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giant resonance (GR) 

Cross-section 

Low-energy  

states 

    - first GR (giant dipole resonance -GDR) was observed in 1947,  

      other GR  were found ~ 30-40 years later. 

 

    - now we know a variety of electric and magnetic GR and 

      rather well understand their properties  

Introduction 

 M. N. Harakeh and A. van der Woude, “Giant Resonances”  

(Clarendon Press, Oxford, 2001). 

GR definition: a collective nuclear excitation 

exhausting  the essential (main) part of the  

integral cross-section of the reaction. 



 As a rule, the origin and main properties of GR are already known. 

 Then why GR  are still actual?   
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Variety of GR 

isoscalar (IS,T=0): protons and neutrons oscillate in phase 

isovector (IV,T=1): protons and neutrons oscillate in opposite phase 

Also  spin-flip M1 GR(T=1),  ….. 

 

- charge-exchange GR:  Gamow-Teller GR, …  omitted in the present talk 



    GR are used  as a robust test for modern self-consistent mean-field approaches 

    (Skyrme, Gogni, relativistic, …) based on the density functionals 

    (density functional theory). 

These approaches 

    - are main theoretical tools to describe GR and other excitations, 

    - are self-consistent: both mean field and residual interaction are obtained   

      from the same initial functional (no additional free parameters)  

 

     

    

 

 
  

- pretend to be quite universal: description of astrophysical problems, nuclear matter 

   (symmetric, neutron),  and finite nuclei through  almost all the periodic table,  

-  pretend to describe both static nuclear properties and  nuclear dynamics   

-  parameters of the initial functional are fitted to describe both finite  nuclei  

   (statics, dynamics) and nuclear matter  
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  Just GR are used to test functional parameterizations  to nuclear dynamics!  

  Thus GR are extremely important for modern nuclear theory.     

Why GR are actual? 

mean field residual interaction 



GR still have many open problems:  

    - troubles to describe simultaneously: 

                            -  GDR(T=1) and GQR(T=0), 

                            - one-bump and two-bump structures in spin-flip M1 GR  

                            - GMR in Pb and Sn isotopes 

    -  exotic GR (toroidal) …   

 GR are still very hot topic! 

GR        useful information on features of finite nuclei and nuclear matter 
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 - Relation to mean field and quantum shells  

 - Effect of deformation (E0 vs E2, scissors M1) 

Content: 

-Variety of giant resonances (GR) in nuclei: 

    - most important electric GR:  E1(T=1), E0(T=0), E2(T=0) 

    - most important magnetic  GR: spin-flip M1, scissors M1 

    - exotic E1(T=0) GR: toroidal and compression 

- Basic theory:  

   sum rules, modern self-consistent methods 



Giant resonances: definition 

More accurate definition:  giant resonance is a collective multipole          

excitation, exhausting an essential part of the  sum rule. 
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Sum rules look complicated but in many cases they are reduced to very simple expressions.     

response to external field F 

- model independent! 

Moreover, GR energies and widths can be estimated in terms of sum rules.  

In 1944 (three years before the experimental discovery of GDR), the existence  

of GDR was predicted by theorist  Migdal (USSR) using the sum rule analysis.  



E1(T=1) - GDR 

208Pb

Experimental photoabsorption cross-section 

Photoabsorption: 

 - advantage: mainly excites dipole states, 

 - shortcoming:  experiment is complicated  

   since one should measure contributions  

   of numerous decay channels . 

 Other reactions for GDR: 

   - (e,e’), (p,p’), ..one should separate  GDR 

 from other modes      

A. V. Varlamov et al, Atlas of Giant Dipole Resonances, 

INDC(NDS)-394,1999  
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Probe E1 operator: for                       : 
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Why not to use the simple operator 

p n 

Goldhaber-Teller model,  

(1948) 

Empirical estimation for GDR energy: 

Alternative Steinwedel-Jensen model (1950):  

out-of-phase oscillations of proton and neutron  

densities within the sharp and fixed boundary. 

Gives more realistic A-dependence.   

? 

