Ye(equil.)
--> S(equil.)



Cooling...

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 
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in the cooling layer,
causing mass and
energy loss from
the gain layer, may 
have been the main
reason why spheri
cally symmetric
simulations ulti-
mately failed to
produce explosions"

Janka 2001



Four reasons, and then?

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 

(1) electron capture during collapse

(2) dissociation of infalling material

(3) neutrino cooling

(4) fast accretion in heating region
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A side-effect? A surface-effect?

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 

"It is important to note that one is not obliged to unbind
 the inner core ... as well; the explosion is a phenomenon of
 the outer mantle at ten times the radius (50-200 kilometers)."
Burrows & Thompson 2002
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Herant et al. '94) and convectively stable in
simulations that don't (Buras et al. '03)
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==> Reason number 5:
      Stability of the protoneutron star around
      the neutrinospheres
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- convectively instable
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Feedback in a strongly coupled
multi-dimensional region
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Neutrino luminosities and spectra

0 0.2 0.4
0

0.35
0.7

1.05
1.4

1.75
2.1

2.45
2.8

3.15
3.5

x 1053

Time After Bounce [s]

Lu
m

in
os

ity
 [e

rg
/s

]

0 0.2 0.4
0
3
6
9
12
15
18
21
24
27
30

Time After Bounce [s]

(b) NH20

burst

mu/tau neutrinos

e-antineutrinos

e-neutrinos



Neutrino luminosities and spectra

0 0.2 0.4
0

0.35
0.7

1.05
1.4

1.75
2.1

2.45
2.8

3.15
3.5

x 1053

Time After Bounce [s]

Lu
m

in
os

ity
 [e

rg
/s

]

0 0.2 0.4
0
3
6
9
12
15
18
21
24
27
30

Time After Bounce [s]

rm
s 

En
er

gy
 o

f N
eu

tri
no

 F
lu

x 
[M

eV
]

(b) NH20

burst

mu/tau neutrinos

e-antineutrinos

e-neutrinos

hierarchy reflects
opacities



Neutrino luminosities and spectra

0 0.2 0.4
0

0.35
0.7

1.05
1.4

1.75
2.1

2.45
2.8

3.15
3.5

x 1053

Time After Bounce [s]

Lu
m

in
os

ity
 [e

rg
/s

]

0 0.2 0.4
0
3
6
9
12
15
18
21
24
27
30

Time After Bounce [s]

rm
s 

En
er

gy
 o

f N
eu

tri
no

 F
lu

x 
[M

eV
]

(b) NH20, Artificial Explosion

burst
shock transition

luminosity
equipartition
in absence of
accretion

mu/tau neutrinos

e-antineutrinos

e-neutrinos

hierarchy reflects
opacities



Accretion determines neutrino luminosities and spectra 40M
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Luminosities and spectra determine explosion

Explosions of 20 solar mass of Nomoto & Hashimoto forced with
- lowest angular resolution in neutrino transport (efficient & overestimates heating)
- parametrized scattering of neutrinos on free nucleons (0%-60%)
--> still self-consistent in the sense of energy and lepton number conservation
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Luminosities and spectra determine explosion

Explosions of 20 solar mass of Nomoto & Hashimoto forced with
- lowest angular resolution in neutrino transport (efficient & overestimates heating)
- parametrized scattering of neutrinos on free nucleons (0%-60%)
--> still self-consistent in the sense of energy and lepton number conservation
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Luminosities and spectra determine explosion

As the electron degeneracy be-
comes removed in the neutrino
heated expanding ejecta, the elec-
tron fraction exceeds 0.5, driven
by the mass difference between
neutron and proton.

Explosions of 20 solar mass of Nomoto & Hashimoto forced with
- lowest angular resolution in neutrino transport (efficient & overestimates heating)
- parametrized scattering of neutrinos on free nucleons (0%-60%)
--> still self-consistent in the sense of energy and lepton number conservation
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Luminosities and spectra determine explosion

As the electron degeneracy be-
comes removed in the neutrino
heated expanding ejecta, the elec-
tron fraction exceeds 0.5, driven
by the mass difference between
neutron and proton.

Explosions of 20 solar mass of Nomoto & Hashimoto forced with
- lowest angular resolution in neutrino transport (efficient & overestimates heating)
- parametrized scattering of neutrinos on free nucleons (0%-60%)
--> still self-consistent in the sense of energy and lepton number conservation
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Are magnetic fields a relevant ingredient?

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 

Leblanc & Wilson 1979, Symbalisty 1984:
Unphysically strong magnetic field leading to jets
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Are magnetic fields a relevant ingredient?

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30

3) 

Leblanc & Wilson 1979, Symbalisty 1984:
Unphysically strong magnetic field leading to jets

Akiyama et al. 2003, Ardeljan et al. 2004:
Magnetic field growth until magnetic pressure becomes relevant

Thompson, Quataert, Burrows 2005:
Magneto-Rotational Instability as source of viscosity, leading
to additional heating

Kotake et al. 2004:
Magentic field leading to asymmetries in the propagation of the
shock front

Heger, Woosley, Spruit:
Progenitor field estimate 5x10^9 G, almost no rotation?



Work in progress: 3D MHD simulations

1) electron capture: few free protons with large rates compete with many nuclei with lower rates
2) the free proton fraction strongly depends on the electron fraction, dXp/dYe ~ 30
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Part II: Summary

- neutrinos determine and couple dynamics in the
   hot mantle of the protoneutron star

- neutrinos influence the explosive nucleosynthesis

- neutrinos carry important information about the
   physics under extreme conditions to the Galactic
   observer

- established and reliable
- explore input physics changes
- reasonable computation time

- explore dynamical instabilities
- explore role of magnetic fields

- current edge of research
- does the SN mechanism work as suggested?

1D

2D

3D