E1j|F |0

10rY z



E1(T=1) - GDR 

208Pb

Experimental photoabsorption cross-section 

Probe E1 operator includes effective charges  

to remove spurious admixtures:  
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The operator 

gives translation of the whole nucleus 

(center-of-mass motion). 

This is not intrinsic excitations. So this  

 is a spurious admixture which must 

be extracted from description of GDR. 

This is obtained by using the proper  

effective charges in the dipole operator. 

The operator does not “clean” wave functions  

but only the response (matrix element of E1 transition): 
ˆi|M(E1)|0



GR and mean field 
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Effect of axial deformation on GDR 
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Axial quadrupole deformation causes splitting of GDR into  

K=0 and K=1 branches 
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Nuclei with fully occupied valence shell are spherical (magic and semi-magic nuclei). 

Nuclei with partly occupied valence shell can be deformed. 

The nuclear shape with a minimum of the system energy is actually realized.   

GDR 



Examples of  deformation-induced GDR splitting 

W. Kleinig , V.O.N., J. Kvasil, P.-G. Reinhard,  

  P. Vesely, PRC78, 044313 (2008) 

A  Repko, J. Kvasil, V.O.N. 
arXiv:1705.05436v1[nucl-th] 



Particular GR in more detail: 

  

  - E2(T=0), 

   - E0(T=0), 

   - spin-flip M1, 

   - scissors M1  



Giant quadrupole resonance E2(T=0) - GQR 

1/ 3E 64 MeVA

Open problems: 

- dependence on the isoscalar effective  mass        , 

- problem of simultaneous description of  E1(T=1) and E2(T=0) with Skyrme forces 

- wavelet analysis of GQR fine structure (deformation splitting)    

C.O. Kureba et al, PLB’2017 

experiment theory 

*
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Giant monopole resonance E0(T=0) - GMR 

1/ 3

GMRE 80 MeVA

GMR is the main source of information on nuclear incompressibility        and  K


Deviations from the trend for deformed nuclei 
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Giant monopole resonance E0(T=0) - GMR 

Open problems: 

- essential discrepancy in TAMU and RCNP experimental data 

- simultaneous description of GMR in Pb - Sn 

GMR and QMR are independent in spherical  nuclei but coupled in axial deformed nuclei. 
This leads to double-peak structure of GMR. 

J. Kvasil , V.O.N., A. Repko, W. Kleinig, and 

P.-G. Reinhard, PRC,94, 064302 (2016) 

Till now mainly GMR in spherical nuclei was used to get  

But most of nuclei are deformed! Is it possible to use deformed nuclei? 

K




Spin-flip M1 GR:  

transitions between spin-orbit partners 

M1 

M1 

M1 

Spin-flip M1 usually have two peaks (in both spherical and deformed nuclei) 

The peaks are caused  by neutron and proton  spin-flip transitions).  

p n 

In some nuclei (208Pb) spin-flip M1 has one peak. Why? 

So spin-flip M1 GR is a good test for nuclear spin-orbit interaction 

 V.O.N., J. Kvasil, P. Vesely, W. Kleinig, P.-G. Reinhard,    

  V.Yu. Pomomarevet al, J. Phys. G.37, 064034 (2010). 



Spin-flip M1 GR:  

The residual interaction can mix two M1 peaks into one. 

So the result depend on the competition between spin-orbit splitting  

and residual interaction (collective shift). 

Open problems: 

-For the moment no one Skyrme parameterization can simultaneously describe one- and two-  

  bump spin-flip GR. Each parameterization gives always two-peak or always one-peak. 

-  Spin-flip M1 is the counterpart of Gamow-Teller GR in the neutral channel.  If we poorly 

describe spin-flip M1, then we badly describe Gamow-Teller GR!    

 V.O.N. et al, J. Phys. G.37, 064034(11), (2010);. 



Scissors (orbital) M1 GR 

n p 

- general property of two-component deformed systems 

 

- well know in nuclei and other quantum systems (atomic clusters, 

trapped atomic Bose-Einstein condensate, quantum dots, ..) 

 

- low excitation energy  and strong M1( K=1)  transitions to gs 

 

- exists only in deformed systems 
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So the scissors mode is the test for orbital M1 transitions! 
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Scissors mode is formed 

by M1(K=1) transitions  

between neighbor levels 

produced by the deformation 

splitting Open problems: 

    - Spin- scissors?  



Pygmy, toroidal and compression  

            E1 resonances 

 

Isoscalar giant dipole resonance    

Exotic dipole resonances  



Dominate in E1(T=0) excitation channel 

(due to suppression  of dominant E1(T=1)  motion) 

V.M. Dubovik (1975) 

S.F. Semenko  (1981) 

M.N. Harakeh (1977) 

S. Stringari (1982) 

vortical 

R. Mohan et al (1971), 

irrotational irrotational 

Exotic dipole resonances 

Reviews: 

N. Paar et al, Rep. Prog. Phys. 70 691 (2007); 

 D. Savran et al, Prog. Part. Nucl. Phys. 70, 210 (2013) 

V.O.N. et al, Phys. Atom. Nucl. 79, 842 (2016). 

1/ 350 70E A MeV  1/ 3132E A MeV1/ 350 60E A MeV 

Alternative source  

of information on  

nuclear  

incompressibility 

- Different kinds of dipole  oscillations with   

  fixed c.m.  

- TR: elastic, at fixed boundaries 

-  TR: the only known electric vortical mode 



Pygmy E1 resonance 

Typical PDR  transition density: 

- n  

- p   

- Treatment: oscillations of the neutron excess against the core  

   with N=Z 

- of a high interest nowadays: 

   - important for some astrophysical problems  (EOS, neutron  

      stars, …) 

    - related  to neutron skin (neutron-rich nuclei)  

    - relating for building isospin part  of equation of state (EOS), 

       namely,  the symmetry energy . 

Reviews: 

N. Paar, D. Vretenar, E. Kyan, G. Colo, Rep. Prog. Phys. 70 691 (2007); 

 D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013) 

Only few per cent 

from dipole EWSR! 

GDR 
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Toroidal moment: 

 - appears in multipole decomposition of nuclear current density 

V.M. Dubovik and A.A. Cheshkov,  
Sov. J. Part. Nucl. v.5, 318 (1975). 
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Following theorems of Helmholtz and Chandrasekhar/Moffat, 

 the current distribution can be decomposed as  

electric  

moments 
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electric + toroidal 

moments 

Multipole electric operator (external field) :  
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Toroidal operator appears as  

the second order term in long-wave  

expansion of the electric operator 

standard electric operator 

In long wave approximation  

transversal 
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Toroidal  E1 operator: 
J. Kvasil, VON, W. Kleinig,  P.-G. Reinhard, 

P. Vesely,  PRC,  84, 034303 (2011) 

vortical flow 

irrotational  flow 

- second-order part of the electric operator   

toroidal and compression modes are coupled 
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Compression  E1 operator: 
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TDR and CDR constitute low- and high-energy  ISGDR branches (?)  

( , ') 

D.Y. Youngblood et al, 1977 

H.P. Morsch et al, 1980  

G.S. Adams et al, 1986 

B.A. Devis et al, 1997   

H.L. Clark et al,  2001 

D.Y. Youngblood et al, 2004 

 M.Uchida et al, PRC 69, 051301(R) (2004) 

(toroidal) (compression) 

LE HE 
Experiment: 

56 58,60 90 116 144Fe, Ni, Zr, Sn, Sm, ...

Theory: 

A. Repko, P.-G. Reinhard, V.O.N. and J. Kvasil, 

PRC 87, 024305 (2013). 

There are also exp ISGDR data in  

208Pb

Perhaps Uchida observed  at 10-17 MeV not TDR but  mixed CDR/TDR  low-

energy bump.  The main peaked TDR must at the lower energy ~ 7-9 MeV.   

Familiar treatment 

TDR 

CDR 
G. Colo et al, PLB 485, 362 (2000)  

D. Vretenar et al, PRC, 65, 021301(R)  (2002)  

N. Paar, D. Vretenar, E. Kyan, G. Colo, Rep. Prog. Phys. 70 691 (2007); 



Relation of E1 toroidal and  

       pygmy resonances 

 
Is PDR a local part of TDR?  



 A. Repko, P.G. Reinhard, VON, J. Kvasil, 

  PRC, 87, 024305 (2013) Strength functions 

PDR region hosts TDR and CDR!  

SLy6 

GDR 

Typical PDR  transition density: 

- n  

- p   



QRPA : nuclear current for E1-excitations  at  6.0-8.8 MeV  

(PDR region)  

- mainly isoscalar toroidal flow in PDR energy region! 

--so PDR is actually the toroidal motion? 

208Pb



Does the toroidal flow contradicts the familiar PRD picture? 

? 



 PDR can be viewed as a local peripheral part of TDR and CDR! 

V.O. N., A. Repko, P.-G. Reinhard, 

and J. Kvasil, EPJ Web of Conf., 

93, 01020 (2015) 



Theoretical models for GR: 
      - sum rules,  

      - self-consistent mean-field methods 



Sum rules (1): 
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Sum rules (2): 

Sum rules are related to basic quantum chacteristics: 

Sum rules are moments   

of the strength function 
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Sum rule determine limits of the polarizability:  



Sum rules (3): 

SR allow to estimate the GR energy and width 
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SR with p=1 and 3 are most used 

   They appear in oscillator  Hamiltonian  
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- spring parameter (restoring force) 

- inertia or mass parameter 



Sum rules (4): 

SR are generally expressed through commutators and anticommutators: 
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Insensitivity of commutators  to g.s.  

correlations !    The same for            . 3m

Can be used as a test for 

completeness of the  

single-particle basis. 

Thouless: 

SR with odd p=2n+1 expressed via commutators and  most useful. 



Strength functions 
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with the Lorentz averaging weight 

where the averaging parameter is  
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- has    -function spikes, is not convenient for  

  comparison with smooth  experimental data 


Usually GR are calculated in terms of strength functions:  

It is more convenient to use strength function  

The Lorentz weight simulates smoothing  

effects beyond the calculations   
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Modern self-consistent mean field methods: 

  - relativistic (lecture of  R. Jolos) 

  - Skyrme contact interaction 

  - Gogny finite range forces 

These approaches 

    - are main theoretical tools to describe GR and other excitations, 

    - are self-consistent: both mean field and residual interaction are obtained   

      from the same energy functional (no additional free parameters)  

 

     

    

 

 

 -  parameters of the initial functional are fitted to describe both finite  

       nuclei (almost all the periodic table) and nuclear matter (symmetric, neutron, …)  

   - many various parameterizations, a universal parameterization is absent 
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Skyrme forces in nuclear physics 
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- central term 

- non-local term 

- density-dependent term  

- spin-orbit term 
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conventional terms 

for  electric modes 
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Justification of Skyrme densities 

Single-particle density matrix: 
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- Some kind of gradient expansion  (important for non-uniform systems) 

- Combinations of densities in the functional must: 

     a) be time-even,  

     b) fulfill local gauge (Galilean) invariance  

Formal arguments: 

Other densities are first and second derivatives of basic densities      : , s

basic densities 

their momenta 

(first derivatives) 
their kin. energies 

(second derivatives) 

Functional involves all possible  bilinear combinations of the basic  

densities             and their first and second derivatives. , s



Features of different GR have been studied for many years  

and now, as a rule,  are basically known. 

 

However investigation of GR is still very important  because: 

   - GR are used for fitting modern self-consistent models to nuclear dynamics   

   - provide valuable information on nuclear matter characteristics  

   - still have many open problems  

                 - simultaneous description of: 

                      - E1(T=1) and E2(T=0) 

                      - E0(T=0) in Pb and Sn isotopes    

                      - one- and two-bump structure of spin-flip M1 in different nuclei 

                      - toroidal E1(T=0): still should be found experimentally 

                      - fine structure of GR and wavelet analysis, 

                    - …..  

Still very hot topic! 

Conclusions 
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